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SETVALUED CONTRACTION MAPPING PRINCIPLE IN
GENERALIZED METRIC SPACES

P. Maity!, B. S. Choudhury?, K. C. Pati®

In this paper we establish a multivalued contraction mapping principle in a
space which is a generalization of metric spaces in which infinite distance between two
points is admissible. The result is supported with an example. The space is assumed
to have a partial ordering defined on it. We also assume some order conditions in our
theorem with respect to this partial order. A discussion is provided in which we indicate
the difference of our result with the Nadler’s result on multivalued contractions in metric

spaces.
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1. Introduction

The purpose of the paper is to establish a multivalued contraction mapping principle
in a generalized metric space which was defined by Luxemberg [1] by allowing the metric to
take up value from the extended real number system, that is, by incorporating the possibility
of an infinite distance between two points. Such structures appear naturally as, for instance,
in the consideration sets of functions defined on arbitrary domains. We cite an example later.
Banach’s fixed point theorem, which is widely recognized as the starting point of metric fixed
point theory, was successfully extended to generalized metric spaces in the work of Diaz et al
[2]. Like the Banach’s result in metric spaces, the result of Diaz et al is also instrumental in
proving many important results. We note some of its applications in the works [3, 4, 5, 6, 7].

The Banach’s fixed point result was extended to the domain of set valued analysis by
Nadler in 1969 [8]. The multivalued version of the contraction mapping principle proved by
Nadler is also known as Nadler’s theorem and is considered as one of the important results
in setvalued analysis. Today the fixed point theory of mutivalued functions has a large

literature of which references [9, 10, 11, 12] are some recent instances.
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Fixed point theory has deveoped in partially ordered metric spaces in recent time
through a good number of papers. An early reference in this area is the work of Turinici
[13] in which partial ordering was considered in uniform spaces. Later, Nieto et al [14] and
Ran et al [15] worked with such structures which was followed by more recent works like
[16, 17, 18, 19, 20, 21, 22]. A remarkable feature of this deveopment is a blending of analytic
and order theoretic approaches in the methodology.

The purpose of the paper is to establish a multivalued contraction mapping principle
in a generalized metric space which has additionally a partial ordering defined on it. Both
analytic and order theoretic conditions are used in the theorem. There is an illustrative
example. A comparison with Nadler’s result is given in the conclusion.

The followings are the essential mathematical preliminaries for our discussion in this
paper.

We recall the definition of generalized metric space by Luxemberg [1].

Definition 1.1 (Generalized metric space[l]). Let X be a nonempty set. A function
e: X x X —[0,00] is called a generalized metric on X if e satisfies the following properties
(1) e(z, y) =0if and only if x = y;
(2) e(z, y) =e(y, z) for all z,y € X;
(3) e(z, 2) <e(z, y)+ely, z) forall z,y,z € X;

Then the pair (X, e) is called a generalized metric space.

A sequence {x,} converges to x if e(z,, ) — 0 as n — oo. A sequence {z,} in X is
a e-Cauchy sequence if . ALHE . e(tn, Tm)=0. A generalized metric space (X, e) is said to
be complete if every e—CaLuchy sequence in X is e-convergent, that is, . TLHEOO e(Tn, Tm)=0
for a sequence x,, € X implies the existence of an element z € X with n7li_>1rnOo e(z, ) =0[2].

By (1) and (3) in the above definition, the limit of the sequence {z,,} is uniquely determined.

Definition 1.2. For any generalized metric space (X, e), for z € X and A(#£ ¢) C X, we
write e(xz, A) as

e(z, A) =inf{e(z, y) : y € A,e(x, y) < oo} whenever theset {y : y € Aand e(z, y) <
00 is non-empty},

e(x, A) = oo, otherwise.

Definition 1.3 (Generalized Hausdorff distance). Let (X, e) be a generalized metric
space. Then the generalized Hausdorff metric F introduce by e is defined as follows.
For each pair of nonempty subsets A and B of X,
E(A, B) = maz{sup d(z, B), sup d(y, A)}.
z€A yEB
We take, E(0, 0) =0 and E(A, 0) = E(), A) = oo for nonempty A.

Lemma 1.1. Let (X, e) be a generalized metric space. E : 2% x2% — [0, 00) is an extended
real-valued function such that for all A, B, C' € 2%, the following properties are satisfied:
E(A, B)=0if and only if A = B,
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E(A, B) = E(B, A),
E(A, B) < E(A, C)+ E(C, B).

Proof. Except for the triangle inequality, these properties follow from the definition. If any
of A, B,C are empty, then the triangular inequality trivially follows. We assume that all
A, B, Cs are non-empty.

Fora € A, b€ B, and ¢ € C, we have e(a, B) <e(a, b) <e(a, ¢)+e(c, b),

so, e(a, B) <e(a, ¢)+e(c, B) <e(a, ¢)+ E(C, B).

Taking the infimum on the rightside with respect to ¢ € C', we get

e(a, B) <e(a, C)+ E(C, B) < E(A, C)+ E(C, B).

So sup e(a, B) < E(A, C)+ E(C, B).

Sirrfiii"ly, sup e(b, A) < E(A, C)+ E(C, B).

Therefore,b%B(’A7 B)< E(A, C)+ E(C, B).

If we take E(A, B) = oo, then all the above properties also satisfied.

This completes the proof of the lemma. O

Remark 1.1. It is noted that the generalized Hausdorff metric is defined for any two non-
empty subsets of X, whereas a Hausdorff metric on a metric space is only defined on the
set of closed and bounded subsets of the metric space. It gives more generality to the
generalized Hausdorff metric. For a non-trivial example of the generalized metric space and

the generalized Hausdorff metric we refer to example 3.1.

The following lemma is direct consequence of the definition of generalized Hausdorff

metric.

Lemma 1.2. Let (X, e) be a generalized metric space and A, B be two non-empty subsets
of X. Then for any a € A and € > 0, there exists b € B such that e(a, b) < E(A, B) +e.

Definition 1.4. In a partially ordered set (X, <), for x € X and A(# ¢) C X, we define
r=Aasx <yforall y € A.

Definition 1.5. A mapping 7 : X — 2% — {¢} is said to be monotone increasing if for all
x € X,z 2 Tx implies y X Ty for all y € Tx.

Remark 1.2. It is noted that there are several other notions of monotonicity associated

with multivalued mappings as, for instance, those discussed in [23, 24, 25].
A point z € X is a fixed point of a mapping T : X — 2% if z € Tz.

Definition 1.6. Let T : X — 2% be a multivalued mapping from a non-empty set X to 2%.
A point z € X is an approximate fixed point of T if e(z, Tz) = inf{e(z, y) :y € Tz} =0.

The following are some features of the present work.

e We define generalized Hausdorff metric between two arbitrary subsets of a generalized
metric space.

e We assume a partial order on the generalized metric space.



112 P. Maity, B. S. Choudhury, K. C. Pati

e The contraction we define in a setvalued mapping which can assume any non empty
subset of X.

e Under certain circumstances it is shown that there is an approximate fixed point of
the mapping.

e Our result is an extension of the result of [2] in generalized metric space with a partial
order. On the other hand, it is also an extension of Nadler’s theorem [8] in partially
ordered generalized metric spaces.

e The result is illustrated with an example.

2. Main Result

Theorem 2.1. Let (X, ¢e) be a complete generalized metric space with an additional struc-
ture of partial order < defined on it. Suppose T : X — 2% — {¢} is a multivalued mapping
which satisfies

E(Txz, Ty) < ke(x, y) where 0 < k < 1, (2.1)

whenever x |y and x,y € X.

Let T be a monotone increasing operator. It is assumed that there exists an element
xo € X such that xg <X Txg. Further, we assume that for any sequence {x,}, x, — = and
Ty = Ty for all n jointly imply that x, = x for alln > 1.

Then corresponding to g, there exists a sequence {x,, } such that either of the following
two holds:

(1) E(Txp, Txpy1) =00, for alln >0,

(2) {xn} converges to an approzimate fized point of T.

Proof. Let 1 € Txy be arbitrary. By the conditions of the theorem that zo < Tzg, and T
is monotone increasing we have, o = z1. By virtue of lemma 1.2 we next choose x5 € Tz
such that

e(r1, 2) < E(Txg, Tx1) + k. (2.2)
Since xg <X Txp and 1 € T'xg by the monotone increasing property of T, we have 1 < Tx;.

Since xo € Tz, we have x1 < z2. Again, by lemma 1.2, we choose z3 € Txs such that
e(xy, x3) < E(Txy, Tao) + k2 (2.3)

Since x1 =X Tz, and since zo € Tx1, it follows from the monotone increasing property of T’
that x9 < Taxy. It then follows that x9 < 23 since x3 € Txo.

Proceeding in the above manner we have a sequence {x,} for which

Tnt1 € Ty, Ty X Tpyy foralln >0 (2.4)

and that
e(Tn, Tnt1) < BE(Txp—1, Tx,) + k™ for all n > 1. (2.5)
We have the following two cases.

E(Tz,,, Txy,11) = 00, for all n which is one of the two alternative conclusions of the

theorem.
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Alternatively, we can have that E(Tzy, Taxy11) < oo for some N.
Then, by (2.1) and (2.5), we have

e(xni1, tny2) < E(Txy, Toye) + VT < 00 (2.6)

and
E(Txn, Tent1) < ke(zy, zyy1) < 00. (2.7)

It follows from (2.6) and (2.7) that
e(xni1, tng2) < E(Tzy, Teyni1) + kN <ke(zn, zni1) + BV < o0 (2.8)
Again it follows from (2.1) and (2.5) that
e(znyo, ny3) < BE(Tazny1, Tenio) + BN T2 <ke(zni1, ni0) +EV T2 < oo
Proceeding as in the above, we have that for all ¢ > 1,
e(@Ntit1s Tnpiv2) < BE(Tonyi, Tonpit) N T <ke(znii, onpic)HEN T (2.9)

By the following successive applications of (2.9), we obtain, for all ¢ > 1,

e(TNtitr1, TNyit2) < ke(xnii, ng+i+1)+kN+i+1
< klke(zntio1, Tngi) + RN T4 RN
< Ke(xnii-1, on4q) + 2KV T
< Kelann, oia) + kL

Let g>p>N. Thenp=N+i+1and ¢g= N+ j+ 1. Then

e(rp, 4) = e(TNyit1, TNyj1)

IN

e(TNyit1, TNviv2) +e(TNtit2, TN1its) oo+ e(TN1j, TN 1)

e(TNyit1, TNyite) + (TN (i+1)410 TN+(@+1)42) T o T e(ENF(G=1)+15 TN4(—1)+2)

< (Ke(xnir, tny2) + kN 4 (ki e(zypr, ongo) + (@ + DENTEFDF) L
+ (K le(zng, eng2) + (G — DEVY)

j—1 j—1
= e(TNi1, $N+2)Zk‘r +ZrkN+r+1.

r=1 r=1

Since 0 < k <1, Y02 (k" and Y - rk" are convergent, it follows that

p}]lgloo e(xp, xq) =0.

We conclude that {z,} is a Cauchy sequence, which, by virtue of the fact that (X, e) is
a complete generalized metric spaces, converges to some point £ € X, that is, z, — T as
n — 0o.

In view of (2.1), by a condition of our theorem, x,, < Z for all n. Then

E(Txz,, Tz) < ke(z,, T) — 0 as n — oo. (2.10)
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Now,
e(z, Tz) < e(Z, zp) + e(xn, TT) <e(Z, x,) + E(Txp, TT).

Taking n — oo in the above inequality, and using (2.10), we have that e(Z, TZ) = 0, that
is,

inf{e(z, w):w € Tz} =0, that is, T is an approximate fixed point of T

This completes the proof of the theorem. O

3. INlustration

In this section we illustrate our result with the help of a nontrivial example.

Example 3.1. We consider the set X = {h: h: [0, 00)? — [0, 00)}, that is, the set of all
non-negative real valued functions defined on [0,00)%. We define a function e : X x X —
[0, 00) as follows. Let S ={X>0:|f(z, y) —g(z, y)| < Az —y| for all z,y € [0, o0)},

(. 9) inf S, if S is non-empty
e(f, g) =
g 00 if S is empty.

Then e is a generalized metric on X. We defined a relation = on X as f =X g whenever
flz, y) > gz, y) for all z,y € [0, o©). Then = is a partial ordering on X. The corre-
sponding generalized Hausdorff metric is given by the following:

For every pair of non-empty subsets A, B of X,

E(A, B) = inf W, | ifW is non-empty
o, if W is empty,
where
W = {A>0:max{sup inf |f(z, y)— gz, y)|,sup inf |f(z, y)— gz, y)|}
feA 9€B gEB feA

IA

Mz —y|} for all z,y € [0, o0)}.

Let T : X — 2% be defined as Tg={h:0<h <%} forge X.
Then for g1 = ga, that is, for the case g1(xz, y) > ga(x, y) for all z,y € [0, o0), we

have
. 1
E(Tgi, Tg2) = inf{A20:lgi(z, y) —ga(z, y)l < Az —yl for all z,y € [0, co)}
1
= 56(91, g2), provided e(g1, go) is finite.

If e(g1, g2) = oo, then (2.1) is satisfied with k = % The theorem 2.1 is applicable to this

example.
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4. Conclusions

The present result differs from the result of Nadler’s theorem [8] in the following ways.
Firstly, the Hausdorff metric is defined between two closed and bounded sets in a metric
space. But in our theorem the generalized Hausdorff metric is defined for any two arbitrary
subsets. Secondly, the conclusion in the case (ii) of our theorem is the convergence to an
approximate fixed point. It is a fixed point in Nadler’s theorem since the sets are closed sets
in the metric topology. But the metric topology is not applicable to the generalized metric
space. In fact we have not considered any topology either generated by the generalized
metric or otherwise on the space. Furthermore, there is a partial ordering defined on the
space with respect to which the mapping is monotone increasing. When the generalized
metric is a metric in the special case, and the mapping is from X to closed and bounded
subsets of X, then we have the result of Nadler [8] in partially ordered metric space. The
result is also a extension of the result of Diaz et al [2]. The example 3.1 is not applicable to
either of the two above mentioned cases, that is, the theorem is an actual extension of these

results.

Acknowledgements.
The work is supported by the Science and Engineering Research Board, Government of India, under

Research Project No. PDF/2016,/000353. The support is gratefully acknowledged.

REFERENCES

[1] W. A. J. Luxemburg, On the convergence of successive approzimations in the theory of ordinary dif-
ferential equations, 11, Koninkl, Nederl. Akademie van Wetenschappen, Amsterdam, Proc. Ser. A (5)
61, and Indag. Math., 20 (1958), 540 - 546.
[2] J. B. Diaz and B. Margolis, A fized point theorem of the alternative, for contractions on a generalized
complete metric space, Bull. Amer. Math. Society, 74 (1968), 305-309.
[3] L. Cadariu and V. Radu, Fized point methods for the generalized stability of functional equations in a
single variable, Fixed Point Theory Appl., Volume 2008 (2008), Art. ID 749392, 15 pages.
[4] L. Cadariu and V. Radu, Fized points and the stability of Jensen’s functional equation, J. Inequ. Pure
Applied Math., 4 (2003), Art no. 4, 7 pages.
[5] H.Y. Chu, A. Kim and S.K. Yoo, On the stability of the generalized cubic set-valued functional equation,
Appl. Math. Lett., 37 (2014), 7 - 14.
[6] S. M. Jung, A fized point approach to the stability of isometries, J. Math. Anal. Appl., 129 (2007), 879
- 890.
[7] C. Park, Generalized Hyers-Ulam Stability of Quadratic Functional Equations: A Fized Point Ap-
proach, Fixed Point Theory Appl., Volume 2008 (2008), Art. ID 493751, 9 pages.
[8] S. B. Jr. Nadler, Multivalued contraction mapping, Pac. J. Math., 30 (1969), 475 - 488.
[9] L. Ciric, Fized point theorems for multi-valued contractions in complete metric spaces, J. Math. Anal.
Appl., 348 (2008), 499 - 507.
[10] W-S. Du, On coincidence point and fized point theorems for nonlinear multivalued map, Topol. Appl.,
159 (2012), 49 - 56.
[11] N. Mizoguchi and W. Takahashi, Fized point theorems for multivalued mappings on complete metric
spaces, J. Math. Anal. Appl., 141 (1989), 177 - 188.
[12] D. Turkéglu and 1. Altun, A fized point theorem for multi-valued mappings and its applications to
integral inclusions, Appl. Math. Lett., 20 (2007), 563 - 570.



116 P. Maity, B. S. Choudhury, K. C. Pati

[13] M. Turinici, Abstract comparison principles and multivariable Gronwall-Bellman inequalities, J. Math.
Anal. Appl., 117 (1986), 100 - 127.

[14] J. J. Nieto and R. Rodrguez-Ldpez, Contractive mapping theorems in partially ordered sets and appli-
cations to ordinary differential equations, Order, 22 (2005), 223 - 239.

[15] A. C. M. Ran and M. C. B. Reurings, A fized point theorem in partially ordered sets and some appli-
cations to matriz equations, Proc. Amer. Math. Soc., 132 (2004), 1435 - 1443.

[16] R. P. Agarwal, M. A. El-Gebeily and D. ORegan, Generalized contractions in partially ordered metric
spaces, Appl. Anal., 87 (2008), 109 - 116.

[17] B. S. Choudhury and A. Kundu, (¢, a, 8) - Weak contractions in partially ordered metric space, Appl.
Math. Lett., 25 (2012), 6 - 10.

[18] B. S. Choudhury and P. Maity, Coupled fized point results in generalized metric spaces, Math. Comput.
Modelling, 54 (2011), 73 - 79.

[19] L. Ciric, N. Cakic, M. Rajovic and J.S. Ume, Monotone generalized nonlinear contractions in partially
ordered metric spaces, Fixed Point Theory Appl., 2008 (2008), Art. ID 131294, 11 pages.

[20] J. Harjani, K. Sadarangani, Fized point theorems for weakly contractive mappings in partially ordered
sets, Nonlinear Anal., 71 (2009), 3403 - 3410.

[21] E. Karapinar and V. Berinde, Quadruple fized point theorems for monlinear contractions in partially
ordered metric spaces, Banach J. Math. Anal., 6 (2012), 74 - 89.

[22] X. Zhang, Fized point theorems of multivalued monotone mappings in ordered metric spaces, Appl.
Math. Lett., 23 (2010), 235 - 240.

[23] 1. Beg and A. R. Butt, Common fized point for generalized set valued contractions satisfying an implicit
relation in partially ordered metric spaces, Math. Commun., 15 (2010), 65 - 76.

[24] B. S. Choudhury and N. Metiya, Fized point theorems for almost contractions in partially ordered

metric spaces, Ann. Univ. Ferrara., 58 (2012), 21 - 36.

[25] Y. Feng and S. Liu, Fized point theorems for multi-valued increasing operators in partially ordered

spaces, Soochow J. Math., 30 (2004), 461 - 469.



