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KINEMATICS OF THE 3-RRR PLANAR PARALLEL ROBOT

Stefan STAICU !

Lucrarea stabileste relatii matriceale recurente pentru cinematica robotului
plan paralel cunoscut 3-RRR cu actionare revoluta. Cele trei picioare identice ale
robotului, care sunt legate la platforma mobild, sunt localizate in acelasi plan.
Cunoscdnd miscarea platformei, problema de cinematica inversa oferda expresii i
grafice pentru unghiurile de rotatie, vitezele unghiulare §i acceleratiile unghiulare
ale celor trei sisteme active.

Recursive matrix relations for kinematics of the commonly known 3-RRR
planar parallel robot with revolute actuators are established in this paper. The three
identical legs of the robot, connecting to the moving platform, are located in the
same plane. Knowing the motion of the platform, the inverse kinematical problem
offers expressions and graphs for the rotation angles, the angular velocities and the
angular accelerations of the three actuators.
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List of symbols
a, ., - orthogonal transformation matrix

R : rotation matrix of the moving platform
u,, u,, u, : three orthogonal unit vectors

@ - - relative rotation angle of 7, rigid body

@, ., : relative angular velocity of 7,

@,, : absolute angular velocity of7,

@, ,_, - skew-symmetric matrix associated to the angular velocity @, , ,

&, 4, - relative angular acceleration of 7,

&, absolute angular acceleration of 7},

&4 - Skew-symmetric matrix associated to the angular acceleration &, ,_,
7y, : relative position vector of the centre 4, of joint

ﬁ,fk_, : relative velocity of the centre 4,

7., : relative acceleration of the centre 4,
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1. Introduction

Parallel manipulators are closed-loop mechanisms equipped with revolute
or prismatic actuators that consist of separate serial chains connecting the fixed
base to the moving platform. They have a robust construction and can move
bodies of large dimensions with high velocities and accelerations. This is the
reason why the devices, which produce translations or spherical motion to a
platform, technologically are based on the concept of parallel manipulators [1].

Compared with serial manipulators, the followings are the potential
advantages of parallel architectures: higher kinematical precision, lighter weight
and better stiffness, greater load bearing, stabile capacity and suitable position of
arrangement of actuators. But, from application point of view, a limited
workspace and complicated singularities are two major drawbacks of parallel
mechanisms.

Over the past decades, parallel manipulators have received more and more
attention from researchers and industries. Accuracy and precision in the direction
of the tasks are essential since the robot is intended to operate on fragile objects,
where positioning errors of the tool could end in costly damages.

Considerable efforts have been devoted to the kinematics and dynamics
analysis of fully parallel manipulators. Among these, the class of manipulators
known as Stewart-Gough platform focused great attention (Stewart [2], Merlet
[3], Parenti Castelli and Di Gregorio [4]). The prototype of Delta parallel robot
(Clavel [5], Tsai and Stamper [6], Staicu and Carp-Ciocardia [7]) developed by
Clavel at the Federal Polytechnic Institute of Lausanne and by Tsai and Stamper
at the University of Maryland as well as the Star parallel manipulator (Hervé and
Sparacino [8]) are equipped with three motors, which train on the mobile platform
in a three-degrees of freedom general translation motion. Angeles, Gosselin,
Gagné and Wang [9], [10], [11] analysed the kinematics, dynamics and
singularities loci of Agile Wrist spherical robot with three actuators.

A mechanism is said to be a planar robot if all the moving links of the
mechanism perform planar motions that are situated in parallel planes. For a
planar mechanism, the loci of all points in all links can be drawn conveniently on
a plane. In a planar linkage, the axes of all revolute joints must be normal to the
plane of motion, while the direction of translation of a prismatic joint must be
parallel to the plane of motion.

Aradyfio and Qiao [12] examined the inverse kinematic solution for the
three different 3-DOF planar parallel robots. Gosselin and Angeles [13] and
Pennock and Kassner [14] each presents a kinematical study of a planar parallel
robot where a moving platform is connected to a fixed base by three links, each
leg consisting of two binary links and three parallel revolute joints. Sefrioui and
Gosselin [15] give an interesting numerical solution in the inverse and direct
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kinematics of this kind of planar robot. Recently, more general approaches have
been presented. Daniali et al. [16] present a study of velocity relationships and
singular conditions for general planar parallel robots. Merlet [17] solved the
forward pose kinematics problem for a broad class of planar parallel manipulators.
Williams et a/. [18] analysed the dynamics and the control of a planar three-
degrees-of-freedom parallel manipulator at Ohio University while Yang et a/. [19]
concentrate on the singularity analysis of a class of 3-RRR planar parallel robots
developed in its laboratory. Bonev, Zlatanov and Gosselin [20] describe several
types of singular configurations by studying the direct kinematic model of a 3-
RPR planar parallel robot with actuated base joints.

A recursive method is introduced in the present paper, to reduce
significantly the number of equations and computation operations by using a set
of matrices for kinematics of the 3-RRR planar parallel robots.

2. Kinematics analysis

Having a closed-loop structure, the planar parallel robot 3-RRR is a special
symmetrical mechanism composed of three planar kinematical chains with
identical topology, all connecting the fixed base to the moving platform (Fig. 1).

G

Fig. 1 The 3-RRR planar parallel robot

The centres 4}, By, C; of three fixed pivots define the geometry of a fixed base
and the three moving revolute joints 43, B3, Czdefine the geometry of the

moving platform. Each leg consists of two binary links with three parallel revolute
joints. Together, the mechanism consists of seven moving links and nine revolute
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joints. Griibler mobility equation predicts certainly three degrees of freedom of
the robot.
In the present kind of the robot(RRR) we consider the moving platform as the

output link and the links 4,4,, B,B,,C,C,as the input links. Thus, all actuators

can be installed on the fixed base.
For the purpose of analysis, we attach a Cartesian frame x(yz( (7} ) to the fixed

base with its origin located at triangle centre O, the z,axis perpendicular to the
base and the x, axis pointing along the direction C,4,. Another mobile reference
frame x;y,z;1s attached to the moving platform. The origin of this coordinate
central system is located just at the centre G of the moving triangle (Fig. 2).

A
(O} Ay

Fig. 2 Kinematical scheme of first leg 4 of the mechanism

To simplify the graphical image of the kinematical scheme of the
mechanism, in the followings we will represent the intermediate reference
systems by only two axes, so as one proceeds in most of robotics papers [1], [3],

[9]. It is noted that the relative rotation of 7, body with ¢, ,_, angle most be always

pointing about the direction of z, axis.

In what follows we consider that the moving platform is initially located at
a central configuration, where the platform is not rotated with respect to the fixed
base while the mass centre G is at the origin O of the fixed frame.

One of three active legs (for example leg 4) consists of a fixed revolute
joint, a moving crank 1 of length /,, which has a rotation about z;" axis with the
angle g3, the angular velocity w;; = ¢;; and the angular acceleration ¢ = @/ . A
new element of the leg is a rigid rod 2 of length /,, linked at the x;'y;'z; frame,

having a relative rotation with the angle @3, velocity w;, = ¢ and acceleration
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& J,=¢; . Finally, a revolute joint is introduced at the moving platform, which is
schematised as an equilateral triangle congruent to the base having the edge
I=r3.

At the central configuration, we also consider that all legs are
symmetrically extended and that the angles of orientation of fixed pivots are given
by

a —za —S—Ea S (D)
A4~ 6 > B T 6 M C T 2 .

Pursuing the first leg 4 in the OA4,4,A; way, for example, we obtain the

following matrices of transformation [21]:

a,=afya;, a,=a}\0, a,=aj b, ()
where
cosay sinay 0 -1 3 0
a(’f: —sinay cosay 0f> 0:% 31 oo
0 0 1 0 0 -2

A : A
COSQ g SINPL, 0

k
: A A
alf,k_lz =S, COSQLL 0 ,ako=1_1[ak_j+l,k_j,(k=1,2,3). (3)
0 0 1 a

Analogous relations can be written for the other two legs of the
mechanism. Three rotations angles o}y, of, @5 of the active links are the joint

variables that give the input vector @, =[@ @p @] of the instantaneous

position of the mechanism in the present study configuration. But, in the inverse
geometric problem, it can be considered that the position of the mechanism is

completely given through the coordinates x(? , yé; of the mass centre G of the
moving platform and the orientation angle @ of the movable frame x,y,z. . The

orthogonal rotation matrix of the moving platform from x,y,z, to x;y.z;
reference system is

cos¢ sing O
R=|-sing cos¢ O]. 4)
0 0 1

Further, we suppose that the position vector of the centre G, respectively

FOG = [xg; yOG O]T and the orientation angle ¢, which are expressed by the

following analytical functions



8 Stefan Staicu

— G* T
=X a —cosgt)

G
*0
G

)

G* T
Yo = Yo (l—cosgt)

¢ = ¢*(l—c0s%t)

can describe the general absolute motion of the moving platform. From the
rotation conditions of the moving platform

a3 @y, =by by =c5ycyy =R, (6)
taking, for example,
ay =ay, by =a,,c, =a,, (7
we obtain the following relations between angles:
Do =P + 93 = P~ Poy + Psy = Ply — 03 + 03, = 4. ®)
The six variables @), @5, 05, 02, @l @5, will be determined by several

vector-loop equations, as follows

2
A T -4 T -GA _
r10+zak0rk+l,k+a30r3 =

k=1

2 9
B T -B T .GB _ )
o+ 2 bro Tenk Th3 73 =
k=1

2
-C T -C T .GC _ -G
”10+cho”k+1,k+03073 =T

k=1
where one denoted

1 0 0 0 -1 0
i =|0|, d@y=|1], ii3=[0], @3=|1 0 0

0 0 1 0O 0 O
=053 -1 0]
Fo=r0 1 0] (10)
7S =053 -1 0]
’72i1 =ri,, 7'312 =riy, 7'3& =-ri, (i=4,B,0C).

Actually, these vector equations means that there is only one inverse
geometrical solution for the manipulator, namely:

rsin(py, +a,) = rsin(p), +a, — ¢y —7/3)=yj =y, +rsin(¢+a,)
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reos(@), +a,)—rcos(@), +a, — @y —m/3)=xg — x|, +rcos(¢+a,) (11)
(i=4, B, C)
We develop the inverse kinematics problem and determine the velocities

and accelerations of the manipulator, supposing that the planar motion of the
moving platform is known. Firstly, we compute the linear and angular velocities

of each leg in terms of the angular velocity oy =¢5ﬁ3 and the centre’s velocity

vy = ?OG of the moving platform.

The motions of the component elements of each leg (for example the leg
A) is characterized by the following skew symmetrical matrices:
~4 ~4 T A4~ 4 - 4
Oy = Ay j 1 Op 1 0% 1 T Oppatlys Op gy = Prjy (12)
which are associated to the absolute angular velocities given by the following
recursive relations

=4 ~4 4 =
Opo =y 1O+ O, Uy (K=123). (13)
The following relations give the velocities v /;% of the joints 4,
~ 4 =4 ~4 =4
Vo= Qi Vio T Ui @ iao ki (14)

The equations of geometrical constraints (8) and (9) can be derived with respect to

the time to obtain the following matrix conditions of connectivity [22]

A=T Tro (=d |, T=d, T T=Gd A=T Tr (=4 , T =GA
O\U; QU Ty, + Ay Ty +ay,a5F "+ 05U, @ {ry, +ag,ry "+

: (15)
A=T T~ ~GA —T=>G .
+onu; a1, =u, 1y, (i=1,2)
A 4 4
W)y = Wy + W3y —¢
where u. 3 1s a skew-symmetrical matrix associated to the unit vector u, pointing

in the positive sense of the axisz, . From these equations, we obtain the relative

velocities a)fé, a);, 603A2 as functions of the angular velocity of the platform and
of the velocity of the mass centre G. But, the conditions (15) give the complete
Jacobian matrix of the manipulator. This matrix is a fundamental element for the
analysis of the robot workspace and for the particular configurations of the
singularities where the manipulator becomes uncontrollable.

Rearranging, the above six constraint equations (11) of the planar robot
can immediately be written as follows.

[x{ — x|, +rcos(¢+a,)—rcos(p)y +a,)] +
+[yy =i +rsin(¢+a,)—rsin(y, + )]’ =r (16)
(i=4,B,0),
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13

where the “zero” position xi° =0, y° =0, ¢° =0 corresponds to the joints

variables @, =[0 0 0]". The derivative with respect to the time of the conditions
(16) leads to the matrix equation
Jlf@lo :sz[x(? y(? 91" (17)
for the planar robot with fixed revolute actuators.
Matrices J,, and J,, are, respectively, the inverse and forward Jacobian of

the manipulator and can be expressed as:

By By By

Jlf:diag{é‘Af 5Bf 5Cf}a szz ﬂlfj’ ﬁzgf ﬂff > (13)
B By B

with
8y =—(xy —x10)sin(@y +a,) +(vy — i) cos(py, +a,)+rsin(g—ej,)
(i=4, B,C)
Bl =158 — xi, — reos(pl, +a,) + reos(@+ )]
: r

I S .

ﬂZf - _yllo_rsul(¢110+ai)+rsul(¢+ai)] (19)
7’

ﬂ%/ (xo xfo)sin(¢+a[)+(y06 _ylio)cos(¢+at)+”Sin(¢_¢1io)
The three kinds of singularities of the three closed-loop kinematical chains can be
determined by the analysis of two Jacobian matrices J, , and J, , [23], [24].

As for the relative accelerations & [y, € 5, & 4 of the robot, the derivatives

with respect to the time of the equations (15) give other following conditions of
connectivity [25], [26]

A=T Tr~ (=4 T =4 T T =Gd T =GA
EoU; Al {rzl +a, s, ta, a5, }+521u a20u3 {r32 +ta,r h+
A=T T~ _ ~T3G T T —GA
+ E3U; Ayl r3 =u; ’”o _a)loa)lou' a10”3 U {r21 +a21r32 +a21a3zr3 y—

T =G4
—(021(02114. azo”3 U, {’32 +ta,r - a)32w32“ a30“ u I”3

2a)10a)21u alou a21 U {r32 + aazraGA} -
— 2wy a10”3azla32“3r3
2a)21a)32u azou a32u r3 , (=12) (20)
310 321 +€32 =¢ .

The relationships (15) and (20) represent the inverse kinematics model of
the planar parallel robot.
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The following recursive relations give the angular accelerations &, and
the accelerations 7/, of the joints 4,

—a — A 4 = 4 ~4 T -
o T Ay p1€km10 T Efpalls T Op 1Ay 1Dy (A U5
~A ~A ~A _ ~A ~ A ~A T

W Do + Eg = Ay gy (a)k—l,oa)k—l,o +& 10 )ak,k—l +

+ wlik—la)lik—1173173 + glik—1173 +
4 ~4 T~ 21)
200 4y Dy 0 iUy
Vio = ak,k—177kA—1,o T4y 5 {5;—1,05;—1.0 + gkﬁl,o}?}fk—l (k=1,2,3).
If the other two kinematical chains of the robot are pursued, analogous
relations can be easily obtained.
As application let us consider a 3-RRR planar robot, which has the
following characteristics:

X% =—0.025m, & =0.025m ,¢° ==
0 Yo ¢ D 22)

F=03m, [=r3,1 =1,=03m, At=3s.

Using the MATLAB software, a computer program was developed to
solve the inverse kinematics of the robot. Finally, the angles of rotation (Fig. 3),
the angular velocities (Fig. 4) and the angular accelerations (Fig. 5) of the three
revolute actuators were plotted versus time, using this program.

3. Conclusions

Within the inverse kinematical analysis, some exact relations that give the
time-history evolution of the angles of rotation, angular velocities and angular
accelerations of each element of the parallel robot have been established in the
present paper.

The simulation by the presented program certifies that one of the major
advantages of the current matrix recursive formulation is a reduced number of
additions or multiplications and consequently a smaller processing time of
numerical computation. Also, the proposed method can be applied to various
types of complex robots when the number of the components of the mechanism is
increased.
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