
U.P.B. Sci. Bull., Series A, Vol. 76, Iss. 4, 2014 ISSN 1223-7027

FIXED POINTS OF A CLASS OF CONTRACTIVE-TYPE

MULTIFUNCTIONS ON FUZZY METRIC SPACES

Cristiana Ionescu1, Sh Rezapour2, M. E. Samei3

We prove a fixed point theorem for a contractive type multifunction on

a nonempty and closed subset of a complete fuzzy metric spaces. An example is

given.
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1. Introduction

In 1922, Banach proved the principle contraction result ([9]). As we know,

there have been published many works about fixed points theory for different kinds

of contractions on some spaces such quasi-metric spaces [11, 23], cone metric spaces

[4, 15, 39], convex metric spaces [33], partially ordered metric spaces [3, 5, 8, 10, 13,

16, 38, 42, 44], G-metric spaces [6, 7, 14, 43, 46, 47], b-metric spaces [48], partial

metric spaces [2, 25, 41], quasi-partial metric spaces [45], Menger spaces [32] and

fuzzy metric spaces [19, 20]. Also, studies either on approximate fixed point or

on qualitative aspects of numerical procedures for approximating fixed points are

available in literature; please, see [22, 29, 30, 33].

The concept of fuzzy sets introduced by Zadeh in 1965 ([56]). In 1975,

Kramosil and Michalek introduced the notion of fuzzy metric spaces ([27]) and

George and Veeramani modified the concept in 1994 ([18]). Some researchers have

been provided different fixed point results in fuzzy metric spaces (see for example,

[1, 12, 17, 24, 26, 31, 35, 49, 50, 51, 52, 54, 55]).

In this paper, we prove a fixed point theorem for a class of contractive type

multifunctions, defined on a nonempty and closed subset of a complete fuzzy metric

space. An example is given to support the usability of our main result.

2. Preliminaries

We shall use the notion of Hadzic-type t-norms in the sense of [21] in this

paper.
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Let X be a non-empty set, ∗ a Hadzic-type t-norm and M a fuzzy set on

X2 × [0,∞) such that

1) M(x, y, 0) = 0,

2) M(x, y, t) = 1 for all t > 0 if and only if x = y,

3) M(x, y, t) = M(y, x, t),

4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s), for all x, y, z ∈ X and s, t > 0,

5) M(x, y, ·) : [0,∞) → [0, 1] is continuous and lim
t→∞

M(x, y, t) = 1, for all

x, y ∈ X.

Then, (X,M, ∗) is called a fuzzy metric space. ([34]).

Let (X,M, ∗) be a fuzzy metric space. Put

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r},

for all x ∈ X, t > 0 and 0 < r < 1.

Denote the generated topology by the sets B(x, r, t) by τM .

It has been proved that in an fuzzy metric space every compact set is closed

and bounded ([34]).

A sequence {xn} in (X,M, ∗) is called a Cauchy sequence whenever for each

ε > 0 and t > 0, there exists a natural number n0 such that M(xn, xm, t) > 1 − ε

for all n,m ≥ n0. Also, the triple (X,M, ∗) is called a complete fuzzy metric space

whenever every Cauchy sequence is convergent with respect τM .

A selfmap f on a fuzzy metric space (X,M, ∗) is called a fuzzy contraction

whenever there exists k ∈ (0, 1) such that

1

M(f(x), f(y), t)
− 1 ≤ k

(
1

M(x, y, t)
− 1

)
,

for all x, y ∈ X and t > 0; please, see [36].

Let B be a nonempty subset of a fuzzy metric space (X,M, ∗).
According to [53], for x ∈ X and t > 0, define

M(x,B, t) = sup
b∈B

M(x, b, t).

For a fuzzy metric space (X,M, ∗), denote by CB(X) and H(X) the set of nonempty

closed bounded subsets and the set of nonempty compact subsets of (X, τM ).

Let B be a nonempty subset of a fuzzy metric space (X,M, ∗), x ∈ X and

t > 0. In this case, HM stands the Hausdorff fuzzy metric space on H×H× (0,∞)

which defined by

HM (A,B, t) = min

{
inf
a∈A

M(a,B, t), inf
b∈B

M(b, A, t)

}
for all A,B ∈ H and t > 0 ([40]).

3. The result

Now, we are ready to state and prove our main result. For this purpose, we

use the technique of of Reem, Reich and Zaslavski [37]. Here, we suppose that there
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is a metric d on X and

M(x, y, t) =
t

t+ d(x, y)
, ∀ t ≥ 0.

Theorem 3.1. Suppose that K be a non-empty closed subset of a complete fuzzy

metric space (X,M, ∗), c ∈ [0, 1) and T : K → H(X) satisfies

1

HM (Tx, Ty, t)
− 1 ≤ c

(
1

M(x, y, t)
− 1

)
,

for all x, y ∈ X. Let K0 be a bounded subset of K and {xn}n≥1 a sequence in K0

such that ∪n
i=1T

ixn ⊆ K for all n ≥ 1. Then T has a fixed point.

Proof. First of all, note that

1

HM (T i+1x, T i+1y, t)
− 1 ≤ c

(
1

HM (T ix, T iy, t)
− 1

)
(3.1)

for all i ≥ 1 and x, y ∈ K, with T ix, T iy ⊆ K.

Since K0 is bounded, there exist θ ∈ K and c0 > 0 such that 1
M(θ,z,t) − 1 ≤ c0

t

for all z ∈ K0.

Now, we continue the proof in several steps.

⋆Step 1. For each ε > 0 there exists n0 ≥ 1 such that

1

HM (T ixn, T i+1xn, t)
− 1 ≤ ε

t
(3.2)

for all n > n0 and n0 ≤ i < n.

Proof of Step 1. If (3.2) does not hold, then for each m ≥ 1 there exist nm

and im such that m ≤ im < nm and

1

HM (T imxnm , T
im+1xnm , t)

− 1 >
ε

t
(3.3)

for some ε > 0.

Choose a natural number m such that m >
2c0+t( 1

HM ({θ},Tθ,t)
−1)

(1−c)ε .

Since c < 1, by using (3.1) and (3.2) we conclude that

1

HM (T ixnm , T
i+1xnm , t)

− 1 >
ε

t
,

for all i = 1, 2, . . . , im.

Since

1

HM (T i+2xnm , T
i+1xnm , t)

− 1 ≤ c

(
1

HM (T i+1xnm , T
ixnm , t)

− 1

)
,

for all i = 1, 2, . . . , im − 1, by using (3.3), we get(
1

HM (T i+2xnm , T
i+1xnm , t)

− 1

)
−
(

1

HM (T i+1xnm , T
ixnm , t)

− 1

)
≤ (c− 1)

(
1

HM (T i+1xnm , T
ixnm , t)

− 1

)
<

(c− 1)ε

t
.
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On the other hand,

ε

t
<

1

HM (T 2xnm , Txnm , t)
− 1 ≤ c

(
1

HM ({xnm}, Txnm , t)
− 1

)
≤ 1

HM ({xnm}, Txnm , t)
− 1.

Hence, (
1

HM (T 2xnm , Txnm , t)
− 1

)
−

(
1

HM ({xnm}, Txnm , t)
− 1

)
≤ (c− 1)

(
1

HM ({xnm}, Txnm , t)
− 1

)
<

(c− 1)ε

t
.

Thus,

−
(

1

HM ({xnm}, Txnm , t)
− 1

)
≤

(
1

HM (T im+1xnm , T
imxnm , t)

− 1

)
−
(

1

HM ({xnm}, Txnm , t)
− 1

)
≤

im−1∑
i=1

[(
1

HM (T i+2xnm , T
i+1xnm , t)

− 1

)
−

(
1

HM (T i+1xnm , T
ixnm , t)

− 1

)]
+

[(
1

HM (T 2xnm , Txnm , t)
− 1

)
−

(
1

HM ({xnm}, Txnm , t)
− 1

)]

+
(1− c)εim

t
≤ m(c− 1)ε

t
. (3.4)

Since HM is a fuzzy metric on H(X), from (3.1) and (3.4), we obtain

m(1− c)ε

t
≤ 1

HM ({xnm}, Txnm , t)
− 1

≤
(

1

HM ({xnm}, {θ}, t)
− 1

)
+

(
1

HM ({θ}, T θ, t)
− 1

)
+

(
1

HM (Tθ, Txnm , t)
− 1

)
≤

(
1

M(xnm , θ, t)
− 1

)
+

(
1

HM ({θ}, T θ, t)
− 1

)
≤ c

(
1

M(θ, xnm , t)
− 1

)
≤ 2c0

t
+

(
1

HM ({θ}, T θ, t)
− 1

)
,

which is a contradiction. This implies that (3.2) holds.

⋆Step 2. For each δ > 0 there exists n0 ≥ 1 such that

1

HM (T ixn, T jxn, t)
− 1 ≤ δ

t
, (3.5)

for all n > n0 and n0 ≤ i, j < n.

Proof of Step 2. Let us consider ε < 1
4δ(1 − c). Choose n0 ≥ 1 such that

(3.2) holds, for all n > n0 and n0 ≤ i < n.
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We claim that (3.5) holds for all n0 ≤ i, j < n.

If 1
HM (T ixn,T jxn,t)

− 1 > δ
t for some i and j, then

1

HM (T ixn, T jxn, t)
− 1 ≤

(
1

HM (T ixn, T i+1xn, t)
− 1

)
+

(
1

HM (T i+1xn, T j+1xn, t)
− 1

)
+

(
1

HM (T j+1xn, T jxn, t)
− 1

)
≤ 2ε

t
+

(
1

HM (T i+1xn, T j+1xn, t)
− 1

)
≤ 2ε

t
+ c

(
1

HM (T ixn, T jxn, t)
− 1

)
.

This implies that
δ

t
<

1

HM (T ixn, T jxn, t)
− 1 ≤ 2ε

t(1− c)
,

which is a contradiction.

⋆Step 3. For each ε > 0 there exists a natural number n0 such that

1

HM (Tn0xn1 , T
n0xn2 , t)

− 1 ≤ ε

t
, (3.6)

for all n1, n2 > n0.

Proof of Step 3. Choose a natural number n0 such that n0 >
4c0

ε(1−c) . Now,

suppose that n1, n2 > n0.

We claim that
1

HM (Tn0xn1 , T
n0xn2 , t)

− 1 ≤ ε

t
. (3.7)

If (3.7) does not hold, then 1
HM (T ixn1 ,T

ixn2 ,t)
− 1 > ε

t for all i = 1, 2, . . . , n0,

because c < 1.

Note that,

ε

t
<

1

HM (Txn1 , Txn2 , t)
− 1 ≤ c

(
1

M(xn1 , xn2 , t)
− 1

)
≤ 1

M(xn1 , xn2 , t)
− 1.

Hence, −( 1
M(xn1 ,xn2 ,t)

− 1) < −ε.

Since

1

HM (T i+1xn1 , T
i+1xn2 , t)

− 1 ≤ c

(
1

HM (T ixn1 , T
ixn2 , t)

− 1

)
for all i = 1, 2, . . . , n0 − 1, we get(

1

HM (T i+1xn1 , T
i+1xn2 , t)

− 1

)
−

(
1

HM (T ixn1 , T
ixn2 , t)

− 1

)
≤ (c− 1)

(
1

HM (T ixn1 , T
ixn2 , t)

− 1

)
< −(1− c)

ε

t
,

for all i = 1, 2, . . . , n0 − 1.
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This implies that

−
(

1

M(xn1 , xn2 , t)
− 1

)
≤

(
1

HM (Tn0xn1 , T
n0xn2 , t)

− 1

)
−

(
1

M(xn1 , xn2 , t)
− 1

)

≤
n0−1∑
i=1

[(
1

HM (T i+1xn1 , T
i+1xn2 , t)

− 1

)
−

(
1

HM (T ixn1 , T
ixn2 , t)

− 1

)]
+

[(
1

HM (Txn1 , Txn2 , t)
− 1

)
−

(
1

M(xn1 , xn2 , t)
− 1

)]
≤ −n0(1− c)

ε

t
.

Thus,

n0(1− c)
ε

t
≤ 1

M(xn1 , xn2 , t)
− 1 ≤

(
1

M(xn1 , θ, t)
− 1

)
+

(
1

M(θ, xn2 , t)
− 1

)
≤ 2c0

t

and so n0 ≤ 2c0
ε(1−c) .

This contradiction shows that (3.7) holds.

⋆Step 4. For each ε > 0 there exists a natural number m(ε) ≥ 1 such that

1

HM (T ixn1 , T
ixn2 , t)

− 1 ≤ ε,

for all n1, n2 > m(ε) and natural numbers i ∈ [m(ε), n1) and j ∈ [m(ε), n2).

Proof of Step 4. Let ε > 0 be given.

By using (3.6), choose m1 ≥ 1 such that

1

HM (Tm1xn1 , T
m1xn2 , t)

− 1 ≤ ε

4t

for all n1, n2 > m1.

By using (3.5), choose m2 ≥ 1 such that

1

HM (T ixn, T jxn, t)
− 1 ≤ ε

4t

for all n > m2 and m2 ≤ i, j < n.

Put m(ε) := m1 + m2. Suppose that n1, n2 > m(ε) and i and j are natural

numbers such that i ∈ [m(ε), n1) and j ∈ [m(ε), n2). Then,

1

HM (Tm(ε)xn1 , T
m(ε)xn2 , t)

− 1 ≤ 1

HM (Tm1xn1 , T
m1xn2 , t)

− 1 ≤ ε

4t
.

Also,

1

HM (Tm(ε)xn1 , T
ixn1 , t)

− 1 ≤ ε

4t
,

1

HM (Tm(ε)xn2 , T
jxn2 , t)

− 1 ≤ ε

4t
.

Thus,

1

HM (T ixn1 , T
jxn2 , t)

− 1 ≤
(

1

HM (Tm(ε)xn1 , T
ixn1 , t)

− 1

)
+

(
1

HM (Tm(ε)xn1 , T
m(ε)xn2 , t)

− 1

)
+

(
1

HM (Tm(ε)xn2 , T
jxn2 , t)

− 1

)
<

ε

t
,

and this completes the proof of the step.

Now, we complete the proof of the theorem.
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Consider the sequences {Tn−2xn}n≥3 and {Tn−1xn}n≥2. For each ε > 0, take

N = m(ε) + 2. Let m,n ≥ N , i = m − 2, j = n − 2, n1 = m and n2 = n. Then,

it is easy to see that i ∈ [m(ε), n1) and j ∈ [m(ε), n2). By using Step 4, we get
1

HM (Tm−2xm,Tn−2xn,t)
− 1 < ε

t . Thus, {T
n−2xn}n≥3 is a Cauchy sequence.

By using a similar argument, one can conclude that {Tn−1xn}n≥2 is a Cauchy

sequence and

lim
n→∞

1

HM (Tn−2xn, Tn−1xn, t)
− 1 = 0.

Note that, the sequences {Tn−2xn}n≥3 and {Tn−1xn}n≥2 lie inK and (H(K),HM , ∗)
is a complete fuzzy metric space. Hence, there exists A ∈ H(K) such that

lim
n→∞

1

HM (Tn−2xn, A, t)
− 1 = lim

n→∞

1

HM (Tn−1xn, A, t)
− 1 = 0.

Since

HM (Tn−1xn, T (A), t)

= min

{
inf

a∈Tn−2xn,a1∈Ta
sup

b∈A,b1∈Tb
M(a1, b1, t), inf

d1∈Td,d∈A
sup

c1∈Tc,c∈Tn−2xn

M(c1, d1, t)

}

= min

{
inf

a∈Tn−2xn

sup
b∈A

inf
a1∈Ta

sup
b1∈Tb

M(a1, b1, t), inf
d∈A

sup
c∈Tn−2xn

inf
d1∈Td

sup
c1∈Tc

M(c1, d1, t)

}

≥ min

{
inf

a∈Tn−2xn

sup
b∈A

HM (Ta, Tb, t), inf
d∈A

sup
c∈Tn−2xn

HM (Tc, Td, t)

}

≥ cmin

{
inf

a∈Tn−2xn

sup
b∈A

M(a, b, t), inf
d∈A

sup
c∈Tn−2xn

M(c, d, t)

}
= cHM (Tn−2xn, A, t) → 1,

we get A = T (A). Thus, T |A : A → H(A) is a contractive multifunction.

Since (A,M |A×A, ∗) is a complete fuzzy metric space, by using main result

of [28], T |A has a fixed point in A and so there exists x0 ∈ A ⊆ K such that

x0 ∈ Tx0. �

Example 3.1. Let X = [0,∞), M(x, y, t) = t
t+|x−y| , m ≥ 2014 a fixed natural

number, K =
{

1√
2
, 1√

3
, 1√

4
, . . .

}
∪ {0, 1} and K0 =

{
1√
2
, 1√

3
, 1√

4
, . . .

}
.

Now, define the multifunction

T : K → H(X), Tx =
{ x√

2
,
x√
3
,
x√
4
, . . . ,

x√
m

}
, for all x ∈ K.

Note that, the values of T are compact and

1

HM (Tx, Ty, t)
− 1 ≤ 1

2

(
1

M(x, y, t)
− 1

)
, for all x, y ∈ K.

Since Tx ⊆ K for all x ∈ K0, it is easy to see that ∪n
i=1T

ixn ⊆ K for all n ≥ 1,

where {xn}n≥1 is a sequence in K0. Thus, T satisfies the conditions of Theorem 3.1

and so has a fixed point.
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4. Conclusions

Using the technique of of Reem, Reich and Zaslavski [37], in this article we

proved a fixed point theorem for a class of contractive type multifunctions, defined

on a nonempty and closed subset of a complete fuzzy metric space. An example is

given to support the usability of our main result.
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