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ANALYSIS OF ACOUSTIC WAVE PROPAGATION IN AN INFINITE

COAXIAL DUCT WITH A PARTIAL ABSORBING INTERNAL

SURFACE

Hülya Öztürk1

The propagation of acoustic waves along a rigid infinite coaxial duct with a
partial lining on the outer wall is developed by using the mode-matching technique. This

technique is based on deriving the solution in the way of an infinite sum of orthogo-

nal functions and then matching them across the boundaries between the regions. In
addition to the analytical derivations, the affects of the parameters such as waveguide

radii, surface impedance and its length on the propagation phenomenon are presented.

The problem is also compared numerically with the Wiener-Hopf approach which is more
difficult to implement and very good agreement is obtained. This model can be used as a

dissipative silencer which makes a significant contribution for reducing unwanted noise.
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1. Introduction

Discontinuities in circular or coaxial waveguides have received wide attention in the
literature since these structures contribute significantly to the noise pollution. Various
analytical methods have been used by researchers in order to reduce unwanted noise. One
of the most applied of these methods is the Wiener-Hopf technique. This technique has
been mostly used in studies [1-8]. It was first studied by Levine and Schwinger [9] where
they analyzed a semi-infinite rigid circular unflanged duct. Later, in 1978, Rawlins [10]
investigated the semi-infinite tube with an acoustically lined interior surface. Çınar et al.
[11] studied the infinite coaxial waveguide with a finite gap on the inner wall as a reactive

silincer. Finally, Öztürk [12] analyzed the wave scattering problem by a coaxial waveguide
with an impedance-coated groove. The mode-matching method is also capable of providing
very accurate results for sound reduction and has advantages since it has much less unknown
variables. It has been successfully applied to a variety of structures [13-17]. Mahmood-ul-
Hassan et al. [18] presented solutions to both triple and pentafurcated spaced ducts by
applying mode-matching and the Wiener-Hopf methods. Then, in 2017, the coupled wave
scattering characteristics of a two dimensional waveguide structure was studied by Shafique
et al [19].

The aim of this work is to analyze the acoustic wave propagation along a coaxial duct
with a partial lining on the outer wall by using the mode-matching method. This method
is applied by dividing the waveguide into three regions. The field terms are obtained by
matching the eigenmodes at the interfaces of the sections where the structure is discontinu-
ous. The solution leads to infinite set of linear equations and these equations are solved by
means of numerical procedures. We also give numerical results for the comparision of the
mode-matching and Wiener-Hopf methods and illustrating the effects of some parameters.
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It is obtained that these results can be used in engineering applications, in particular, noise
reduction devices.

2. Problem Statement

Consider a partially lined coaxial duct as shown in Figure 1. The walls of duct are
located at S = {a ≤ ρ ≤ b,−∞ < z <∞} . The inner surface part 0 < z < l of the outer
wall is assumed to be lined with specific admittance which is characterized by η = ρ0c/Z
where ρ0, c and Z stand for the density of undisturbed medium, speed of sound and the
liner impedance, respectively.

Fig. 1. Geometry of the coaxial waveguide.

Assuming a time dependence of e−iωt where ω is the angular frequency, the incident
sound field is given as

ui (z) = eikz (1)

where k = ω
c .

3. Mode-Matching Analysis

The coaxial duct is separated to three regions and the eigenfunction expansions are
obtained in these regions. Let the total acoustic pressure uT (ρ, z) be

uT (ρ, z) =

 ui (z) + u1 (ρ, z)
u2 (ρ, z)
u3 (ρ, z)

, z ∈ (−∞, 0) , ρ ∈ (a, b)
, z ∈ (0, l) , ρ ∈ (a, b)
, z ∈ (l,∞) , ρ ∈ (a, b)

(2)

Above, uj (ρ, z) , j = 1 − 3 are the unknown pressures in their relevant regions and they
satisfy the following Helmholtz equation :[

1

ρ

∂

∂ρ
+

∂2

∂ρ2
+

∂2

∂z2
+ k2

]
uj (ρ, z) = 0, j = 1− 3 (3)

The inner and outer duct, with the exception of finite part, walls are rigid, so that

∂uT (ρ, z)

∂ρ
|ρ=a= 0, z ∈ (−∞,∞) (4)

∂u1 (ρ, z)

∂ρ
|ρ=b= 0, z ∈ (−∞, 0) (5)

∂u3 (ρ, z)

∂ρ
|ρ=b= 0, z ∈ (l,∞) (6)
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By introducing the scalar potential u which defines the acoustic pressure p and velocity v
by p = iωρ0u and v = grad u, respectively, the boundary condition on the absorbing lining
reads

∂u

∂n
+ ikηu = 0 (7)

where n the normal pointing outward the lining. Therefore, the lined impedance wall can
be written as

−∂u2 (ρ, z)

∂ρ
|ρ=b +ikηu2 (ρ, z) |ρ=b= 0, z ∈ (0, l) (8)

At z = 0, l, the pressure and the velocity are continuous, that is

ik +
∂u1 (ρ, 0)

∂z
=
∂u2 (ρ, 0)

∂z
(9)

1 + u1 (ρ, 0) = u2 (ρ, 0) (10)

∂u2 (ρ, l)

∂z
=
∂u3 (ρ, l)

∂z
(11)

u2 (ρ, l) = u3 (ρ, l) (12)

3.1. Region I {−∞ < z < 0}

The solution in this region is given as

u1 (ρ, z) =

∞∑
n=1

ane
−iαnzϕn (ρ) (13)

where ϕn (ρ) =
[
J0 (Knρ)− J1(Knb)

Y1(Knb)
Y0 (Knρ)

]
are the eigenfunctions of the Helmholtz equa-

tion (3), an is the magnitude of the reflected wave and α′ns being the zeros ofK
[
J1 (Ka)− J1(Kb)

Y1(Kb)Y1 (Ka)
]

satisfying

Kn

[
J1 (Kna)− J1 (Knb)

Y1 (Knb)
Y1 (Kna)

]
= 0, n = 1, 2, .., (14)

with

αn =
√
k2 −K2

n, n = 1, 2, .., (15)

Above, Jn and Yn (n = 0, 1) are the Bessel and Neumann functions. Kn are the eigenvalues
and αn are the associated eigenvalues. The physical meaning of Kn and αn is radial wave
numbers and axial wave numbers, respectively.

3.2. Region II {0 < z < l}

u2 (ρ, z) in region II is given as

u2 (ρ, z) =

∞∑
n=1

[
bne

iχnz + cne
−iχnz

]
ψn (ρ) (16)

where ψn (ρ) =
[
J0 (ξnρ)− [ikηJ0(ξnb)+ξnJ1(ξnb)]

[ikηY0(ξnb)+ξnY1(ξnb)]
Y0 (ξnρ)

]
and χn is the root of the equation

ξn[J1 (ξna)− [ikηJ0 (ξnb) + ξnJ1 (ξnb)]

[ikηY0 (ξnb) + ξnY1 (ξnb)]
Y1 (ξna)] = 0, n = 1, 2, .. (17)

with

κn =
√
k2 − ξ2

n, n = 1, 2, .., (18)
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3.3. Region III {l < z <∞}

The transmitted field u3 (ρ, z) in region III is given as

u3 (ρ, z) =

∞∑
n=1

dne
iαnzϕn (ρ) (19)

where dn is the magnitude of the transmitted duct mode.
By taking into account the matching conditions (9) and (10), one gets

−
∞∑
m=1

amαmϕm (ρ) + k =

∞∑
n=1

χn [bn − cn]ψn (ρ) (20)

∞∑
m=1

amϕm (ρ) + 1 =

∞∑
n=1

[bn + cn]ψn (ρ) (21)

Multiplying (20) and (21) with ρψn (ρ) and integration along ρ ∈ [a, b] give

− 2

π2b
S (b, k, η, ξn)

∞∑
m=1

amαm
KmY1 (Kmb) (K2

m − ξ2
n)

+
k

πξ2
n

S (b, k, η, ξn) = κnPn [bn − cn] (22)

2S (b, k, η, ξn)

π2b

∞∑
m=1

am
KmY1 (Kmb) (K2

m − ξ2
n)

+
S (b, k, η, ξn)

πξ2
n

= κnPn [bn + cn] (23)

where

S (b, k, η, ξn) =
2ikη

[ikηY0 (ξnb) + ξnY1 (ξnb)]
, Pn =

b∫
a

ψ2
n (ρ) ρdρ (24)

bn and cn can be obtained from (22) and (23) as

bn =
S (b, k, η, ξn)

Pnχnπ2b

∞∑
m=1

am (χn − αm)

KmY1 (Kmb) (K2
m − ξ2

n)
+

(χn + k)

2πξ2
nPnχn

S (b, k, η, ξn) (25)

cn =
S (b, k, η, ξn)

Pnχnπ2b

∞∑
m=1

am (χn + αm)

KmY1 (Kmb) (K2
m − ξ2

n)
+

(χn − k)

2πξ2
nPnχn

S (b, k, η, ξn) (26)

Substituting (16) and (19) and their derivatives into (11) and (12), we get

∞∑
n=1

χn
[
bne

iχnl − cne−iχnl
]
ψn (ρ) =

∞∑
m=1

dmαme
iαmlϕm (ρ) (27)

∞∑
n=1

[
bne

iχnl + cne
−iχnl

]
ψn (ρ) =

∞∑
m=1

dme
iαmlϕm (ρ) (28)

Multiplying (27) and (28) with ρψn (ρ) and integration along ρ ∈ [a, b] give

2

π2b
S (b, k, η, ξn)

∞∑
m=1

dmαme
iαml

KmY1 (Kmb) (K2
m − ξ2

n)
= κnPn

[
bne

iχnl − cne−iχnl
]

(29)

2

π2b
S (b, k, η, ξn)

∞∑
m=1

dme
iαml

KmY1 (Kmb) (K2
m − ξ2

n)
= Pn

[
bne

iχnl + cne
−iχnl

]
(30)

bn and cn can be obtained easily from (29) and (30) as

bn =
S (b, k, η, ξn)

Pnχnπ2b

∞∑
m=1

dm (χn + αm) ei(αm−χn)l

KmY1 (Kmb) (K2
m − ξ2

n)
(31)
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cn =
S (b, k, η, ξn)

Pnχnπ2b

∞∑
m=1

dm (χn − αm) ei(αm+χn)l

KmY1 (Kmb) (K2
m − ξ2

n)
(32)

From (25, 26) and (31, 32), we have

∞∑
m=1

dm (χn + αm) ei(αm−χn)l

KmY1 (Kmb) (K2
m − ξ2

n)
−
∞∑
m=1

am (χn − αm)

KmY1 (Kmb) (K2
m − ξ2

n)
=
πb (χn + k)

2ξ2
n

(33)

∞∑
m=1

dm (χn − αm) ei(αm+χn)l

KmY1 (Kmb) (K2
m − ξ2

n)
−
∞∑
m=1

am (χn + αm)

KmY1 (Kmb) (K2
m − ξ2

n)
=
πb (χn − k)

2ξ2
n

(34)

The solution is obtained in terms of unknown constants dm and am. Considering the equa-
tions (33) and (34) together, these constants are evaluated numerically.

4. Computational Results

Some numerical results displaying the affect of the different values of the parameters
such as absorbent lining, length of the lining and radii of the coaxial duct on the propagation
phenomenon are presented. For some parameter values, we have used the previous studies
[4, 11, 20]. The transmission loss is determined by using the following formula

TL = −20 log10 |T0|

Since analysis of the problem involves infinite sets of linear equations, first of all,
convergence regarding the truncation number (N) is analyzed. In Figures 2 and 3, the
magnitudes of the transmission reflection coefficients of the fundamental mode versus N is
examined for various values of ka. It is obtained that solution becomes insensitive when
N > 3. Since similar results are obtained for other sets of the problem parameters, in our
computations we use N = 10.
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Fig. 2. Truncation number (N) analysis for the reflected field for various
values of ka with b = 2a, kl = 10, η−1 = 1− 3i.

Figure 4 and 5 examine the effect of surface impedance on the transmission phenom-
ena. We observe that beyond 900 Hz approximately, the transmission loss decreases with
increasing values of

∣∣η−1
∣∣.
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Fig. 3. Truncation number (N) analysis for the transmitted field for various
values of ka with b = 2a, kl = 10, η−1 = 1− 3i.
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Fig. 4. Transmission loss analysis for different values of Im η−1 while a =
0.025 m, b = 2a, l = 0.5 m.

Figures 6 and 7, depict the transmission loss for different waveguide radii a and b. It
is obtained that the transmission loss diminishes with the affect of increasing radii. Lower
radii improves the performance of dissipative silencer at low to medium frequencies.

Figures 8 displays the affect of the lining length on the transmission. It is seen that
higher lining length cause higher transmission loss. The magnitude of the tranmission loss
peak is decreased when the length of the lining decreases.

Finally, we compared the two approach in Figures 9 and 10. Variation of the trans-
mission loss is investigated for various values of η−1 and l. It is evident that the results of
the two approaches agree well.
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Fig. 5. Transmission loss analysis for different values of Re η−1 while a =
0.025 m, b = 2a, l = 0.5 m.
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Fig. 6. Transmission loss analysis for different values of duct radius a while
b = 2a, l = 0.5 m, η−1 = 1− 1i.

5. Conclusions

The propagation of plane acoustic waves along an infinite coaxial duct whose inner
surface of the outer wall is lined partially by acoustically absorbing material has been exam-
ined by using an analytic mode-matching technique. Analytical derivations have been com-
pared with Wiener-Hopf technique numerically and excellent agreement is obtained. This
agreement is very important since the mode-matching technique, whose implementation is
more simple than Wiener-Hopf method, can be preferable in more complicated problems.
Moreover, several numerical results are obtained in Section 4 to demonstrate the affects of
different parameters on the transmission and reflection coefficients and transmission loss.
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Fig. 7. Transmission loss analysis for different values of duct radius b while
b = 2a, l = 0.5 m, η−1 = 1− 1i.
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Fig. 8. Transmission loss analysis for various values of lining length while
a = 0.025 m, b = 2a, η−1 = 1− 3i.

These results demonstrated of the effect of partial lining on sound absorption. As shown in
Figs. 4 through 10, we should note that sound absorption is fairly good by properly changing
the parameters. Some particular values can provide maximum noise reduction. Thus, these
investigations can be beneficial in constructing dissipative silencers.
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