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FIXED POINTS OF A CLASS OF CONTRACTIVE-TYPE
MULTIFUNCTIONS ON FUZZY METRIC SPACES

Cristiana Ionescu', Sh Rezapour?, M. E. Samei®

We prove a fixed point theorem for a contractive type multifunction on
a nonempty and closed subset of a complete fuzzy metric spaces. An example is
given.
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1. Introduction

In 1922, Banach proved the principle contraction result ([9]). As we know,
there have been published many works about fixed points theory for different kinds
of contractions on some spaces such quasi-metric spaces [11, 23|, cone metric spaces
[4, 15, 39], convex metric spaces [33], partially ordered metric spaces [3, 5, 8, 10, 13,
16, 38, 42, 44], G-metric spaces [6, 7, 14, 43, 46, 47], b-metric spaces [48], partial
metric spaces [2, 25, 41], quasi-partial metric spaces [45], Menger spaces [32] and
fuzzy metric spaces [19, 20]. Also, studies either on approximate fixed point or
on qualitative aspects of numerical procedures for approximating fixed points are
available in literature; please, see [22, 29, 30, 33].

The concept of fuzzy sets introduced by Zadeh in 1965 ([56]). In 1975,
Kramosil and Michalek introduced the notion of fuzzy metric spaces ([27]) and
George and Veeramani modified the concept in 1994 ([18]). Some researchers have
been provided different fixed point results in fuzzy metric spaces (see for example,
(1, 12, 17, 24, 26, 31, 35, 49, 50, 51, 52, 54, 55]).

In this paper, we prove a fixed point theorem for a class of contractive type
multifunctions, defined on a nonempty and closed subset of a complete fuzzy metric
space. An example is given to support the usability of our main result.

2. Preliminaries
We shall use the notion of Hadzic-type t-norms in the sense of [21] in this

paper.
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Let X be a non-empty set, * a Hadzic-type t-norm and M a fuzzy set on

X2 x [0,00) such that
1) M(z,y,0) =0,

2) M(z,y,t) =1 for all t > 0 if and only if z =y,
3) M(z,y,t) = M(y,,1),
4) M (z,y,t) * M(y, z,s) < M(x,z,t+s), for all z,y,z € X and s,t > 0,
5) M(z,y,-): [0,00) — [0,1] is continuous and tlggo M(x,y,t) = 1, for all
z,y € X.

Then, (X, M, ) is called a fuzzy metric space. ([34]).

Let (X, M, %) be a fuzzy metric space. Put

B(z,rt)={ye X : M(z,y,t) >1—r},

forallze X, t>0and 0 <r < 1.

Denote the generated topology by the sets B(x,r,t) by 7as.

It has been proved that in an fuzzy metric space every compact set is closed
and bounded ([34]).

A sequence {z,} in (X, M,*) is called a Cauchy sequence whenever for each
e > 0 and t > 0, there exists a natural number ng such that M (zy,zpy,t) > 1 —¢
for all n,m > ng. Also, the triple (X, M, x) is called a complete fuzzy metric space
whenever every Cauchy sequence is convergent with respect ;.

A selfmap f on a fuzzy metric space (X, M, x) is called a fuzzy contraction
whenever there exists k € (0,1) such that

1 1
i<k ( - 1) |
M(f(x), f(y),t) M(z,y,t)
for all x,y € X and t > 0; please, see [36].
Let B be a nonempty subset of a fuzzy metric space (X, M, ).
According to [53], for z € X and ¢ > 0, define
M(x,B,t) = sup M(x,b,t).
beB
For a fuzzy metric space (X, M, ), denote by CB(X) and H(X) the set of nonempty
closed bounded subsets and the set of nonempty compact subsets of (X, 7r).
Let B be a nonempty subset of a fuzzy metric space (X, M, *), z € X and

t > 0. In this case, Hys stands the Hausdorff fuzzy metric space on H x 3 x (0, 00)
which defined by

M (4, B,t) :min{mf M (a, B, 1), gnng(b’A’t)}
€

acA

for all A, B € H and ¢t > 0 (]40)).

3. The result

Now, we are ready to state and prove our main result. For this purpose, we
use the technique of of Reem, Reich and Zaslavski [37]. Here, we suppose that there
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is a metric d on X and

M(z,y,t) Vit>0.

T i+ d(a,y)

Theorem 3.1. Suppose that K be a non-empty closed subset of a complete fuzzy
metric space (X, M,x*), c €[0,1) and T: K — H(X) satisfies

1 1
_ 1<+ -1
Hy (Tx, Ty, t) _C<M(x,y,t) ) ’
for all z,y € X. Let Ky be a bounded subset of K and {zp}n>1 a sequence in Ky
such that U T'x, C K for alln > 1. Then T has a fized point.

Proof. First of all, note that

1 1
. , -1 < . . -1 3.1
Hy (T, Ty, t) = <HM(T1m,T’y,t) ) (31)
for all i > 1 and z,y € K, with T"z, T’y C K.
Since Ky is bounded, there exist 8 € K and ¢y > 0 such that m -1<2
for all z € Kj.
Now, we continue the proof in several steps.
*STEP 1. For each ¢ > 0 there exists ng > 1 such that
1 €
. . —-1< = 3.2
Hy(Tixy,, T 2y, 1) —t (3.2)

for all n > ng and ng <1 < n.
ProoF OF STEP 1. If (3.2) does not hold, then for each m > 1 there exist n,,
and i,, such that m < i,, < n,, and
1 €
, . —1>- 3.3
Hy (Tmaxy,, , Tmt e, . t) t (3.3)

for some € > 0. )
cott(q qor o —
(1—c)e
Since ¢ < 1, by using (3.1) and (3.2) we conclude that
1 €

. - —1> -
HM(TZ.ZL'nm,TZJ’_lLL'nm,t) t

2 1)
Choose a natural number m such that m > .

forall i =1,2,...,0n.
Since
1 1
_ . —-1< . : -1
Hy (T2, Tz, 1) = (HM(T”lxnm,Tlxnm,t) ) ’

foralli =1,2,... iy — 1, by using (3.3), we get

1 1
- - -1 - - - -1
<HM (TZ+2xnm ? TZ+1xnm ’ t) > (HM (T7'+1.'Enm ’ T’Lwnm ’ t) )

1 (c—1)e
<(c—1 , , 1) < E
<=1 <HM(TZ+1xnm,Tlxnm,t) ) ¢
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On the other hand,

15 1 1

- < —1< -1

t S Hy(T2an  Tan t) (HM({xnm},Txnm,t) >
1

= i (wn, ) T )
Hence,
(e ) (s )
Hy(T?xy,,,, Ty, t) Hy({zn,, } Ty, , t)
1 (c—1)e
s(e=1) <HM({xnm},Ta;nm,t) - 1) STy
Thus,

1 1
— -1 < - A —1
<HM({'CCnm}7 Txnm ’ t) ) B (HM(TZerlxnm ’ T’Lm':l;nm ’ t) >

- (HM<{xnm1},Txnm,t> - 1)

T & Hy (T 22, TiHlx, | t) Hy (T2, Tz, 1)

1 1
[ R M Gl e B |
1 —c)ety, m(c—1)e
Q=0 mle=e
Since Hyy is a fuzzy metric on H(X), from (3.1) and (3.4), we obtain
m(l —c)e < 1
t ~ Hy(zn, },Tan,,t)

(3.4)

-1

: (HM<{mni},{e},t> - 1) * <W - 1)

+ ! ~1

<HM(T0,Txnm,t) >

(M ‘1> * (W‘l)

= C(W”)SZCO*@M”)’

which is a contradiction. This implies that (3.2) holds.
*STEP 2. For each § > 0 there exists ng > 1 such that
1 0
Hy(Tixy, Tizn,t) s (3:5)
for all n > ng and ng <14,j < n.
PROOF OF STEP 2. Let us consider € < %5(1 — ¢). Choose ng > 1 such that
(3.2) holds, for all n > ng and ng < i < n.

IN
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We claim that (3.5) holds for all ng <1i,j < n.
If m —1> % for some 7 and j, then

1 1
. ; -1 < . ; -1
Hy(Tixy, Tix,, t) - <HM(T1xn, Titlz, t) )

1
. - -1
+ <HM(TZ+1xn,TJ+1xn,t) )

1
; . -1
+ <HM(TJ+1:nn,TJ:L‘n,t) )

< 2¢e n 1 1
-t Hy (Tt gy, Tit 1y, 1)
< 2e n 1 1
—+c . . —-1).
-t Hy (T xy, Tz, t)
This implies that

0 1 2e

- < . , —-1< ,

t  Hpy(T'ap, Tz, t) t(1—c)

which is a contradiction.
*STEP 3. For each € > 0 there exists a natural number ng such that
1 €
-1 < = 3.6
Hpy (T™xy,, , Tz, t) -t (36)

for all nq,ny > nyg.

Proor oF STEP 3. Choose a natural number ng such that ng > 8&%6). Now,
suppose that ni,ne > ng.

We claim that

1 €
—-1<-. 3.7
Hy(Toxy,, , Tz, , 1) —t (3.7)
1 C_
If (3.7) does not hold, then Hor(Tion, Toamgd) 1> 5 foralli=1,2,... no,

because ¢ < 1.

Note that,
€ 1 1 1
- < 1<l "+-1)|]<—~———1
t  Hy(Txp,,Tzp,,t) - (M(mn1 y Ty, ) ) M (xp,, Tny,t)
1
I'Ien(:e7 —(W — 1) < —€.
Since
L 1< 1 1
- - — C - - —
Hy(TH wy,, , Ty, t) — \Hy(T'zp,, T'xy,,t)
foralli=1,2,...,n9— 1, we get

1 1
, , -1 - . . -1
<HM(Tl+1xn1,Tl+1azn2,t) ) (HM(T%nl,T’J:nQ,t) )
1 €
<(c—1 . . —1)<—-(1-¢)-,
= ) (HM(Tzl‘maTll‘nzat) ) ( C)t
foralli=1,2,...,n9— 1.
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This implies that

1 1 1
s )< st ) o
M(xp,, Ty, t) Hy(Toxy,, , Tz, ,1) M (xp,, Tny,t)

nog—1
1 1
< . , -1 - y y -1
B ; [(HM(THlfcnnTHlfcnzat) ) <HM(Tan17szn27t) )}
€
t

1 1
-1 -1 < — 1—
i |:<HM(Txn17Txn27t) > <M(xn1,xn2,t) >:| - nO( C)
Thus,

€ 1 1 1 2co
l-aS<— < EE— I
00 S W o) (M(acnue,t) )* <M<e,xn2,t> ) <5

and so ng < 5(216—0c)'

This contradiction shows that (3.7) holds.

*STEP 4. For each £ > 0 there exists a natural number m(e) > 1 such that

1
Hy (T2, , Ty, t)

for all n1,ne > m(e) and natural numbers i € [m(¢),n1) and j € [m(e), na).

Proof of Step 4. Let € > 0 be given.

By using (3.6), choose my > 1 such that

—1<e,

for all ny,ny > my.
By using (3.5), choose mgy > 1 such that
1 1<
Hy (T xy, Tixp, t) 4t
for all n > mo and mg < 14,5 < n.
Put m(g) := my + mo. Suppose that ni,ne > m(e) and i and j are natural
numbers such that ¢ € [m(e),n1) and j € [m(e),n2). Then,

1 1< ! 1<
Hy (T, T, t) Hy (Tmigy,, , T, t) 4t
Also,
S— 1<, — 1<
Hy (T g, Tia,, , t) — 4t Hpy(TmOw,,, Tix,,,t) — A4
Thus,
1
- - —1< L - -1
Hy(Tixp,, TIxp,,t) Hy (T, Tixy, , t)

1 1 €
-1 . -1 <=,
* <HM(Tm(€)xm,Tm(5)xn2,t) ) * <HM(Tm(5)xn2,T3xn2,t) > ¢
and this completes the proof of the step.
Now, we complete the proof of the theorem.
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Consider the sequences {T" 22, },>3 and {T" 'z, },>2. For each ¢ > 0, take
N =m(e)+2. Let myn>N,i=m—2,j=n—2,n =m and ng = n. Then,
it is easy to see that ¢ € [m(e),n1) and j € [m(e),n2). By using STEP 4, we get

1 € m—2 :
T T T ") 1 < £. Thus, {T" %z, },>3 is a Cauchy sequence.

By using a similar argument, one can conclude that {T" 'z, },>2 is a Cauchy

sequence and
1
li —1=0.
00 Hap(T" 2z, T" 1z, 1)
Note that, the sequences {T" 2z, },>3 and {T" L, } >0 lie in K and (H(K), Hyy, *)

is a complete fuzzy metric space. Hence, there exists A € H(K) such that

1 1
li —1=1 —1=0.
ne0o Hyp(T"2z,, A, 1) oo Hyp(T" 1z, A, 1)
Since
Hyy (Tn_1$na T(A)a t)
= min { inf sup  M(ay,by,t), inf sup M(cy,dy,t)

:min{ inf  sup inf sup M(ay,by,t),inf sup  inf sup M(ci,dy,t)

a€T™2xy,,a1€Ta be A,by €T di€Td,d€A ¢\ cTe ccTr 22, }
a€T" 2z, pecA ar1€Tap, cTh d€A cen— 2z, di€Td ¢ieTe }

> min{ inf  sup Hy (Ta,Th,t), inf sup Hy(Te,Td, t)}
a€Tn2g, beA deA ceTn 2z,

> cmin{ inf  supM(a,b,t),inf sup M(c,d, t)}
a€T" 2z, beA deA ceTn—2x,
= cHpy (T 22, Ay t) — 1,
we get A =T(A). Thus, T|4: A — H(A) is a contractive multifunction.

Since (A, M|axa,*) is a complete fuzzy metric space, by using main result
of [28], T'|4 has a fixed point in A and so there exists g € A C K such that
xo € Txo. O
Example 3.1. Let X = [0,00), M(z,y,t) =

_f1 1 1
number, K = {ﬁ’ NVEIRvIER } U{0,1} and Ky =

Now, define the multifunction

t+|x m > 2014 a fixed natural

yl’
.

r T x x
T: K — H(X), Tx:{—,—,—,...,—}, for all z € K.
) V2 VBVA T Ym
Note that, the values of T are compact and
1 1 1
- 1< - |————-1]), forallz,y e K.
Hy(Ta, Ty, 1)~ 2 <M<x,y,t> > ey

Since Tz C K for all x € Ky, it is easy to see that U?ZlTixn C K foralln > 1,
where {z,, }n>1 is a sequence in Ky. Thus, T satisfies the conditions of Theorem 3.1
and so has a fixed point.
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4. Conclusions

Using the technique of of Reem, Reich and Zaslavski [37], in this article we
proved a fixed point theorem for a class of contractive type multifunctions, defined
on a nonempty and closed subset of a complete fuzzy metric space. An example is
given to support the usability of our main result.
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