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WAVE PROPAGATION IN MEDIA OBEYING A 
THERMOVISCOANELASTIC MODEL 

Armando CIANCIO,1 Vincenzo CIANCIO,2 Farsaci FRANCESCO3 

The aim of this work is to investigate mechanical phenomenological and state 
coefficients taking in account irreversible processes in isotropic viscoanelastic 
media of order one. In the contest of Kluitenberg-Ciancio theory we consider the 
case of linear transverse acoustic wave of high frequency propagates in such a 
medium showing that the aforementioned coefficients assume a particular form as 
function of complex wave number. By mean of considerations on linear 
phenomenological acoustic theory, we determine a connection between complex 
wave number and shear complex modulus, and so we are able to express 
phenomenological and state coefficients as function of complex shear modulus. The 
experimental knowledge of such a modulus, as function of the frequency, allow us to 
experimental evaluation of the aforementioned coefficients. This approach has been 
applied to polymeric materials as PolyIsobutilene.   

1. Introduction 

In a previous paper [1], considering Kluitenberg-Ciancio (K.C.) theory on 
isotropic viscoanelastic medium of order one, we have introduced a method to 
calculate some mechanical phenomenological and state coefficients [2], as 
function of frequency dependent quantities experimentally measurable, when it is 
perturbed by an harmonic shear deformation. This has been possible by deriving a 
connection between aforementioned coefficients and complex shear modulus 
experimentally measurable. 

Since mechanical response of materials depends on perturbation which it 
is subject, it can be useful to investigate the form which assume the 
aforementioned coefficients when the medium is subject to a different 
perturbation as transverse acoustic wave. To this hope let a displacement u be of 
the form: 

( )tkxiAeu ω−= 1
3  021 == uu   (1) 

 
where i2=-1, K is the complex number, ω is the real angular frequency and A is a 
constant which may be complex. The relations (1) represent a plane wave which 
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propagates in the direction of the x1-axis, while u has the direction of the  x3-axis. 
Since in a viscoanelastic medium attenuation occur, it is useful to introduce a 
complex wave number  
 

21 iKKK +=       (2) 
 

where K1 and K2 are real and are connected to phase velocity Vs of the wave 
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and to attenuation respectively. 
 
The equation  (1) become 

( )txKixK eAeu ω−−= 12
3     (4) 

 
We will remember that in K.C. theory for such a medium the following equation 
is derived  
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in which ( ) ( )1,10,0 , aa are state coefficients while ( ) ( )0,01,1 , ss ηη  are phenomenological 
coefficients, and σ is relaxation time. It can be shown that by considerations on  
stress and strain the only component which are different from zero are  
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and  the  equation (5) furnish the following expressions for complex wave number 
[3] [4]: 
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( ) ( ) 00 >> ωω DB  

 
 

2. Complete system for the coefficients in the k.c. Rheological 
equation. 

Since K1 and K2 are, as we will see, connected to quantities experimental 
measurable the equations (7) and (8) make an algebraic system of two equations 
with three unknown functions ( ) ( ) ( )εεε

210 ,, RRR  while ( ) στ /10 =R is experimentally 
measurable (σ =relaxation time). To obtain the fourth equation to complete the 
system we observe that for high frequency the medium has a meanly elastic 
behaviour and so the sound velocity is such that 
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where G1 is the real part of complex shear modulus G=G1+iG2. Remembering the 

physical meaning of the ratio 
( )
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  and equation (3) we can write: 
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This is the fourth equation which complete the system make by equations (7), (8), 
(12). The solution of such a system is: 
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Considering complex shear modulus G=G1+iG2 it is possible to obtain the 

relations between complex wave number and G 
 
K=K(G) 
 

3. Phenomenological approach. 

 If a shear wave propagates in the direction of the x1-axis it can be represented as  
 

( ) xxhti eeA αω −−≈ 1       (14) 
 If α is attenuation coefficient and CV  complex shear velocity it follows [5]: 
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We introduce complex shear impedance ZS [5] as: 
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where RS and XS are real and imaginary part of ZS; consider the following 
complex relation  [6][7][8]  
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combined with (16) it follows: 
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and solving such a system with respect to 22, SS XR  
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Moreover from (18), after some manipulation, by equating real and imaginary 
part, it follows 
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Substituting (19) and (20) into (21) and (22) we obtain   
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4. Phenomenological coefficients 

Now we are able to obtain the relations K=K(G) between complex wave 
number and G combining equation (3) , (14) and (4) 
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Taking in account equations (25) from equations (13) it follows: 
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And finally, from equations (6), it follows: 
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These are the expressions of phenomenological and state coefficients as 

function of frequency dependent complex modulus for a isotropic viscoanelastic 
medium of order one when it is perturbed by a linear transverse acoustic wave. 
The following figures represents material coefficients G1 and G2 for 
PolyIsobutilene [7], phenomenological and state coefficients as function of 
frequency  and other parameters related to this material. 
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Fig. 1: G1, G2  for Poly-isoButylene; M.w. = 106 g/mol; T0 = 273 K; σ ≅ 10−6 s 
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Fig. 2: Poly-isoButylene; M.w. = 106 g/mol; T0 = 273 K 
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Fig. 3: Poly-isoButylene; M.w. = 106 g/mol; T0 = 273 K 
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Fig. 4: Poly-isoButylene; M.w. = 106 g/mol; T0 = 273 K 
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Fig. 5 : Poly-isoButylene; M.w. = 106 g/mol; T0 = 273 K 

 
The fig. 5  shows the phenomenological and state coefficients when the medium 
(PolyIsobutilene) is subject to a shear deformation at a constant temperature. The 
comparison with fig. 2  shows that the coefficients have the same trend. 
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Fig. 5: Poly-isoButylene; M.w. = 106 g/mol; T0 = 273 K 
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