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KINEMATICS OF THE 3-RRR PLANAR PARALLEL ROBOT 

Ştefan STAICU 1 

Lucrarea stabileşte relaţii matriceale recurente pentru cinematica robotului 
plan paralel cunoscut 3-RRR cu acţionare revolută. Cele trei picioare identice ale 
robotului, care sunt legate la platforma mobilă, sunt localizate în acelaşi plan. 
Cunoscând mişcarea platformei, problema de cinematică inversă oferă expresii şi 
grafice pentru unghiurile de rotaţie, vitezele unghiulare şi acceleraţiile unghiulare 
ale celor trei sisteme active. 

Recursive matrix relations for kinematics of the commonly known 3-RRR 
planar parallel robot with revolute actuators are established in this paper. The three 
identical legs of the robot, connecting to the moving platform, are located in the 
same plane. Knowing the motion of the platform, the inverse kinematical problem 
offers expressions and graphs for the rotation angles, the angular velocities and the 
angular accelerations of the three actuators. 

Key-words: kinematics, parallel manipulator, platform 
 
         List of symbols 

1, −kka : orthogonal transformation matrix 
R : rotation matrix of the moving platform  

321 ,, uuu : three orthogonal unit vectors 

1, −kkϕ : relative rotation angle of kT rigid body 

1, −kkω : relative angular velocity of kT  

0kω : absolute angular velocity of kT  

1,
~

−kkω : skew-symmetric matrix associated to the angular velocity 1, −kkω  

1, −kkε : relative angular acceleration of kT  

0kε : absolute angular acceleration of kT  

1,
~

−kkε : skew-symmetric matrix associated to the angular acceleration 1, −kkε  
A
kkr 1, − : relative position vector of the centre kA of joint  

A
kkv 1, − : relative velocity of the centre kA   

A
kk 1, −γ : relative acceleration of the centre kA  
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1. Introduction 

Parallel manipulators are closed-loop mechanisms equipped with revolute 
or prismatic actuators that consist of separate serial chains connecting the fixed 
base to the moving platform. They have a robust construction and can move 
bodies of large dimensions with high velocities and accelerations. This is the 
reason why the devices, which produce translations or spherical motion to a 
platform, technologically are based on the concept of parallel manipulators [1]. 

Compared with serial manipulators, the followings are the potential 
advantages of parallel architectures: higher kinematical precision, lighter weight 
and better stiffness, greater load bearing, stabile capacity and suitable position of 
arrangement of actuators. But, from application point of view, a limited 
workspace and complicated singularities are two major drawbacks of parallel 
mechanisms. 

Over the past decades, parallel manipulators have received more and more 
attention from researchers and industries. Accuracy and precision in the direction 
of the tasks are essential since the robot is intended to operate on fragile objects, 
where positioning errors of the tool could end in costly damages. 

Considerable efforts have been devoted to the kinematics and dynamics 
analysis of fully parallel manipulators. Among these, the class of manipulators 
known as Stewart-Gough platform focused great attention (Stewart [2], Merlet 
[3], Parenti Castelli and Di Gregorio [4]). The prototype of Delta parallel robot 
(Clavel [5], Tsai and Stamper [6], Staicu and Carp-Ciocardia [7]) developed by 
Clavel at the Federal Polytechnic Institute of Lausanne and by Tsai and Stamper 
at the University of Maryland as well as the Star parallel manipulator (Hervé and 
Sparacino [8]) are equipped with three motors, which train on the mobile platform 
in a three-degrees of freedom general translation motion. Angeles, Gosselin, 
Gagné and Wang [9], [10], [11] analysed the kinematics, dynamics and 
singularities loci of Agile Wrist spherical robot with three actuators. 

A mechanism is said to be a planar robot if all the moving links of the 
mechanism perform planar motions that are situated in parallel planes. For a 
planar mechanism, the loci of all points in all links can be drawn conveniently on 
a plane. In a planar linkage, the axes of all revolute joints must be normal to the 
plane of motion, while the direction of translation of a prismatic joint must be 
parallel to the plane of motion. 

Aradyfio and Qiao [12] examined the inverse kinematic solution for the 
three different 3-DOF planar parallel robots. Gosselin and Angeles [13] and 
Pennock and Kassner [14] each presents a kinematical study of a planar parallel 
robot where a moving platform is connected to a fixed base by three links, each 
leg consisting of two binary links and three parallel revolute joints. Sefrioui and 
Gosselin [15] give an interesting numerical solution in the inverse and direct 



Kinematics of the 3-RRR planar parallel robot 5

kinematics of this kind of planar robot. Recently, more general approaches have 
been presented. Daniali et al. [16] present a study of velocity relationships and 
singular conditions for general planar parallel robots. Merlet [17] solved the 
forward pose kinematics problem for a broad class of planar parallel manipulators. 
Williams et al. [18] analysed the dynamics and the control of a planar three-
degrees-of-freedom parallel manipulator at Ohio University while Yang et al. [19] 
concentrate on the singularity analysis of a class of 3-RRR planar parallel robots 
developed in its laboratory. Bonev, Zlatanov and Gosselin [20] describe several 
types of singular configurations by studying the direct kinematic model of a 3-
RPR planar parallel robot with actuated base joints. 

A recursive method is introduced in the present paper, to reduce 
significantly the number of equations and computation operations by using a set 
of matrices for kinematics of the 3-RRR planar parallel robots. 

2. Kinematics analysis 

Having a closed-loop structure, the planar parallel robot 3-RRR is a special 
symmetrical mechanism composed of three planar kinematical chains with 
identical topology, all connecting the fixed base to the moving platform (Fig. 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           Fig. 1 The 3-RRR planar parallel robot 
 

The centres 111 ,, CBA of three fixed pivots define the geometry of a fixed base 

and the three moving revolute joints 333 ,, CBA define the geometry of the 
moving platform. Each leg consists of two binary links with three parallel revolute 
joints. Together, the mechanism consists of seven moving links and nine revolute 
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joints. Grübler mobility equation predicts certainly three degrees of freedom of 
the robot. 

In the present kind of the robot )( RRR we consider the moving platform as the 
output link and the links 21 AA , 21BB , 21CC as the input links. Thus, all actuators 
can be installed on the fixed base. 

For the purpose of analysis, we attach a Cartesian frame )( 0000 Tzyx to the fixed 
base with its origin located at triangle centreO , the 0z axis perpendicular to the 
base and the 0x axis pointing along the direction 11 AC . Another mobile reference 
frame GGG zyx is attached to the moving platform. The origin of this coordinate 
central system is located just at the centreG of the moving triangle (Fig. 2). 

 
  

 
 
 
 
 
 
 
 
 
 
 
                                 Fig. 2 Kinematical scheme of first leg A of the mechanism 
 

To simplify the graphical image of the kinematical scheme of the 
mechanism, in the followings we will represent the intermediate reference 
systems by only two axes, so as one proceeds in most of robotics papers [1], [3], 
[9]. It is noted that the relative rotation of kT body with 1, −kkϕ angle most be always 
pointing about the direction of kz axis. 

In what follows we consider that the moving platform is initially located at 
a central configuration, where the platform is not rotated with respect to the fixed 
base while the mass centreG is at the originO of the fixed frame. 

One of three active legs (for example leg A ) consists of a fixed revolute 
joint, a moving crank 1 of length 1l , which has a rotation about Az1 axis with the 
angle A

10ϕ , the angular velocity AA
1010 ϕω =  and the angular acceleration AA

1010 ϕε = . A 
new element of the leg is a rigid rod 2 of length 2l , linked at the AAA zyx 222  frame, 
having a relative rotation with the angle A

21ϕ , velocity AA
2121 ϕω =  and acceleration 
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AA
2121 ϕε = . Finally, a revolute joint is introduced at the moving platform, which is 

schematised as an equilateral triangle congruent to the base having the edge 
3rl = . 

At the central configuration, we also consider that all legs are 
symmetrically extended and that the angles of orientation of fixed pivots are given 
by 

                                         
2

,
6

5,
6

παπαπα −=== CBA .                                    (1) 

Pursuing the first leg A in the 321 AAOA  way, for example, we obtain the 
following matrices of transformation [21]: 

θθ ϕϕ
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323221211010 ,, aaaaaaa A === ,                        (2) 
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Analogous relations can be written for the other two legs of the 
mechanism. Three rotations angles A

10ϕ , B
10ϕ , C

10ϕ  of the active links are the joint 
variables that give the input vector TCBA ][ 10101010 ϕϕϕϕ = of the instantaneous 
position of the mechanism in the present study configuration. But, in the inverse 
geometric problem, it can be considered that the position of the mechanism is 
completely given through the coordinates GG yx 00 ,  of the mass centreG of the 

moving platform and the orientation angleφ of the movable frame GGG zyx . The 
orthogonal rotation matrix of the moving platform from 000 zyx  to GGG zyx  
reference system is 
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Further, we suppose that the position vector of the centre G, respectively 
TGGG yxr ]0[ 000 =  and the orientation angle φ, which are expressed by the 

following analytical functions 
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can describe the general absolute motion of the moving platform. From the 
rotation conditions of the moving platform 
 

                                                     Rccbbaa TTT === 303030303030 ,                                    (6) 
 

taking, for example, 
 

                                                     CBA acabaa ααα === 303030 ,, ,                                    (7) 
 

we obtain the following relations between angles: 
                  .322110322110322110 φϕϕϕϕϕϕϕϕϕ =+−=+−=+− CCCBBBAAA                (8) 
 

The six variables AA
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vector-loop equations, as follows 
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where one denoted 
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Actually, these vector equations means that there is only one inverse 
geometrical solution for the manipulator, namely: 
       )sin()3/sin()sin( 100211010 i

iGi
i

i
i

i ryyrr αφπϕαϕαϕ ++−=−−+−+  
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       )cos()3/cos()cos( 100211010 i
iGi

i
i

i
i rxxrr αφπϕαϕαϕ ++−=−−+−+      (11) 

                                         ),,( CBAi =  
We develop the inverse kinematics problem and determine the velocities 

and accelerations of the manipulator, supposing that the planar motion of the 
moving platform is known. Firstly, we compute the linear and angular velocities 
of each leg in terms of the angular velocity 30 uG φω =  and the centre’s velocity 

GG rv 00 = of the moving platform. 
The motions of the component elements of each leg (for example the leg 

A) is characterized by the following skew symmetrical matrices: 
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−−−−−− =+= ϕωωωω                      (12) 
which are associated to the absolute angular velocities given by the following 
recursive relations 
                              31,0,11,0 ua A
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A
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A
k −−− += ωωω     )3,2,1( =k .                            (13) 

The following relations give the velocities A
kv 0  of the joints kA   

                                  A
kk

A
kkk

A
kkk

A
k ravav 1,0,11,0,11,0

~
−−−−− += ω .                              (14) 

The equations of geometrical constraints (8) and (9) can be derived with respect to 
the time to obtain the following matrix conditions of connectivity [22] 
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where 3
~u  is a skew-symmetrical matrix associated to the unit vector 3u  pointing 

in the positive sense of the axis kz . From these equations, we obtain the relative 

velocities AAA
322110 ,, ωωω  as functions of the angular velocity of the platform and 

of the velocity of the mass centre G. But, the conditions (15) give the complete 
Jacobian matrix of the manipulator. This matrix is a fundamental element for the 
analysis of the robot workspace and for the particular configurations of the 
singularities where the manipulator becomes uncontrollable. 

Rearranging, the above six constraint equations (11) of the planar robot 
can immediately be written as follows. 
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where the “zero” position 0,0,0 00
0

0
0 === φGG yx  corresponds to the joints 

variables T]000[0
10 =ϕ . The derivative with respect to the time of the conditions 

(16) leads to the matrix equation 
                                           TGG

ff yxJJ ][ 002101 φϕ =                                   (17) 
for the planar robot with fixed revolute actuators. 

Matrices fJ1 and fJ 2  are, respectively, the inverse and forward Jacobian of 
the manipulator and can be expressed as: 
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The three kinds of singularities of the three closed-loop kinematical chains can be 
determined by the analysis of two Jacobian matrices fJ1 and fJ 2  [23], [24]. 

As for the relative accelerations AAA
322110 ,, εεε of the robot, the derivatives 

with respect to the time of the equations (15) give other following conditions of 
connectivity [25], [26]  
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The relationships (15) and (20) represent the inverse kinematics model of 
the planar parallel robot. 
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The following recursive relations give the angular accelerations A
k0ε  and 

the accelerations A
k0γ  of the joints kA  
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If the other two kinematical chains of the robot are pursued, analogous 
relations can be easily obtained. 

As application let us consider a 3-RRR planar robot, which has the 
following characteristics: 
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Using the MATLAB software, a computer program was developed to 
solve the inverse kinematics of the robot. Finally, the angles of rotation (Fig. 3), 
the angular velocities (Fig. 4) and the angular accelerations  (Fig. 5) of the three 
revolute actuators were plotted versus time, using this program.  

3. Conclusions 

Within the inverse kinematical analysis, some exact relations that give the 
time-history evolution of the angles of rotation, angular velocities and angular 
accelerations of each element of the parallel robot have been established in the 
present paper. 

The simulation by the presented program certifies that one of the major 
advantages of the current matrix recursive formulation is a reduced number of 
additions or multiplications and consequently a smaller processing time of 
numerical computation. Also, the proposed method can be applied to various 
types of complex robots when the number of the components of the mechanism is 
increased. 
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Fig. 3. Rotation angles of the three actuators 

 

 
  Fig. 4. Angular velocities of the three actuators 

Fig. 5. Angular accelerations of the three actuators 
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