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CERTAIN TYPES OF SOFT GRAPHS

Muhammad Akram!, Saira Nawaz?

In this article, the concepts of soft graphs and vertex-induced soft graphs are
presented. Certain types of soft graphs including regular soft graphs, irregular soft
graphs, neighbourly irregular soft graphs and highly irreqular soft graphs are introduced
and investigated.
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1. Introduction and Preliminaries

Molodtsov [8] initiated the novel concept of soft set theory as a new mathematical
tool for dealing with uncertainties. This theory provides a parameterized point of view for
uncertainty modelling and soft computing. Let U be the universe of discourse and E be the
universe of all possible parameters related to the objects in U. Each parameter is a word
or a sentence. In most cases, parameters are considered to be attributes, characteristics or

properties of objects in U. The pair (U, E) is also known as a soft universe. The power set
of U is denoted by Z2(U).

Definition 1.1. [8] A pair (F,A) is called soft set over U, where A C E, F is a set-valued
function F : A — P(U). In other words, a soft set over U is a parameterized family of

subsets of U. For any ¢ € A, F(e) may be considered as set of e-approzimate elements of
soft set (F, A).

By means of parametrization, a soft set produces a series of approximate descriptions
of a complicated object being perceived from various points of view. It is apparent that a
soft set F'y = (F, A) over a universe U can be viewed as a parameterized family of subsets
of U. For any parameter ¢ € A, the subset F'(¢) C U may be interpreted as the set of
e-approrimate elements.

In 1975, Rosenfeld [9] first discussed the concept of fuzzy graphs whose basic idea
was introduced by Kauffmann [6] in 1973. Rosenfeld also proposed the fuzzy relations
between fuzzy sets and developed the structure of fuzzy graphs, obtaining analogs of several
graph theoretical concepts. Bhattacharya [3] gave some remarks on fuzzy graphs, and some
operations on fuzzy graphs were introduced by Mordeson and Peng [7]. Recently, Akram
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and Nawaz [2] have introduced the novel concepts called fuzzy soft graphs and fuzzy vertex-
induced soft graphs. In this paper, we introduce the notion of soft graphs and describe
certain types of soft graphs.

2. Certain types of soft graphs

Definition 2.1. A 4-tuple G = (G*, F, K, A) is called a soft graph if it satisfies the following
conditions:

(1) G* = (V, E) is a simple graph,

(2) A is a nonempty set of parameters,

(3) (F,A) is a soft set over V,

(4) (K, A) is a soft set over E,

(5) (F(a),K(a)) is a subgraph of G* for all a € A.

The subgraph (F(a), K (a)) is denoted by H(a) for convenience. A soft graph can also
be represented by

G=(FK A ={H(z):z € A}.

Example 2.1. Consider a crisp graph G* = (V, E) as shown in Fig. 2.1.

c b
FIGURE 2.1. Simple graph G*

Let A = {a,d} CV and (F,A) be a soft set with its approzimate function F : A —
P (V) defined by

Fz)={yeV:zRy e d(z,y) < 1}
for all x € A. That is,

F(a) = {a,b,c} and F(d) = {b,c,d}.
Let (K, A) be a soft set over E with its approzimate function K : A — P(E) defined by

K(z)={uw € E : {u,v} C F(x)}

for all x € A. In other words, we have

K(a) = {ab,bec,ca} and K(d) = {db,bc,cd}.

Thus, H(a) = (F(a),K(a)) and H(d) = (F(d), K(d)) are subgraphs of G* as shown in Fig.
2.2.
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a d
c b c b
H(a) corresponding H(d) corresponding
to vertex ‘a’ to vertex “d’

FIGURE 2.2. Subgraphs H(a), H(d)

Hence, G = {H(a),H(d)} is a soft graph of G*. It is also called vertez-induced soft
graph.

Example 2.2. Consider a crisp graph G* = (V, E) such that V = {a,b,c,d} and E =
{ab,be,cd,ad}. Let A = {e1,ea,e3} be a nonempty set of parameters. Then the subgraphs
of G* corresponding to parameters ey, ea and e3 are given below and shown in Fig. 2.35.
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F(e1), K(e1)) = ({a, b}, {ab}),
K(e2)) = ({aa b, 0}7 {ab7 bc})v
H(es) = (F(es), K(e3)) = ({a,b,c,d}, {ad, , cd, cb}).

a b a b
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C d C
H(el) corresponding H(e2) corresponding H(eg corresponding
to parameter g to parameter e, to parameter e,

FIGURE 2.3. H(ey), H(es), H(es)

Hence G = {H(e1),H(ez2),H(e3)} is a soft graph of G*. Tabular representation of
soft graph G is given in Table. 1

TABLE 1. Tabular representation of a soft graph.

AV |a|b|c|d||A\E |ab|bc| cd| da
ep |1]11]10]|0 el 11000
es 111|110 es 111]0)|0
es 111111 es 01 1|1] 1

Definition 2.2. Let G* be a simple graph and G be a soft graph of G*. Then G is said
to be regular soft graph if H(x) is a regular graph for all x € A. A soft graph G is called a
reqular soft graph of degree r if H(x) is a regular graph of degree v for all x € A.
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Example 2.3. Consider an undirected graph G* as shown in Fig. 2.4.

a b

f e

FIiGURE 2.4. Undirected graph G*

Let A ={a,c, f}. We define an approzimate function F : A — P (V) by
Fz)={yeV:zRy & d(z,y) < rad(G*)}
for all x € A. That is,
F(a) = {a,b, g, F(e) = (b.e.d), F(f) = {de. f9.h)
We define an approzimate function K : A — Z(E) by
K(z)={w € E: {u,v} C F(x)}
for all x € A. That is,
K(a) = {ab,ah,ag,bh,hg,bg}, K(c) = {be,cd,bd} and K(f) = {de,ef, fg,gh, hd, he, hf,dg,df, ge}.

Thus, subgraphs H(a) = (F(a),K(a)), H(c) = (F(c),K(c)) and H(f) = (F(f),K(f)) are
reqular subgraphs of G* shown in Fig. 2.5.

a b b
h c
g d
H(a) corresponding H(c) corresponding
to vertex “a’ to vertex ‘¢’
h
9 d
f e

H(f) corresponding
to vertex ‘f’

FIGURE 2.5. Subgraphs H(a), H(c) and H(f)

Hence G is a regular soft graph of G*. That is, G = {H(a), H(c), H(f)} is a regular
soft graph of G*.

Definition 2.3. Let G* be a simple graph and G be a soft graph of G*. An edge e in G is
said to be a soft bridge if its deletion disconnect the subgraph H(x), x € A.



Certain types of soft graphs 71

Example 2.4. Consider a simple graph G* as shown in Fig. 2.6.

a

d c

FIGURE 2.6. Simple graph G*

Let A = {b,c} CV and (F,A) be a soft set over V with approzimate function F :
A— 2(V) by
Fz)={yeV:zRy < d(z,y) < rad(G*)}

for all x € A. That is, F(b) = {a,b,c} and F(c) = {a,b,c,d}.
Let (K, A) be a soft set over E with approzimate function K : A — P(E) by

K(z)={w € E : {u,v} C F(x)}

for all x € A. That is,
K (b) = {ab,be,ca} and K(c) = {ab, be, ca, cd}.
The subgraphs H(b) and H(c) are shown in Fig.2.7.

R

FIGURE 2.7. Subgraphs H(b) and H(c

Then G is a soft graph of G*. Here, deletion of edge (¢, d) in subgraph H(c) disconnect
the subgraph H(c). Therefore, (c,d) is a soft bridge.

Definition 2.4. Let G* be a simple graph and G be a soft graph of G*. A vertex v in G is
said to be a soft cutvertex if its deletion disconnect the subgraph H(x), x € A.

Example 2.5. Consider an undirected graph G* as shown in Fig. 2.8.

b c

f e

FiGure 2.8. Undirected graph G*
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Let A ={b, f} and (F, A) be a soft set over V with approzimate function F : A —
2(V) by
Fz)={yeV:zR y & d(z,y) < dia(G*)}

for all x € A. Then F(b) = {a,b,c,d} and F(f) ={a,c,e, f}.
Let (K, A) be a soft set over E with approzimate function K : A — P(E) by

K(z)={w € E: {u,v} C F(x)}
for all x € A. That is,
K (b) = {ab, be, cd, b}, K(f) = {af, fe, ce, fe}.
The subgraphs H(b) and H(f) are shown in Fig.2.9.

f e

FIGURE 2.9. Subgraphs H(b) and H(f)

Clearly, subgraphs H(b) and H(f) are subgraphs of G*. Thus G is a soft graph of
G*. Here, the deletion of vertex b in subgraph H(b) and f in subgraph H(f) disconnect the
subgraphs. Therefore, b, f are soft cutvertices.

Theorem 2.1. A regular soft graph with cardinality of F(z), |F(z)| > 3 for all € A does
not have a soft bridge. Hence it does not have a soft cutvertex.

Proof. Suppose that G is a regular soft graph. Then H(z) is a regular graph for all z € A.
Since |F(x)| > 3 for all x € A, the removal of any edge of H(z) does not disconnect the
subgraph. Therefore, G has no soft bridge. Hence it does not have a soft cutvertex. |

Proposition 2.1. A regular soft graph of degree k where k > 0 with |F(z)| > 3 for all
x € A does not have an end vertex (a vertex of degree 1).

Definition 2.5. Let G* be a simple graph and G be a soft graph of G*. Then G is said to
be soft tree if H(x) is a tree for all x € A. Let G* be a simple graph and G be a soft graph
of G*. Then G is a soft cycle if H(x) is cycle for all x € A.

Example 2.6. Consider a simple graph G* as shown in Fig. 2.10.

u

w v

FI1GURE 2.10. Simple graph G*
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Let A = {v,a} C V and (F,A) be a soft set over V with approzimate function
F:A— 2(V) by

Fz)={yeV:zRy & d(z,y) < 1}
for all x € A.

That is, F(v) = {u,v,w} and F(x) = {u,w, x}.
Let (K, A) be a soft set over E with approzimate function K : A — P (E) by

K(z)={w € E: {u,v} C F(x)}

for all x € A. That is,
K () = {uv,vw,wu}, K(z) = {ux, zw, wu}.
Subgraphs H(v) and H(x) are shown in Fig. 2.11.

L4 @
w \
w

FIGURE 2.11. Subgraphs H(v) and H(z)

Then G is a soft graph of G*. Here, H(x) is cycle for all x € A. Hence G is a soft
cycle.

Theorem 2.2. If G is a soft cycle then G is not soft tree.

Proof. Let G be a soft cycle. Then H(z) is cycle for all z € A. Since a tree contains no cycle
so H(x) is not a tree for all x € A. Therefore, G is not a soft tree. ]

Remark 2.1. The converse of above theorem is not true in general i.e., if G is not a soft
tree then G need not be a soft cycle.

The following example illustrate it.

Example 2.7. Consider a graph G* as shown below in Fig. 2.6.
Let A= {b,d} CV and (F, A) be a soft set over V with approximate function F' : A — 2 (V)

by
F(z)={yeV:zRy o d(z,y) < 1}

for all x € A. That is, F(b) = {a,b,c} and F(d) = {c,d,e}.
Let (K, A) be a soft set over E with approzimate function K : A — P(E) by

K(z)={w € E: {u,v} C F(x)}

for allz € A. That is,
K(b) = {ab,be,ca} and K(d) = {ed, dc}.
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a e

H(b) d H(d) c
c

FIGURE 2.12. Subgraphs H(b) and H(d)

Then G is a soft graph of G*. Here, H(b) is not a tree. Therefore, G is not a soft
tree. But G is not a soft cycle.

Proposition 2.2. If G is a soft cycle then G is a regular soft graph of degree 2.
OR every soft cycle is a regular soft graph.

Proof. Suppose that G is a soft cycle. Then H(x) is a cycle graph for all x € A. Since a
cycle graph is a closed path and each vertex has degree 2 therefore, it is a regular graph of
degree 2. So H(xz) is a regular graph of degree 2 for all € A. Hence G is a regular soft
graph of degree 2. O

Proposition 2.3. Let G be a regular soft graph and H(z) is a cycle for all z € A. Then G
is a soft cycle.

Proposition 2.4. Let graph G* be a complete graph. Then every soft graph of G* is a
regular soft graph of G*.

Proof. Let G be a soft graph of G*. Then H(x) is a complete subgraph of G* for all x € A
as every induced subgraph of a complete graph is complete and every complete graph is
regular. Therefore, G is a regular soft graph of G*. ]

Remark 2.2. The converse of the above proposition is not true in general. That is, if G is
reqular soft graph of G* then G* need not be a complete graph.

Example 2.8. Consider a simple graph G* as shown in Fig.2.13.

b c

f e

FIGURE 2.13. Simple Graph

Let A = {c,d} CV and (F,A) be a soft set over V. with approximate function F :
A— P(V) by
F(z)={yeV :zRy & d(z,y) =1}
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for all x € A. That is, F(c) = {b,d,e} and F(d) = {b,c,e}.
Let (K, A) be a soft set over E with approzimate function K : A — P(E) by

K(z)={w € E: {u,v} C F(x)}

for all x € A. That is,
K(c) = {bd,de,eb} and K(d) = {bc, ce,eb}. Subgraphs H(c) and H(d) are shown in Fig.2.14.

b Cc

H(c) H(d) e
e

FIGURE 2.14. Subgraphs H(c) and H(d)

Then G is a soft graph of G*. Here, H(x) is a reqular graph for all x € A. Therefore,
G is a reqular soft graph of G*. But G* is a not complete graph.

Theorem 2.3. A soft graph G of G* is a regular soft graph if and only if H(x) is regular
graph for all x € A.

Proof. Suppose G is a regular soft graph of G*. Then clearly H(x) is a regular graph for all
x € A

Conversely, suppose that H(z) is a regular graph of G* for all z € A. Then G is a regular
soft graph of G*. ]

Definition 2.6. Let G* be a simple graph and G be a soft graph of G*. Then G is said to
be soft complete graph if H(x) is a complete graph for all x € A.

Proposition 2.5. Every complete soft graph G of G* is regular soft graph.

Proof. Let G be a soft complete graph of G*. Then H(z) is a complete graph for all z € A.
Since every complete graph is regular. So H(z) is a regular graph for all € A. Therefore,
G is a regular soft graph. O

Proposition 2.6. Let the graph G* be a regular. Then every soft graph of G* may not be
a regular soft graph.

Example 2.9. Consider the regular graph G* = (V,E) such that V. = {a,b,c,d} and
E = {ab,bc,cd,ad}. Let A = {a,c} CV and (F,A) be a soft set over V with approzimate
function F : A — P(V) by

F(z)={y eV :zRy & d(z,y) < dia(G*)}

for allx € A. Then F(a) ={a,b,d} and F(c) = {b,c,d}.
Let (K, A) be a soft set over E with approzimate function K : A — P (E) by

K(z) ={w € E : {u,v} C F(z)}

for all x € A. That is,
K(a) = {ab,ad} and K(c) = {bc, cd}. Subgraphs H(a) and H(c) are shown in Fig.2.15.
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a b

d  H@ d  He c
FIGURE 2.15. Subgraphs H(a) and H(c)

Then G = {H(a),H(c)} is a soft graph of G*. Here, H(x) is not a regular graph for
all z € A. Therefore, G is not a regular soft graph of G*. But G is a regular graph.

Proposition 2.7. If G is a regular soft graph of G* then G¢ is a regular soft graph of G*.

Proof. Suppose that G is a regular soft graph of G*. Then H(z) is a regular graph for all
x € A. Since the complement of a regular graph is regular. So the complement of subgraph
H(z), H¢(x) is a regular graph for all z € A. Therefore, G€ is a regular soft graph of G*. O

Theorem 2.4. If G = (G*, F, K, A) is a complete soft graph of G* then every soft subgraph
Gy = (G*, F1, K1, B) of complete soft graph is regular soft graph.

Proof. Suppose that G is a soft subgraph of G. Then by definition of soft subgraph, B C A
and Hq(x) is a subgraph of H(z) for all x € B. Since G is a soft complete graph then
subgraph H(z) is a complete subgraph for all € A. Since H;(z) is a subgraph of H(z) so
H,y(z) is a regular graph for all € B, as each subgraph of a complete graph is complete
and every complete graph is regular. Thus, G is a regular soft subgraph of G. |

Definition 2.7. Let G* be a simple graph and G be a soft graph of G*. Then G is said to
be irregular soft graph if H(x) is an irreqular graph for all x € A.

Example 2.10. Consider a simple graph G* as shown in Fig. 2.16.

a

d c

FIGURE 2.16. Simple graph G*

Let A = {c,e}. We define an approzimate function F : A — P (V) by
Fz)={yeV:zRy < d(z,y) < rad(G*)}

for all x € A. That is, F(c) = {b,c,d} and F(e) ={a,b,d,e}.
We define an approzimate function K : A — P (E) by

K(z)={w € E: {u,v} C F(x)}
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for all x € A. That is,
K(c) = {be,cd} and K (e) = {ab, ae, eb, ed}. Subgraphs H(c) and H(e) are shown in Fig.2.17.

d Cc
ne g Hee)

FIGURE 2.17. Subgraphs H(c) and H(e)

Then G = {H(c),H(e)} is a soft graph of G*. Here, H(x) is an irregular graph for
all x € A. Therefore, G is an irreqular soft graph.

Definition 2.8. Let G* be an undirected graph and G be a soft graph of G*. Then G is said
to be neighbourly irreqular soft graph if H(x) is a neighbourly irreqular graph for all x € A.

Example 2.11. Consider an undirected graph G* as shown in Fig. 2.18.

d
FIGURE 2.18. undirected graph G*

Let A = {a,c,d}. We define an approximate function F : A — P (V) by
F(z)={yeV :zRy & d(z,y) < rad(G*)}

for all x € A. That is, F(a) ={a,b,d, f}, F(c) ={b,c,d} and F(d) ={a,c,d,e}.
We define an approzimate function K : A — P (E) by

K(z)={w € E: {u,v} C F(x)}

for all x € A. That is,
K(a) ={ab,ad,af}, K(c) = {bc,cd} and K(d) = {db,da,df}.
Subgraphs H(a), H(c) and H(d) are shown in Fig. 2.19.
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H(a) H(c) H(d)
d d d

FIGURE 2.19. Subgraphs H(a), H(c) and H(d)

Then G is a soft graph of G*. Here, H(x) is neighbourly irreqular graph for all x € A.
Therefore, G = {H(a), H(c), H(d)} is a neighbourly irreqular soft graph of G*.

Definition 2.9. Let G* be a graph and G be a soft graph of G*. Then G is said to be highly
irregular soft graph if H(x) is a highly irregular graph for all x € A.

Example 2.12. Consider a nontrivial graph G* as shown in Fig .2.20.

a c e

b d f
F1GURE 2.20. Nontrivial graph G*

Let A = {b,e}. We define an approzimate function F : A — P(V) by F(z) ={y eV :
zRy < d(z,y) < rad(G*)} for allx € A. That is, F(b) = {a,b,c,d} and F(e) = {c,d,e, f}.
We define an approzimate function K : A — P(E) by K(z) = {uv € E : {u,v} C F(x)}
for all x € A. That is,
K(b) = {ab,be,cd} and K(e) = {cd,de,ef}.
Subgraphs H(b) and H(e) are shown in Fig 2.21.

a c C e

H(b) H(e)
FIGURE 2.21. Subgraphs H(b) and H(e)

Then G is a soft graph of G*. Here, H(x) is highly irregular graph for all x € A.
Therefore, G = {H(b), H(e)} is a highly irreqular soft graph of G*.
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Remark 2.3. A highly irreqular soft graph may not be a neighbourly irregular soft graph.

In above example 2.12 the adjacent vertices b and ¢ in subgraph H (b) and the adjacent
vertices d and e in subgraph H(e) have same degrees.Therefore, H(x) is not neighbourly
irregular graph for all x € A. Hence G is not neighbourly irregular soft graph. But it is
highly irregular soft graph.

Remark 2.4. A neighbourly irreqular soft graph may not be a highly irregular soft graph.

Example 2.13. Consider a simple graph G* as shown in Fig.2.22.

a

g e c

FIGURE 2.22. Simple graph G*

Let A = {a, f}. We define an approximate function F : A — P (V) by F(z) =
{y € V:2Ry & d(z,y) < 1}. Then F(a) = {a,b, f}, F(f) = {a,d, g, f}. We define an
approzimate function K : A — P(E) by K(x) = {uv € E : {u,v} C F(x)} for all z € A.
That is, K(a) = {ab,af}, K(f) = {fa, fd, fg}. Subgraphs H(a) and H(f) are shown in
Fig. 2.23.

H(a) H(f)

g
FIGURE 2.23. Subgraphs H(a) and H(f)

Here, the adjacent vertices in subgraphs H(a) and H(f) have distinct degree so H(x)
is meighbourly irreqular for all x € A but consider a vertex a in subgraph H(a) which is
adjacent to the vertices b and [ with same degree and a vertex f in subgraph H(f) which
is adjacent to the vertices a, d, g with same degree. Therefore, H(x) is not highly irregular
for all x € A. Hence G is a neighbourly irregular soft graph but it is not highly irregular soft
graph.

We have seen from the above examples that there is no relation between highly irreg-
ular soft graphs and neighbourly irregular soft graphs. However, a necessary and sufficient
condition of a soft graph G to be both highly irregular and neighbourly irregular is provided
in the following theorem.
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Theorem 2.5. Let G* be a simple graph and G be a soft graph of G*. Then G is both
highly irregular soft graph and neighbourly irregular soft graph if and only if the degrees of
all the vertices are distinct.

Proof. Let G be a soft graph of G*. Suppose that G is highly irregular and neighbourly
irregular soft graph. Then each vertex in H(z) is adjacent to the vertices with distinct
degree for all € A since G is highly irregular soft graph. Also in H(z) no two adjacent
vertices have same degree for all z € A since G is neighbourly irregular soft graph. Hence
the degrees of all vertices of G are distinct.

Conversely, suppose that all the vertices of G have distinct degrees. This means that every
two adjacent vertices have distinct degrees and to every vertex the adjacent vertices have
distinct degrees. Hence G is highly irregular soft graph and neighbourly irregular soft
graph. (|

Proposition 2.8. Let soft graph G of G* be neighbourly irregular , the soft subgraph Go
of G; may or may not be neighbourly irregular soft graph.

Example 2.14. Consider an undirected graph G* as shown in Fig.2.24.

c e [¢]

a
® Py

b d f h

FIGURE 2.24. undirected graph G*

Let A={c,g,h} and B = {g,c}. We define an approzimate function Fy : A — P (V)

by
Fi(x)={y €V :zRy & d(z,y) < rad(G*)}

for all x € A. Then Fy(c) = {a,b,c,d,e, f,g}, Fi(9) = {c,e, f,g,h}, Fi(h) = {e,g,h}. We
define an approximate function K1 : A — P(E) by
Ki(z) ={uv € E: {u,v} C Fi(x)}

for all x € B. Then Ki(c) = {ac,cb,cd,bd, ce,df,eg,ef}, Ki(9) = {ce,eg,ef,gh} and
K1(h) = {eg, gh}. Subgraphs Hi(c) , Hi(g) and Hy(h) are shown in Fig. 2.25.

c e g
a c e g @
I [
3
b d f f h

FIGURE 2.25. Subgraphs Hi(c) , Hi(g) and H;(h)

e g

Therefore, G1 € 8G(G*). Here Hy(x) is neighbourly irregular for all x € A. Hence G4
s neighbourly irreqular soft graph.
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We define an approximate function Fy : B — P(V) by Fa(x) ={y € V: 2Ry & d(z,y) <
2} for all x € B. Then F(c) = {a,b,c,d,e} , Fa(g) = {e,g,h}. We define an approzimate
function Ko : A — P(E) by Ko(x) = {uv € E : {u,v} C Fy(x)} for all x € B. That is,
Ks(c) = {ac, cb, cd, bd, ce}, K2(g) = {eg, gh}. Subgraphs Ha(c) = (Fa(c), K2(c)) and Ha(g) =
(F2(9), K2(g)) are shown in Fig. 2.26.

a c e e g
L ®
b d h

FIGURE 2.26. Subgraphs Ha(c) and Hz(g)

Therefore, Gy € 8G(G*). Here, B C A and Hy(x) is a subgraph of Hy(x) for all
x € B. Therefore, Gy is a soft subgraph of G1. Here, Ha(c) is not neighbourly irregular,
c € A. So G4 is not neighbourly irregular soft subgraph.

Proposition 2.9. If soft graph GG of G* is neither neighbourly irregular nor highly irregular
then G is a soft cycle.

Example 2.15. Consider a simple graph G* as shown in Fig.2.27.

d c
FIGURE 2.27. Simple graph G*

Let A ={a,c}. We define an approzimate function F : A — Z(V) by
Fz)={yeV:zRy e d(z,y) =1}

for all x € A. That is, F(a) = {b,c,d} and F(c) = {a,b,d}.
We define an approzimate function K : A — P(FE) by

K(z)={w € E: {u,v} C F(x)}

for all x € A. That is, K(a) = {bc,cd,db} and K(c) = {ab,bd, da}.
Subgraphs H(a) and H(c) are shown in Fig. 2.28.
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a b

d c d
FIGURE 2.28. Subgraphs H(a) and H(c)

Then G is a soft graph. Here, H(x) is neither neighbourly irreqular nor highly ir-
reqular, but it is a cycle for all x € A. Hence G is neither neighbourly irreqular nor highly
wrreqular soft graph but it is a soft cycle.

Proposition 2.10. A complete soft graph G is not neighbourly irregular soft graph.

As in Example 2.15 G is a soft complete graph since H (z) is a complete graph for all
x € A but it is not neighbourly irregular soft graph as H(z) is not neighbourly irregular for
all z € A.
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