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A TWO-STEP DECOUPLED FINITE ELEMENT ALGORITHM FOR A NONLINEAR
FLUID-FLUID INTERACTION PROBLEM
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2

In this work we design a two-step decoupled finite element algorithm for a nonlinear fluid-

fluid interaction model. In the first step we apply the geometric averaging method and use the

implicit-explicit method in the second step. Besides, in order to enlarge the time step, we introduce

some di�usion terms in both steps of the algorithm. Finally, several numerical tests prove that the

algorithm has a good accuracy, which shows that the algorithm can simulate this nonlinear fluid-fluid

interaction model well.
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1. Introduction

In this article, we mainly design a two-step decoupled finite element algorithm for
a nonlinear fluid-fluid interaction model, which is studied in [13]. The bounded domain

 that we will consider for the model is comprised by two subdomains 
1 and 
2; which
are coupled across their shared interface I. Both the subdomains are subsets of R2 and
have outward unit normal vectors ni: Besides, � is any vector such that � � ni = 0: Note that
nonlinear interface conditions on I are applied in this fluid-fluid model and the interface I
is assumed a line segment. Given kinematic viscosities �i > 0 (i = 1; 2); friction coe�cient
� 2 R; body force fi : [0;T] ! H1(
i)2 and initial velocity u0

i 2 H1(
i)2; find the velocity
ui : [0;T] �
i ! R

2 and pressure pi : [0;T] �
i ! R satisfying:

ui;t � �i�ui + ui � rui + rpi = fi in 
i;

� �ini � rui � � = �jui � u jj(ui � u j) � � on I; i; j = 1; 2; i , j;

ui � ni = 0 on I;

r � ui = 0 in 
i;

ui(0; x) = u0
i (x) in 
i;

ui = 0 on �i = @
inI;

(1)

where j � j represents the Euclidean norm.
As it is known, many important applications require an accurate solution of multi-

domain and multi-physics coupling of one fluid with another fluid [3, 4, 10, 35]. In fact, the
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model (1) that is one of them arises in many important scientific, engineering and industrial
applications, such as heterogeneous of blood flow [14] and atmosphere-ocean interaction
[24]. Although this model can reduce the dynamic core of the atmosphere-ocean problem
to its simplest form, it still retains some essential di�culties of the problem. Besides, in
terms of numerical methods, there remains some important challenging problems. The
main di�culties are the coupling of the pressure, the incompressibility conditions, the
nonlinearity term and the complicated coupled system with some nonlinear interaction
conditions. In fact, a review of numerical coupling strategies is provided in [23], where
an alternative coupling method is proposed and analyzed. But with very large problems,
decoupled algorithms are preferred. Therefore, much e�ort has been developed to the
development of e�cient decoupled numerical methods for investigating the model (1).

Using an operator-splitting method and some optimization-based nonoverlapping
domain decomposition methods, Bresch and Koko [7] have presented a numerical simu-
lation of the considered model by solving one coupled degenerated Stokes problem and
one uncoupled linear advection-di�usion problem. However, uncoupling can only occur
in the residual calculation and in the preconditioning step. Hence, Connors et al. [13]
have presented two decoupled time stepping methods, i.e., the implicit-explicit (IMEX)
method and geometric averaging (GA) method. The GA method is unconditionally stable
while the IMEX method is only conditionally stable, which is proved by Zhang et al. [34],
although it is the simplest and most natural decoupled method [12]. Another uncondition-
ally stable method is given by Connors and Howell [11]. They have applied decoupled
subproblems and di�ering time steps strategies to solve the fluid-fluid interaction model.
Recently, a local projection stabilization and characteristic decoupled time stepping scheme
is proposed by Qian et al. [26] for the fluid-fluid interaction problem. They apply a GA
method to deal with the nonlinear interface condition, which yields an unconditionally
stable partitioned method. Besides, Connors [9] proposes a statistical turbulence model
for ensemble calculations with two fluids coupled across a flat interface. Aggul et al. [1]
develop a predictor-corrector-type method that is also an unconditionally stable scheme
but has a second-order time accuracy.

Di�erent from the above methods for the fluid-fluid interaction model (1), a two-
step decoupled finite element algorithm will be designed, which will solve numerically
the considered model with small viscosity and large time step. As is known, there is
an abundance of literature regarding two-step finite element methods. Chorin [8] and
Temam [32] have designed a projection algorithm, which undergoes some evolution and
is well further developed, such as the pressure correction methods [16, 28] and the matrix
factorization methods [27]. Chorin/Temam’s algorithm, which is based on the projection
of an intermediate velocity field onto the space of vector fields and changes the di�cult
linear solve of a saddle point system into two easier linear solves, can be improved by
making the pressure explicit in the viscous step and by correcting it in the projection
step. With the help of a pressure correction term added to the projection step, based on
some regularity hypotheses of the exact solution, Shen [29, 30] has improved the estimates
of the Chorin/Temam projection method for the intermediate velocity and the pressure.
However, the end-of-step velocity of the projection method does not satisfy the exact
boundary conditions. Hence, according to the idea of Chorin/Temam projection algorithm,
the fractional step methods [17, 31] are proposed, where the pressure is determined by just
solving one Poisson equation per time step, which greatly reduces the computational cost.
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The viscosity-splitting method is a class of fractional step methods and the conver-
gence and stability of the method have been proved in [15]. More recently, a first-order time-
discrete splitting scheme using decomposition of the viscosity (called viscosity-splitting
method [6]) is proposed for solving the incompressible time-dependent Navier-Stokes equa-
tions in three-dimensional domains. Under mild regularity assumptions on the continuous
solution, an error analysis is provided [5]. Further, optimal error estimates are obtained
by Guillén-González and Redondo-Neble [18], where a weight at the initial time step must
be included to deduce the optimal error estimates for the pressure. Besides, they have
used a time-discrete scheme as an auxiliary problem to study a fully discrete finite element
scheme and obtained optimal first order approximation for velocity and pressure [19]. In
addition, the viscosity-splitting method is applied to the primitive equations of the ocean
[20] and Boussinesq problem [37]. Zhang et al. [36] have introduced a large time stepping
viscosity-splitting finite element method for the viscoelastic flow problem under stability
condition.

In this paper, inspired by [18] and [36], we will design a two-step decoupled finite
element algorithm which can solve the considered model with small viscosity and large
time step. Besides, compared with the IMEX algorithm, this new scheme is unconditionally
stable, which will be proved in Section 3. The rest of the paper is arranged as follows: In the
next section, we introduce some mathematical preliminaries and provide the corresponding
variational form for the problem (1). In Section 3, we show the two-step decoupled finite
element algorithm for the nonlinear fluid-fluid interaction model. Besides, the stability
of the two-step decoupled method is given. Then in Section 4, numerical experiment is
implemented to verify the theoretical results. We end with a short conclusion in the last
section.

2. Notation and preliminaries

In this section, we denote the usual L2(
i) norm and its inner product by k � k0 and
(�; �), respectively. The Lp(
i) norms and the Sobolev Wm

p (
i) norms are denoted by k � kLp(
i)

and k � kWm
p (
i) for m 2 N+, 1 � p � 1. In particular, Hm(
i) is used for the Sobolev space

Wm
2 (
i). k � km denotes the norm in Hm(
i).

For the mathematical setting of the fluid-fluid interaction problem (1), we introduce
the following Hilbert spaces:

Xi = fvi 2 H1(
i)2; vij@
inI = 0; vi � ni = 0 on Ig; i = 1; 2;

and
Mi = fqi 2 L2(
i); (qi; 1) = 0g; i = 1; 2:

For fi an element in the dual space of Xi, its norm is defined by

k fik�1 = sup
vi2Xi

j( fi; vi)j
krvik0

:

Based on the above definitions of functional spaces, the corresponding variational
formulation of problem (1) is given as follows: find ui : [0;T] ! Xi and pi : [0;T] ! Mi for
i; j = 1; 2; i , j such that

(ui;t; vi) + �ia(ui; vi) � d(vi; pi) + b(ui;ui; vi) +
Z

I
�jui � u jj(ui � u j)vids = ( fi; vi);

d(ui; qi) = 0; 8(vi; qi) 2 (Xi;Mi);
(2)
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where (ui;t; vi) =
R

i

@ui
@t vid
i; i = 1; 2; and the continuous bilinear forms a(�; �) and d(�; �) are

defined on Xi � Xi and Xi � Mi, respectively, by

a(ui; vi) = (rui;rvi); ui; vi 2 Xi;

d(vi; qi) = �(vi;rqi) = (divvi; qi); vi 2 Xi; qi 2 Mi:

For functions ui; vi;wi 2 Xi, the trilinear term b(�; �; �) [25, 33] is defined as

b(ui; vi;wi)= ((ui � r)vi;wi) + 1
2 ((divui)vi;wi)

= 1
2 ((ui � r)vi;wi) � 1

2 ((ui � r)wi; vi):

3. A two-step decoupled finite element algorithm for the nonlinear fluid-fluid
interaction problem

Firstly, we denote by Xh
i � Xi and Mh

i � Mi the finite element spaces for velocity
and pressure under a regular partition �h

i of the subdomain 
i; with the largest diameter
hi for �h

i : Furthermore, the finite element space pair Xh
i �Mh

i is assumed to satisfy the usual
discrete inf-sup condition or LBBh condition for stability of the discrete pressure:

inf
qh

i 2Mh
i

sup
vh

i 2Xh
i

d(qh
i ; v

h
i )

krvh
i k0kqh

i k0
= �h

i > 0;

where �h
i is a constant that is independent of hi. For the subdomain 
 j; we set the same

definition and then we choose h = maxfhi; h jg as the maximum triangle diameter in 
. In
this paper, the spatial discretization is accomplished using the conforming P1+bubble/P1
element pair (the MINI-element [2]).

Secondly, let ftn g
N
n=0 be a uniform partition of [0;T] and tn = n�t with the time step

�t > 0. For a function f defined on [0;T], we set f n = f (tn): Besides, we define (un
i ; p

n
i ) to be

an approximation of the solution of (1) at t = tn:

In the following algorithm, we split the nonlinear term (ui � r)ui and the incompress-
ibility condition r � ui = 0 in two steps. Meanwhile, we enforce the same homogeneous
Dirichlet boundary conditions on @
i n I:

Algorithm 3.1. The first step: Given un�1
i ;un

i 2 Xh
i with 1 � n � N, find un+ 1

2
i 2 Xh

i satisfying
0BBBBBB@

un+ 1
2

i � un
i

�t
; vi

1CCCCCCA + (�i + �i)a(un+ 1
2

i ; vi) � �ia(un
i ; vi) + b(un

i ;u
n+ 1

2
i ; vi)

+

Z
I
�jun

i � un
j ju

n+ 1
2

i vids �
Z

I
�jun�1

i � un�1
j j

1
2 jun

i � un
j j

1
2 un

j vids = ( f n+1
i ; vi);

(3)

for all vi 2 Xh
i and where �i > 0 are bounded parameters.

The second step: Based on un+ 1
2

i from (3), find un+1
i 2 Xh

i and pn+1 2 Mh
i satisfying

0BBBBBB@
un+1

i � un+ 1
2

i

�t
; vi

1CCCCCCA + (�i + �i)a(un+1
i � un+ 1

2
i ; vi) � d(pn+1

i ; vi)

+

Z
I
�jun

i � un
j ju

n+1
i vids �

Z
I
�jun

i � un
j ju

n+ 1
2

j vids = 0; 8vi 2 Xh
i ;

d(un+1
i ; qi) = 0; 8qi 2 Mh

i :

(4)
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Obviously, if we take �i = 0; then Algorithm 3.1 becomes the viscosity-splitting
method (the reader can refer to [18] for more details). Note that �i are used to enlarge the
time step and enhance numerical stability for the small viscosity problem. The technique
has been adopted to consider the Cahn-Hilliard equation [22] and the viscoelastic flow
problem [36].

In the above algorithm, for the trilinear term b(�; �; �) we apply the semi-implicit scheme
[21] which yields a linear system with a variable coe�cient matrix and can save a lot of
computational cost. Moreover, for the nonlinear fluid-fluid interaction, in the first step we
apply the GA method while in the second step we use the IMEX method. The advantage
of using the two-step decoupled scheme (3) and (4) rather than a coupled method is the
decoupling of the convective e�ects from incompressibility.

In the following part of this section, we hope to gain stability results concerning the
unconditional stability of Algorithm 3.1.

Theorem 3.1. Let un+1
i ; i = 1; 2; n = 0; 1; 2; � � �m (m � N � 1); be the solution of Algorithm 3.1.

Then we have

2X
i=1

kum+1
i k2

0 +

2X
i=1

mX
n=1

(kun+ 1
2

i � un
i k

2
0 + kun+1

i � un+ 1
2

i k2
0)

+

2X
i=1

mX
n=1

h
�i�tkr(un+ 1

2
i � un

i )k2
0 + �t(�i + �i)kr(un+1

i � un+ 1
2

i )k2
0

i

+

2X
i=1

�i�tkrum+1
i k2

0 +

2X
i=1

mX
n=1

�i�tkrun+1
i k2

0 +

2X
i=1

�t
Z

I
�jum

i � um
j j(u

m+1
i )2ds

+

2X
i=1

mX
n=1

h
�t

Z
I
�(jun

i � un
j j

1
2 un+ 1

2
i � jun�1

i � un�1
j j

1
2 un+ 1

2
j )2ds

+ �t
Z

I
�(jun

i � un
j j

1
2 un+1

i � jun
i � un

j j
1
2 un+ 1

2
j )2ds

i

�

2X
i=1

ku1
i k

2
0 +

2X
i=1

�i�tkru1
i k

2
0 +

2X
i=1

�t
Z

I
�ju0

i � u0
j j(u

1
j )

2ds +
2X

i=1

mX
n=1

(
�t
�i
k f n+1

i k2
�1):

(5)

Proof. Firstly, taking vi = 2�tun+ 1
2

i in (3), it follows that

kun+ 1
2

i k2
0 � kun

i k
2
0 + kun+ 1

2
i � un

i k
2
0 + 2�t�ikrun+ 1

2
i k2

0

+ �i�t(krun+ 1
2

i k2
0 � krun

i k
2
0 + kr(un+ 1

2
i � un

i )k2
0) + 2�t

Z
I
�jun

i � un
j j(u

n+ 1
2

i )2ds

� 2�t
Z

I
�jun�1

i � un�1
j j

1
2 jun

i � un
j j

1
2 un

j un+ 1
2

i ds

= 2�t( f n+1
i ;un+ 1

2
i ) � �t�ikrun+ 1

2
i k2

0 +
�t
�i
k f n+1

i k2
�1:

(6)
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Then, for the interface terms in the above equation, by simple calculation, there holds

2�t
Z

I
�jun

i � un
j j(u

n+ 1
2

i )2ds � 2�t
Z

I
�jun�1

i � un�1
j j

1
2 jun

i � un
j j

1
2 un

j un+ 1
2

i ds

= �t
Z

I
�jun

i � un
j j(u

n+ 1
2

i )2ds � �t
Z

I
�jun�1

i � un�1
j j(un

j )2ds

+ �t
Z

I
�(jun

i � un
j j

1
2 un+ 1

2
i � jun�1

i � un�1
j j

1
2 un

j )2ds:

(7)

Further, combining (6) and (7), we have

kun+ 1
2

i k2
0 � kun

i k
2
0 + kun+ 1

2
i � un

i k
2
0 + �t�ikrun+ 1

2
i k2

0

+ �i�t(krun+ 1
2

i k2
0 � krun

i k
2
0 + kr(un+ 1

2
i � un

i )k2
0) + �t

Z
I
�jun

i � un
j j(u

n+ 1
2

i )2ds

� �t
Z

I
�jun�1

i � un�1
j j(un

j )2ds + �t
Z

I
�(jun

i � un
j j

1
2 un+ 1

2
i � jun�1

i � un�1
j j

1
2 un

j )2ds

�
�t
�i
k f n+1

i k2
�1:

(8)

Secondly, choosing vi = 2�tun+1
i and qi = 2�tpn+1

i in (4), we obtain

kun+1
i k2

0 � kun+ 1
2

i k2
0 + kun+1

i � un+ 1
2

i k2
0

+ (�i + �i)�t(krun+1
i k2

0 � krun+ 1
2

i k2
0 + kr(un+1

i � un+ 1
2

i )k2
0)

+ 2�t
Z

I
�jun

i � un
j j(u

n+1
i )2ds � 2�t

Z
I
�jun

i � un
j ju

n+ 1
2

j un+1
i ds = 0:

(9)

As for the interface terms, we have

2�t
Z

I
�jun

i � un
j j(u

n+1
i )2ds � 2�t

Z
I
�jun

i � un
j ju

n+ 1
2

j un+1
i ds

= �t
Z

I
�jun

i � un
j j(u

n+1
i )2ds � �t

Z
I
�jun

i � un
j j(u

n+ 1
2

j )2ds

+ �t
Z

I
�(jun

i � un
j j

1
2 un+1

i � jun
i � un

j j
1
2 un+ 1

2
j )2ds:

(10)

Then, combining (9) with (10), we arrive at

kun+1
i k2

0 � kun+ 1
2

i k2
0 + kun+1

i � un+ 1
2

i k2
0

+ (�i + �i)�t(krun+1
i k2

0 � krun+ 1
2

i k2
0 + kr(un+1

i � un+ 1
2

i )k2
0)

+ �t
Z

I
�jun

i � un
j j(u

n+1
i )2ds � �t

Z
I
�jun

i � un
j j(u

n+ 1
2

j )2ds

+ �t
Z

I
�(jun

i � un
j j

1
2 un+1

i � jun
i � un

j j
1
2 un+ 1

2
j )2ds = 0:

(11)
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Finally, according to (8) and (11), we get

kun+1
i k2

0 � kun
i k

2
0 + kun+ 1

2
i � un

i k
2
0 + kun+1

i � un+ 1
2

i k2
0 + �t(�i + �i)krun+1

i k2
0

+ �t(�i + �i)kr(un+1
i � un+ 1

2
i )k2

0 + �i�tkr(un+ 1
2

i � un
i )k2

0 � �i�tkrun
i k

2
0

+ �t
Z

I
�jun

i � un
j j(u

n+ 1
2

i )2ds � �t
Z

I
�jun�1

i � un�1
j j(un

j )2ds

+ �t
Z

I
�(jun

i � un
j j

1
2 un+ 1

2
i � jun�1

i � un�1
j j

1
2 un

j )2ds + �t
Z

I
�jun

i � un
j j(u

n+1
i )2ds

� �t
Z

I
�jun

i � un
j j(u

n+ 1
2

j )2ds + �t
Z

I
�(jun

i � un
j j

1
2 un+1

i � jun
i � un

j j
1
2 un+ 1

2
j )2ds

�
�t
�i
k f n+1

i k2
�1:

(12)

Due to
2X

i=1

mX
n=1

 
�t

Z
I
�jun

i � un
j j(u

n+ 1
2

i )2ds � �t
Z

I
�jun

i � un
j j(u

n+ 1
2

j )2ds
!
= 0;

2X
i=1

mX
n=1

 
�t

Z
I
�jun

i � un
j j(u

n+1
i )2ds � �t

Z
I
�jun�1

i � un�1
j j(un

j )2ds
!

=

2X
i=1

�t
Z

I
�jum

i � um
j j(u

m+1
i )2ds �

2X
i=1

�t
Z

I
�ju0

i � u0
j j(u

1
j )

2ds;

summing (12) over i = 1; 2 and n = 1; 2; � � � ;m, yields inequality (5).

4. Numerical experiment

In this section, some numerical tests are presented to show the e�ectiveness of Algo-
rithm 3.1. We assume
1 = [0; 1]� [0; 1];
2 = [0; 1]� [�1; 0] and I = (0; 1)�f0g, and consider
the following analytic solutions of the problem (1)

u1;1(t; x; y) = �ax2 exp(�t)(x � 1)2(y � 1);

u1;2(t; x; y) = axy exp(�t)(6x + y � 3xy + 2x2y � 4x2 � 2);

u2;1(t; x; y) = �ax exp(�t)(x � 1)
 
y2x(x � 1)

�
�1

�2
+ 1

�
�

�1=2
1 y2 exp(t=2)

(a�)1=2

� x(x � 1) +
�1=2

1 exp(t=2)

(a�)1=2
+

�1xy(x � 1)
�2

!
;

and

u2;2(t; x; y) = �
ay exp(�t)(2x � 1)

3�2(a�)1=2
6�2x2(a�)1=2 � 6�2x(a�)1=2 � 3�1=2

1 �2 exp(t=2)

� 2�1x2y2(a�)1=2 � 2�2x2y2(a�)1=2 + 3�1xy(a�)1=2 + 2�1xy2(a�)1=2

� 3�1x2y(a�)1=2 + 2�2xy2(a�)1=2 + �1=2
1 �2y2 exp(t=2)

!
;

p1(t; x; y) = p2(t; x; y) = exp(�t) cos(�x) sin(�y);

where a > 0 is a parameter.
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The right-hand sides f1 = ( f1;1(t; x; y); f1;2(t; x; y)) and f2 = ( f2;1(t; x; y); f2;2(t; x; y)) are
taken so as to tender to (u1; p1) and (u2; p2) as solutions of the problem (1).

In the following numerical tests, we use the parameter values �1 = 0:5, �2 = 0:05,
a = 1 and � = 100 as in [34]. Let (ui(tn); pi(tn)) denote the continuous solution at t = tn in

i; i = 1; 2; which is approximated by (un

i ; p
n
i ). Then the errors are denoted by

Err(ui) =
 
�t

NX
n=1

kr(ui(tn) � un
i )k2

0

! 1
2

; Err(pi) =
 
�t

NX
n=1

kpi(tn) � pn
i k

2
0

! 1
2

:

4.1. Convergence rate verification

On one hand, we test the convergence rates of Algorithm 3.1 with respect to h: In
order to avoid the influence of the time step, �t should be chosen small enough. Hence, we
set �t = 0:0001 and 0.001 with T = 0:1; and take h = 1/4, 1/8, 1/16 and 1/32 successively.

We display the convergence rates of Algorithm 3.1 (�i , 0) and the viscosity-splitting
method (�i = 0) [18] in Table 1 and 2 with �t = 0:0001 and 0.001, respectively. From Table
1 and 2, when the time step is small, it can be easily to see that both Algorithm 3.1 and the
viscosity-splitting method work well and keep the optimal convergence rates. In fact, the
expected first-order convergence rates for the velocity are achieved. However, the pressure
convergence rates are above the predicted value, but decreasing rates with slightly large
time step, because of the application of the MINI-element which shows a superconvergence
behavior for the pressure approximation.

Table 1 Convergence orders with respect to h with �t = 0:0001:

1=h (�1; �2) Err(u1) Rate Err(u2) Rate Err(p1) Rate Err(p2) Rate
4 (0,0) 0.05729 — 0.25725 — 0.20388 — 0.89323 —
8 (0,0) 0.02877 0.99 0.12363 1.06 0.05134 1.99 0.22398 2.00
16 (0,0) 0.01428 1.01 0.05955 1.05 0.01180 2.12 0.05200 2.11
32 (0,0) 0.00713 1.00 0.02962 1.01 0.00292 2.02 0.01283 2.02

4 (1,2) 0.05721 — 0.25725 — 0.19493 — 0.89323 —
8 (1,2) 0.02871 0.99 0.12363 1.04 0.04907 1.99 0.22398 2.00
16 (1,2) 0.01430 1.01 0.06045 1.03 0.01209 2.02 0.05476 2.03
32 (1,2) 0.00713 1.00 0.03009 1.01 0.00298 2.02 0.01346 2.02

Table 2 Convergence orders with respect to h with �t = 0:001:

1=h (�1; �2) Err(u1) Rate Err(u2) Rate Err(p1) Rate Err(p2) Rate
4 (0,0) 0.05808 — 0.25972 — 0.06354 — 0.27132 —
8 (0,0) 0.02921 0.99 0.12422 1.06 0.01627 1.97 0.06732 2.01
16 (0,0) 0.01456 1.00 0.06064 1.03 0.00414 1.98 0.01647 2.03
32 (0,0) 0.00727 1.00 0.03022 1.00 0.00126 1.72 0.00404 2.03

4 (1,2) 0.05837 — 0.27253 — 0.07271 — 0.36398 —
8 (1,2) 0.02939 0.99 0.13816 0.98 0.01843 1.98 0.08976 2.02
16 (1,2) 0.01465 1.00 0.06907 1.00 0.00464 1.99 0.02189 2.04
32 (1,2) 0.00732 1.00 0.03461 1.00 0.00143 1.70 0.00562 1.96
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On the other hand, we test the convergence rates of Algorithm 3.1 with respect to �t:
Here, we set �t = h: Further, we take �t = 1/4, 1/8, 1/16 and 1/32 successively.

Table 3 lists the numerical results solving by Algorithm 3.1 and the viscosity-splitting
method for T = 1: According to Table 3, when we choose �i = 0 (viscosity-splitting method),
we find that the pressure convergence rates are decreasing; but based on Algorithm 3.1, by
choosing suitable parameters �i, we can obtain the good numerical results of pressure, i.e.,
the convergence order of velocity and pressure with respect to �t is approximately 1, which
is the optimal order for first-order time discretization.

Table 3 Convergence orders with respect to �t:

1=�t (�1; �2) Err(u1) Rate Err(u2) Rate Err(p1) Rate Err(p2) Rate
4 (0,0) 0.20323 — 0.84080 — 0.06115 — 0.02680 —
8 (0,0) 0.09050 1.17 0.37864 1.15 0.02771 1.14 0.01635 0.71
16 (0,0) 0.04030 1.17 0.17469 1.12 0.01157 1.26 0.00962 0.77
32 (0,0) 0.01789 1.17 0.08131 1.10 0.00414 1.48 0.00600 0.68

4 (0,0.2) 0.20456 — 0.90688 — 0.06512 — 0.14794 —
8 (0,0.2) 0.09345 1.13 0.42802 1.08 0.03402 0.94 0.04843 1.61
16 (0,0.2) 0.04029 1.21 0.19775 1.11 0.01132 1.59 0.01922 1.33
32 (0,0.2) 0.01773 1.18 0.08854 1.16 0.00382 1.57 0.01033 0.90

4 (0.1,0.2) 0.20394 — 0.90646 — 0.06667 — 0.14775 —
8 (0.1,0.2) 0.09301 1.13 0.42727 1.09 0.03366 0.99 0.04831 1.61
16 (0.1,0.2) 0.04058 1.20 0.19779 1.11 0.01176 1.52 0.01923 1.33
32 (0.1,0.2) 0.01767 1.20 0.08809 1.17 0.00395 1.57 0.00983 0.97

At the end of this subsection, we will test the performance of Algorithm 3.1 and
viscosity-splitting method under larger time step. In Table 4, the numerical results solving
by Algorithm 3.1 with di�erent value of �i and the viscosity-splitting method are listed
for �t = 0:01 and T = 0:1: From this table, we can see that better convergence results are
obtained with the larger value of�i. Hence, for the nonlinear fluid-fluid interaction problem
(1) solving with larger time step, the desired numerical results of both velocity and pressure
can be gained by Algorithm 3.1 with the larger value of �i, while the viscosity-splitting
method can not get the desired convergence results.

From Table 4, we can see that the better convergence results can be obtained by
Algorithm 3.1 with the larger value of �i. However, it is questionable whether the best
numerical results can be obtained when �i ! 1: In practice there are limitations on how
large �i may be chosen, because as �i increases the resulting linear system becomes ill-
conditioned. Hence, in the next subsection, we will consider the e�ect of parameters �i for
the fixed time step and mesh size.

4.2. The e�ectiveness of parameter �i

This subsection is mainly devoted to the influence of �i (i = 1; 2) on the error. Figure
1 shows the e�ectiveness of various �1 and �2 to the accuracy of velocity in H1-norm with
the time step �t = 0:01 and 1=h = 32 at T = 0:1; respectively. One can see that the optimal
�i for the accuracy of velocity is not obtained from the largest value of �i.

Next, we test the performance of Algorithm 3.1 and viscosity-splitting method for the
nonlinear fluid-fluid interaction problem with small viscosities. The numerical errors with
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Table 4 Convergence rates with larger time step �t = 0:01 with T = 0:1:

1=h (�1; �2) Err(u1) Rate Err(u2) Rate Err(p1) Rate Err(p2) Rate
4 (0,0) 0.06669 — 0.28958 — 0.02561 — 0.08837 —
8 (0,0) 0.03398 0.97 0.14309 1.02 0.00746 1.78 0.02168 2.03
16 (0,0) 0.01710 0.99 0.07166 1.00 0.00287 1.38 0.00610 1.83
32 (0,0) 0.00871 0.97 0.03778 0.92 0.00224 0.36 0.00345 0.82

4 (1,2) 0.06905 — 0.34704 — 0.05035 — 0.34747 —
8 (1,2) 0.03541 0.96 0.18544 0.90 0.01467 1.78 0.09853 1.82
16 (1,2) 0.01783 0.99 0.09467 0.97 0.00524 1.49 0.03024 1.70
32 (1,2) 0.00903 0.98 0.04795 0.98 0.00348 0.59 0.01352 1.16

4 (3,2) 0.07393 — 0.34703 — 0.10617 — 0.34746 —
8 (3,2) 0.03839 0.95 0.18544 0.90 0.03184 1.74 0.09852 1.82
16 (3,2) 0.01942 0.98 0.09467 0.97 0.01046 1.61 0.03022 1.71
32 (3,2) 0.00986 0.98 0.04795 0.98 0.00541 0.95 0.01348 1.16

4 (4,2) 0.07581 — 0.34703 — 0.13471 — 0.34746 —
8 (4,2) 0.03951 0.94 0.18544 0.90 0.04077 1.72 0.09852 1.82
16 (4,2) 0.02003 0.98 0.09467 0.97 0.01331 1.61 0.03021 1.71
32 (4,2) 0.01019 0.98 0.04795 0.98 0.00660 1.01 0.01347 1.17
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Figure 1. E�ectiveness of various �1 (a) and �2 (b) on the accuracy of velocity in H1-norm.

various small viscosities at T = 0:1 are listed in Table 5. One can see that compared with
viscosity-splitting method the better errors are obtained by Algorithm 3.1. Therefore, Algo-
rithm 3.1 can solve the nonlinear fluid-fluid interaction problem (1) with small viscosities
well.

5. Conclusion

In this work we have designed a two-step decoupled finite element algorithm for a
nonlinear fluid-fluid interaction model. In the first step we apply the GA method while
in the second step we use the IMEX method. The advantage of the two-step decoupled
scheme rather than a coupled method is the decoupling of the convective e�ects from incom-
pressibility. Besides, the decoupled scheme can solve the considered model with smaller
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Table 5 The error of velocity for the small viscosities and with �t = 0:01.

(�1; �2) (�1; �2) Err(u1) Err(u2)
(0,0) (5E-5,5E-5) 0.232333 0.236648
(0,0) (5E-5,5E-6) 0.232974 0.284403
(0,0) (5E-6,5E-6) 0.258397 0.265243

(1,0.1) (5E-5,5E-5) 0.012174 0.019347
(1,0.1) (5E-5,5E-6) 0.012172 0.050380
(1,0.1) (5E-6,5E-6) 0.012175 0.019410

viscosity and larger time step. We prove stability results of the method. Numerically, we
investigate the performances of the method by the some numerical tests. All computational
results demonstrate the e�ectiveness of the method, showing that the method is suitable to
solve the nonlinear fluid-fluid interaction model with smaller viscosity.
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