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PROJECTIVE COVARIANT p-MAPS

Tania-Luminita Costache

In this paper we construct a projective covariant representation as-
sociated with a @-map and a projective covariant quasi-representation as-
sociated with a projective (u,u’)-covariant p-map. We gave a projective
version of a result in [13] as a Stinespring’s representation theorem for
pairs of completely positive, symmetric, invariant, multilinear maps.
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1. Introduction

Asadi [2] and Bhat, Ramesh and Sumesh [5] provided a representation
theorem for a class of maps on Hilbert C*-modules, as a generalization of Stine-
spring’s representation theorem for completely positive maps on C*-algebras.

Trivedi [20] gave a Stinespring type theorem for 7-maps in the context
of von Neumann algebras. He proved a decomposition of 7-maps in terms of
quasi-representations, which generalize the notion of representations of Hilbert
C*-modules on Hilbert spaces and a covariant version of this result, by defining
a covariant T7-maps using the notion of C*-correspondence.

In this paper we construct a projective covariant representation associ-
ated with a p-map and a projective covariant quasi-representation associated
with a projective (u,u’)-covariant p-map. We gave a projective version of a
result in [13] as a Stinespring’s representation theorem for pairs of completely
positive, symmetric, invariant, multilinear maps.

Definition 1.1. ([17]) A pre-Hilbert A-module is a complez vector space E
which is also a right A-module, compatible with the complex algebra structure,
equipped with an A-valued inner product (-,-) : E x E — A which is C -and
A-linear in its second variable and satisfies the following relations:

(1) {&,m)" = (0, &) for every &, € E:

(2) (£,€) 2 0 for every € € B

(3) (£,€) =0 if and only if £ = 0.
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We say that E is a Hilbert A-module if & is complete with respect to the
topology determined by the norm ||-|| given by ||&]| = v/|1{§, &)

Definition 1.2. ([19], [1]) Let A and B be two C*-algebras and let M, (A),
respectively M, (B) denote the x-algebra of all n x n matrices over A, respec-
tively B with the algebraic operations and the topology obtained by regarding
it as a direct sum of n® copies of A, respectively B. A linear map ¢: A — B
is completely positive if the linear map ¢ : M, (A) — M, (B), defined by

" ([ai;]75-1) = lp(ai;)]7;—y is positive for all positive integers n.

Definition 1.3. ([16]) Let G be a locally compact group with identity e and
let T be the group of complex numbers of modulus one. A multiplier w of G
15 a function w: G X G — T with the properties :

i) w(z,e) =wl(e,x) =1 forallz € G;

i) w(z,y)w(zry, 2) = w(x,yz)w(y, 2) for al z,y,z € G.

Definition 1.4. ([15]) A multiplier is normalized if w(z,z™') = 1 for all
req.

Definition 1.5. ([3], [4]) Let H be a Hilbert space and G a locally compact
group with the identity e. A projective representation of G with multiplier
w is a map u: G — U(H) such that

i) ugy = w(g, g )uguy forall g, g € G;

i) ue = Iy, where Iy is the identity operator on H.

Definition 1.6. ([21]) A C*-dynamical system is a triple (G, A, ), where
G is a locally compact group, A is a C*- algebra and « is a continuous action
of G on A, i.e. a continuous homomorphism a: G — Aut(A), where Aut(A)
is the group of automorphism of A.

Definition 1.7. ([7]) Let (G, A, a) be a C*-dynamical system and let u be a
projective unitary representation of G on a Hilbert space H. We say that a
completely positive linear map ¢: A — L(H) is projective u-covariant with
respect to the C*-dynamical system (G, A, ) if p(ag(a)) = ugp(a)u; for all
a€AandgedqG.

Definition 1.8. ([5]) Let E be a Hilbert C*-module over a C*-algebra A and
let Hy, Hy be Hilbert spaces . Let ¢: A — L(Hy) be a linear map. A map
O: F — L(Hy, Hy) is called :

1) g-map if ((z), D(y)) = o({z,y)), for all z,y € E;

ii) o-morphism if ® is a p-map and ¢ is a morphism;

iii) p-representation if ¢ is a g-morphism and ¢ is a representation.

2. Main results

Following the results in [5] and [8], we generalize them in the projective
covariant case.
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Theorem 2.1. Let E be a Hilbert B-module, let (G,A,«) be a unital C*-
dynamical system and let Hy, Hy be two Hilbert spaces. If u is a projec-
tive unitary representation of G on Hy with the normalized multiplier w and
p: A — L(Hy) is a unital projective u-covariant completely positive linear map
and ®: E — L(Hy, Hy) a ¢ — map, then there are :

(i) K1, Ky Hilbert spaces;

(i) a unital representation m: A — B(K;) and a w-representation

¢Z E— L(Kl,KQ);

(iii) a projective unitary representation v of G on Ky with the multiplier w;
(iv) V: Hy — Ki an isometry and W: Hy — Ky a co-isometry such that for

alla e A, ge G and x € E,
) ¢(a) =Vm(a)V,
) ug = V*u,V,
) T is projective v-covariant,

) ®(x) = W*h(x)V.

Proof. Following the proof of Stinespring’s Theorem (Theorem 1.1.1, [1]), we
form the algebraic tensor product A ®,, H; and endow it with a pre-inner
product by setting <a®f,b®()A®al9H1 = (p(b*a)¢|C)m,. To obtain K; we
divide A ®qq Hy by the kernel N = {z € A ®uy Hi|[(2, 2) ag,,m = 0} of
() A@uiy Hi and complete. K; becomes a Hilbert space with respect to the
inner product given by (z1 + N, 2o + N)k, = (21, 22) A@u, 11 21, 22 € ARarg Hy.

The isometry V: H; — K is defined by V& =1, &+ N for all £ € H;.
It is easy to check that V*: K7 — Hj is given by V*(a ® £ + N) = p(a)&.

The representation 7 of A on K; is defined by 7(a)(b® &+ N) = (ab) ®
E+ N forall € € Hy,a,b e A.

We define v: G — L(K;) by setting v (a ® {+ N) = ay(a) @ u,& + N for
alla e A,g e G,¢ € Hy.

Since (vg(a @£+ N),v,(b @+ N)) K,
(ag(a) ® ug + N, ay(b) @ ugC + N>K1 (ag(a ) ® Uy, ag(b) ® ugOA@alng =
(o0 (D) ag(a))ugtlugC)m, = (p(0g(b*)ag(a))ugélugC)m, =
(% (O‘g(b* ))u9§|“gOH1 = (ugw(b*a)uzugﬁl%é)ﬂl = (p(b*a)é|C)n, =
(@R EDDC) g, =(@DEFNDRCH Ny, forallge Goabe A g Ce
Hy, v, extends hnearly to an isometry on Kj. It can be easily verified that v,
is a unitary operator on Kj.

We show now that v is a projective representation with the multiplier w.
Let a € A, 91,90 € G,€ € Hy. Since « is a group homomorphism and u is a
projective representation with the multiplier w, we have

Ug192 (a®&+N) = O‘g1gz(a) ® Ugy g€ + N = O‘g1(a)agz(a) ® w(gr, g?)“m“yzé +N
= w(gi, 92)0591<O‘gz (a)) ® Ugy (ung) + N = w(gi, 92)”91(0492 (a) ® ug,§ + N)
= w(g1, 92)vg1vgz(a ®E&+ N).

So we proved that v is a projective representation with the multiplier w.
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Let a,b,x,y € A and &,( € H,. We have

(p(y b ax)§|C)m, = (((by) ax)S|Q)m, = (ax @ &by @ O) ag,, i,
= (m(a)(x @ &), m(b)(y @ O)) ag,m, = (T(0)T(@)(T @),y © ) agyy i,
(m(0*)p(a)(z @ &), y®C>A®a1ng = (r(b*a)(z ® &),y ® () ag,, 1,
(az) @ &,y @ Q) ug i, = (W7ax) @6 LA ® ) a1,
((
=

™

yhrarly) @€, 14 ® C>A®ang1 = (r(y*b*ar)(1a ® &), 14 ® C>A®ang1
m(y " az)VE, V) gy i, = (VI (y 0 az)VE[Q) -
Hence V*m(c)V = ¢(c),Vc € A, so condition (a) is verified.
We verify now condition (b). Let g € G and ¢ € H;. We have
ViugVE = Viug(1a®E+N) = V*(ag(1a)Qug+N) = V*(1aQugl+N) =
0(1a)ugé = Igugd = uyf, because  is unital.
We prove condition (c). Let a,b € A,g € G, £ € H;.
Then vym(a)vy (b ® &+ N) = vym(a)vg1(b® &+ N)
= vy7(a)(ag-1(b) ® ug—1§ + N) = vy(acy-1(b) @ ug-1§ + N)
= ag(aag-1(D)) ® (ugug—&) + N = ag(a)ay(ay-1(b) @ (g 1)“99 1§+ N
= oy(a)ogy-1(0) @ IgE + N = og(a)b @+ N = m(oy(a))(b® &+ N), so 7 is
projective v-covariant.

Let Ky = [®(E)H,]. We define ¢: E — L(K;, Ks) by

(@) (m(a)VE) = d(za)é,
foralla € A, € Hi,x € E.

We show that ¢(x) is well defined and bounded.

[(2)(m(a)VE)|I* = [ P(za)§||* = (P(za)s, D(za)é) = (&, (P(za))* P(za)t)
= (&, p(a” (z,2) A)VE) = (£, V*r(a” (z, ) a)VE) = (w(a)VE, m((z, z))m(a)VE)
< (e, ) [Im(@) VeI < llel2lx(a)Ve]2

Hence, ¥(z) can be extended to Kj.

We prove that 1 is a m-morphism. Let z,y € F,a,b € A, &, € H;.

(@) D) (r(B)VE), m(a)VC) = (B(yb)E, D(wa)C) = (((xa)) D(yb)E, C)
— (o((wa, yb))E, ) = (V*r(a)({z, y)mB)VC) = (x({z,y)) (R(B)VE), 7 (BVC)

Thus, ¢ (z)"(y) = 7({z,y)).

Let W be the orthogonal projection onto K5. Then W*: Ky — Hj is the
inclusion map (because, obviously, Ky C Hj). Hence WW* = [, that means
W is a coisometry.

For z € E £ € Hy, we have

W (2)VE = (2)VE = ¢(2)(n(14)VE) = ®(2)€, so (d) holds. O

Remark 2.1. The pair of triples (7, V, K1), (v, W, K3)) is a projective covari-
ant Stinespring representation of (o, ®) if conditions (i) — (iv) of Theorem 2.1
are satisfied.

Definition 2.1. ([20]) Let A be a C*-algebra, E a Hilbert A-module and
let H, K be two Hilbert spaces. A map ¢¥: E — L(H,K) is called quasi-
representation if there is a x-homomorphism n: A — L(H) such that

(W) fr, () f2) = (7((2,9)) 1, f2)
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forallx,y e E, f1,f> € H.
We say that 7 is associated to 1.

Quasi-representations generalize the notion of representations of Hilbert
C*-modules on Hilbert spaces.

Definition 2.2. ([14]) Let G be a locally compact group. A continuous action
of G on a full Hilbert A-module E is a group morphism n: G — Aut(E), where
Aut(E) is the the group of all isomorphisms of Hilbert C*-modules from E to
E, such that the map (t,z) — n(x) from G x E to E is continuous. The
triple (G, E,n) is called a dynamical system on Hilbert C*-modules.

Remark 2.2. ([14]) Any C*-dynamical system (G, A, «) can be regarded as a
dynamical system on Hilbert C*-modules.
Any continuous action n of G on E induces a unique continuous action
a” of G on A such that o ((z,y)) = (n:(x),n:(y)) for all x,y € E,t € G.
Moreover, for all x € E and a € A, we have ny(xa) = ni(x)ay (a).

Definition 2.3. Let E be a Hilbert C*-module over a C*-algebra A, (G,n, E)
a dynamical system and H, K two Hilbert spaces, v: G — U(H) and w: G —
W(K) two projective unitary representations. A quasi-representation ¢ : E —
L(H, K) is called projective (w,v)-covariant with respect to (G,n, E) if

(0e(€)) = wip(E)vy

forall ¢ € Ejt € G. Then (¢,v,w, H, K) is called a projective covariant
quasi-representation of (G,n, F).

Definition 2.4. Let E be a Hilbert C*-module over a C*-algebra A, (G,n, E)
a dynamical system and H, K two Hilbert spaces, u: G — U(H) and v': G —
W(K) two projective unitary representations. A p-map ®: E — L(H,K) is
called projective (v, u)-covariant with respect to (G,n, F) if

©(n:(£)) = w(§)ui
forallé € Bt € G.

Remark 2.3. If E is full and ®: E — F is a p-map which is projective (u', u)-
covariant with respect to (G,n, E), then the map ¢ is projective u-covariant
with respect to the induced C*-dynamical system (G, ", A).

Theorem 2.2. Let E be a full Hilbert C*-module over a C*-algebra A, (G, n, E)
a dynamical system and H, K two Hilbert spaces, u: G — W(H) and u': G —
W(K) two projective unitary representations. If ¢: A — L(H) is completely
positive and ©: E — L(H,K) is a p-map which is (u',u)-covariant with re-
spect to (G,n, E) , then there are
1) a) a Hilbert space X with a projective covariant representation (mw,v) of
(G,a", A)
b) an isometry V: H — X such that
i) p(a)¢ =V*r(a)VE for alla e A6 € H
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i) v,VE=Vué forallt € G,§ € H
2) a Hilbert space Y and a projective covariant quasi-representation (¢, v, w, X,Y)
of (G,n, E) such that 7 is associated to v
3) a coisometry S: K — Y such that
a) ®(z)¢ = S*Y(x)VE forallz € B, € H
b) wSl = Sujl for allt € G,l € K

Proof. 1) a) Let (-,-) be a A-valued positive semi-inner product on A ®g, H
defined by

(a®b® C>A®ang = (p(a"0)¢[O)n
for all a,b € A, ¢, € H.
Let N = {z € AQay H|(2,2) Aga, 1 O}
(-,-) extends naturally on the quotient A ®,, H/N. To obtain X we
complete A ®q, H/N.
Let m: A — L(X) defined by

(@) (b@E+N)=ab@ &+ N

forall a,b € A, € H
and v: G — U(X) defined by

v(a®&+ N) = af(a) @uw() + N

foralla e A, € H,t € G.

Since (v (a ® &+ N), v (b® ¢+ N))
af(@) ® u (&) + N, af (b) @ ui(C) + N) = (
EE?( a*)o (0))ue ()] (€)= (ufp(af(a®

((af (@) ad (b))ur(§)|ue(C)) r =
( N m =

he covariance of ¢, v; extends to

ﬁSS

a
DEIC) = (a® €+ N,b& C+N), by
n isometry on X.
We verify that v is a projective representation with the multiplier w. Let
a€ A& € H t,ty € G. We have
Uty (@@ E+N) = afy, (@) @uy, (§) + N = of o, (a) @w(ty, ta)up, ue, (§) +
N = w(tlﬂ tQ)Utl (agz(a) & U, (6) + N) = w(tb t2)vt1vt2(a ® 6 + N)
We prove that 7 is a covariant representation.
vem(a)vf (b® (4 N) = WT(@)( 1 () ® u-1(¢) + N) =
Ut(aa 1 (0) @ u-1(¢) + N) = o (a)a?(a (D) @ wpug-1¢ + N =
af (@b @w(t, ™ ug-1( + N =af(a)pb @ ¢+ N = 7(af(a)) (b ® ( + N)
b) Let V: H — X defined by

VE=14QE+ N
for all £ € H. It can be easily checked that V*: X — H,
Vi {(a®&+ N) = p(a)k.

i) This condition is verified as in the proof of Theorem 2.1 (iv) (a).
i) v, VE=v(1la®&+N) = ) (1a) @u(§) + N = 1La®@u,(§) + N = Vg
2) Let Y = [®(F)H].
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Let wy = u;/Y for all t € G.Then t — wy is a projective representation
of G.
We define ¢p: E — L(X,Y) by ¢(z)(7m(a)VE) = ®(xa)é foralla € A€ €
HxeFE.
We prove that v is a quasi-representation:
(W) (m(a)VE), (x)(x(b)VQ)) = (B(ya)§, D(xb)¢) =
(ya, b))€, C) = (V*r((ya, sb))VE, ) = {m({ya, 2b))VE, VC) =
by m((x,y))m(a)VE, V() = (n({x,y))m(a)VE,m(b)V(), for all a € A, z,y €
E ¢ (e H.
We prove that 1) is projective (w, v)-covariant.
Forallae At € G,z € E,£ € H, we have
P(ne(x))(m(a)VE) = S(m(x)a)é = (ne(x)ar(eili(a)))§ = D(m(zai,(a))§ =
U ®(zal (a))uié
On the other hand, by 1) a) and 1) b) ii), w(z)v; (7(a)VE) =
wp(z)v-1(m(a)VE) = wip(x)m(a) 1 (a))v-VE = wﬂ/’( ) (o1 (@) V1§ =
wep(x)m (a1 (a))Vui§ = wed(zay., (a))ui€ = ui®(za) (a))u§
3) By Theorem 5.2, [18], there is an orthogonal pl‘OJeCtIOH S from K into

((
(m(

Y.

a)S*P(2)VE = P(2)VE = P(z)(r(14)VE) = @(x14)§ = P(2)¢
b) It is clear.
U

Definition 2.5. ([6], [13]) Let A be a C*-algebra, H be a Hilbert space and k
be a positive integer.
A k-linear map @: A¥ — L(H) is called symmetric if o = ¢©*, where
o*: AF — L(H) is the k-linear map given by o* (a1, az, ..., ar) = @(a, ..., a3, a})*.
A k-linear map ¢: A¥ — L(H) is called completely bounded if

lelles = supllnl| < oo,
n

n

where p,: My(A) — L(H"), pn(A1, Ag, ... Ag) = [er ..... e p(ar, aspr, . . . ,aktj)}
for Ay = lay;]it oy € Myu(A), 1l = 1,k and ||@,|| = sup {||g0n (A1, As, ..., Ap)ll; Ar €
M, (A), |Al < 1,1 =1,k}.
A k-linear map p: A¥ — L(H) is called completely positive if
On(A1, Ag, ... Ag) >0
for all (A1, Ay, ..., Ay) € M,(A)* with (A1, Ay, ..., Ay) = (A5, ...... A AT

and A,, > 0 if kis odd and m = [%} and for all n € N.

ij=1’

Definition 2.6. ([11], [12], [13]) A k-linear map p: A¥ — L(H) is called
invariant if :

(a) for odd k = 2m — 1,
(a1, vy U 1Cm—1, Gy At 1y -+ -5 k) = P(A1,  « oy A1, Ay ConGg 1y - - - 5 C1Ak)

forall ay,... ,ap,c1,...,cp €A,
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(b) for even k = 2m,
90(@1017 <o AmCm;y Am41, - - - 7ak> = @(Clla ceey Om—1, Om, Cn—10m41, - - - ;Clak>
forall ay,... ,ap,c1,...,cno1 € A.

Definition 2.7. ([13]) A k-representation of A on H is a k-linear map
7. A¥ — L(H) with the properties:
(i) for each 1 € {1,...,k}, the map m: A — L(H) defined by m(a) =

7(1a,...,1a,a,14,...,14) is a representation of A on H, where a is on the
[-th position;
(ii) w(ay,...,ax) = m(ay) - m(ag) for all ai, ... a; € A.

Definition 2.8. ([13]) Let A be a C*-algebra, H, K be two Hilbert spaces, E
be a Hilbert A-module and k be a positive integer. Let p: A¥ — L(H) be a
k-linear map and ®: E¥ — L(H, K) a map. Then

(1) ® is called a p-map if

O(xy,. ., 26) " P(yr, -, k) = ({(T1, Yk)s - - -5 Tk, 1))

forall xq,...,x5,y1,...,yxr € E.

(2) ® is called a p-representation of E if ® is a @-map and ¢ is a
k-representation of A on H. In this case we say that the pair (®,¢) is a
k-representation of £ on H and K.

We say that a p-map ® is symmetric (respectively, invariant, com-
pletely bounded, completely positive) if the corresponding map ¢ is sym-
metric (respectively, invariant, completely bounded, completely positive). Sim-
tlarly we can define symmetric, invariant, completely bounded, completely pos-
itive p-representations of E.

Let (G, A, @) be a C*-dynamical system. The action « naturally induces
the action a: G — Aut(A*) by ay(ay,...,ax) = (u(ay),...,ai(ax)) for all
ai,...,ar € Aand t € G. ([11])

Following the definition in [11], [10], we introduce the notions of projec-
tive u-covariant k-linear map and projective (T, v, u)-covariant k-linear map.

Definition 2.9. Let u: G — L(H) be a projective unitary representation of
G on H. A k-linear map o: A¥ — L(H) is called projective u-covariant if

p(ay(a, ..., ar)) = pla(ar), ..., alar)) = wplay, ..., ap)uy

forallai,...,ap € A andt € G.

Definition 2.10. Let E be a Hilbert A-module, H, K be two Hilbert spaces and
u: G — L(H) be a projective unitary representation. For any map 7,: B — E
we define T2 E*¥ — E* by (21, ..., 2x) = (1:(21), ..., 7(21)). A k-linear map
¢: E* — L(H, K) is called projective (T,v,u)-covariant if there is a map
7: G — BA(E) and a projective unitary representation v: G — L(K) such
that

(T (1, ..., xx)) = P(r(x1), ..., (k) = v ®(21, ..., 2 )uf
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forall xq,...,xp, € E andt € G.

We prove now the multilinear projective version of the Stinespring’s rep-
resentation theorem for a pair of two k-linear maps. ([5], [11], [12], [13])

Theorem 2.3. Let (G, A, «) be a unital C*-dynamical system, u: G — L(H)
be a projective unitary representation of G on a Hilbert space H with the
multiplier w. Let ¢: A* — L(H) be an invariant, symmetric, completely
positive k-linear map, K be a Hilbert space, E be a Hilbert A-module and
o: EF — L(H,K) be a p-map. If ¢ is projective u-covariant and ® is projec-
tive (T, v, u)-covariant, then there are H,, K¢ two Hilbert spaces, an invariant,
symmetric k-representation (Ilg, 7,) of E on H, and Kg, a projective unitary
representation o of G on H,, a bounded linear operator V,, € L(H, H,) and a
cotsometry We: K — K¢ such that:
a) i) Hy, :@{mp(al,...,ak)‘/@& ay,...,ap € A€ € H}
ZZ) K :8_p{H<p($1,. .. ,xk)‘/;,é T1,...,0p € B & € H}
b) plar,...,ax) = Vim(ar,...,ar)V, for all ay,... a € A;
c) m, is projective o-covariant : wy(ai(ay, ..., ar)) = ormy(a,. .., ax)o; for
all ay,...,a, € At € G;
d) Vou, = oV, for allt € G;
e) Iy is projective (T, v, u)-covariant, where Uy = id gm & ug;
£) vllg(zy, ..., 2x)or1 = He(Ti(z1, ..., 2)) (% @ idy)
forall xq,..., 2, € E;t € G.

The triple of pairs ((lle, 7,), (H,, Ka), (V,,, Ws)) is called the projective
covariant Stinespring’s representation associated to a k-linear p-map.

Proof. By [10], [9], there is (7, H,, V,,) the minimal Stinespring’s representa-
tion associated to ¢ such that a)i) and b) hold,

There are (Ilg, K¢, Ws) as in Theorem 3.3 ([13]) and a)iz) holds.

We define the unitary representation o of G on H, as in the proof of
Proposition 4.1, [13].

We prove that o is a projective representation with the multiplier w.

Let ay,...,ar € A, & € H,t,t; € G. We have

N UthtQ(ﬂ@(al, o ap) Vo) = o (Qyry (an, - .o ag)) Vo1, =
71—%0(0‘751 (atz (E{la o ak)))vww(tla t2)ut1ut2§ =
w(tb t2)7r<,0(05t1 (atz (alv <o 7&k)))kut1ut2$ =

w(ty, ta)or, (mp(ou,(ar, ..., ag))Voul) = w(ts, ta)oy o, (mp(ar, . . ., ar)Vip€)
By Proposition 4.1 and Theorem 4.4 ([13]), ¢), d), e) and f) are satisfied.
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