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∗-G-FRAMES IN HILBERT MODULES OVER PRO-C∗-ALGEBRAS
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In this paper, the ∗-g-frames with algebraic bounds in Hilbert pro-C∗-modules
are introduced. Some properties of ∗-g-frames in Hilbert pro-C∗-modules are studied.

Moreover, the dual ∗-g-frames in Hilbert pro-C∗-modules are presented. As a result, a

reconstruction formula of the elements of Hilbert pro-C∗-modules is provided.
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1. Introduction

Frames that are a generalization of bases in Hilbert space, were introduced by [7] in
1952, to deal with some problems in the non-harmonic Fourier series. In 1986, Daubechies et
al. [6] reintroduced them and characterized function spaces. In other words, they replaced
the sequence of bounded linear operators instead of the sequence of element in Hilbert space.
Frames have many applications, such as: study and characterization of function spaces,
signal and image processing, wireless communications, transceiver design, data compression
and so on; we refer to [2], [4], [5], [12] and [23] for an introduction to the frame theory
and its applications. Diverse applications of frame theory in sciences and engineering, led
to the theory, should be extended to different forms. Many generalizations of frames were
presented; for instance, the fusion frames by Casazza et al. [3] and g-frames by Sun [22]. In
2000, Frank and Larson introduced and studied the concept of frames in Hilbert C∗-modules
as a generalization of frames in Hilbert spaces; for the details see [8], [9]. More results for
the generalizations of frames in Hilbert C∗-modules are available in [11] and [14].

Pro-C∗-algebras which are the generalizations of C∗-algebras such that the topol-
ogy of a pro-C∗-algebra is given by a directed family of C∗-seminorms instead of a single
C∗-norm. In the literature, pro-C∗-algebras have been given by different names such as b∗-
algebras (C. Apostol), LMC∗-algebras (G. Lessner, K. Schmudgen) or locally C∗-algebras
(A. Inoue, M. Fragoulopoulou, A. Mallios, etc). Hilbert modules over pro-C∗-algebras were
considered independently by Mallios [19] and Phillips [20]. In fact, Phillips showed that
the Kasparov stabilisation theorem is valid for countably generated Hilbert modules over
metrizable pro-C∗-algebras and Joita showed that this theorem is true for countably gen-
erated Hilbert modules over arbitrary pro-C∗-algebras [16]. Later, Zhuraev and Sharipov
[24] considered pro-C∗- algebras and introduced Hilbert module over pro-C∗-algebras. Fur-
thermore, Raeburn and Thompson [21] showed that every Hilbert C∗-module countably
generated in the multiplier module admits a frame of multipliers. In 2008, Joita [17] recon-
sidered ideas Raeburn and Thompson in Hilbert modules over pro-C∗-algebras and proposed
frames of multipliers in Hilbert pro-C*-modules.
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In this paper, we generalize the concept of ∗-g-frame into a general space which is
called, Hilbert module over a Pro-C*-algebra. We also introduce the ∗-g-frame transforms
and study their properties. Finally, by the canonical dual ∗-g-frames, we provide a recon-
struction formula of the elements of such spaces.

2. Definitions and Preliminaries

In this section, we recall some basic definitions and properties of pro-C∗-algebras and
Hilbert modules over pro-C∗-algebras.

Definition 2.1. A pro-C∗-algebra is a complete Hausdorff complex topological ∗-algebra A
whose topology is determined by its continuous C∗-seminorms in the sense that a net (aλ)
converges to 0 if and only if ρ(aλ) → 0 for any continuous C∗-seminorm ρ on A. For any
C∗-seminorm ρ on A and each a, b ∈ A, we have

(i) ρ(ab) ≤ ρ(a)ρ(b);
(ii) ρ(a∗a) = ρ(a)2.

For each pro-C∗-algebra A, the set of all positive elements in A is denoted by A+.
Moreover, a ≥ 0 denotes a ∈ A+ and a ≤ b means that b − a ≥ 0. We recall that every
C∗-algebra is a pro-C∗-algebra.

The set of all continuous C∗-seminorms on A is denoted by S(A). An element a ∈ A
is bounded if ‖a‖∞ = sup{ρ(a) : ρ ∈ S(A)} < ∞. The set of all bounded elements in A is
denoted by b(A). Let A be a unitary pro-C∗-algebra and a ∈ A. Then, a non-zero element
a ∈ A is called strictly non-zero if zero does not belong to σ(a). Here, we remember the
following elementary result from [13].

Proposition 2.1. Let A be a unital pro- C*-algebra with the identity 1A and ρ ∈ S(A).
Then

(1) ρ(a) = ρ(a∗) for all a ∈ A;
(2) ρ(1A) = 1;
(3) if a, b ∈ A+ and a ≤ b, then ρ(a) ≤ ρ(b);
(4) if 1A ≤ b, then b is invertible and b−1 ≤ 1A;
(5) if a, b ∈ A+ are invertible and 0 ≤ a ≤ b, then 0 ≤ b−1 ≤ a−1;
(6) if a, b, c ∈ A and a ≤ b, then c∗ac ≤ c∗bc;
(7) if a, b ∈ A+ and a2 ≤ b2, then 0 ≤ a ≤ b.

Definition 2.2. Let A be a pro-C∗-algebra. A pre-Hilbert A-module is a complex vector
space X which is also a right A-module, compatible with the complex algebra structure,
equipped with an A-valued inner product 〈·, ·〉 : X × X −→ A which is C and A-linear in
second variable and satisfies the following conditions:

(i) 〈x, y〉∗ = 〈y, x〉;
(ii) 〈x, x〉 ≥ 0;

(iii) 〈x, x〉 = 0⇔ x = 0.

We say that X is a Hilbert A-module or Hilbert pro-C∗-module over A if X is complete
with respect to the topology determined by the family of seminorms

ρ̄X(x) =
√
ρ(〈x, x〉), x ∈ Xρ, ρ ∈ S(A).

Let X be a pre-Hilbert A-module. For every ρ ∈ S(A) and for each x, y ∈ X, the
following Cauchy-Schwartz inequality holds

ρ(〈x, y〉)2 ≤ ρ(〈x, x〉)ρ(〈y, y〉).

Consequently, ρ̄X(ax) ≤ ρ(a)ρ̄X(x) for all a ∈ A, x ∈ X.
Next, we bring two examples of Hilbert modules over pro-C∗-algebras.
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Example 2.1. (i) Let l2(A) be the set of all sequences (an)n∈N of elements of a pro-C∗-
algebra A such that the series

∑
i∈I aia

∗
i is convergent in A. Then, l2(A) is a Hilbert module

over A with respect to the pointwise operations and inner product defined by

〈(ai)i∈N, (bi)i∈N〉 :=
∑
i∈N

aib
∗
i .

(ii) [20] Suppose that A is a pro-C∗-algebra and Xi for i ∈ N is a Hilbert A-module
with the topology induced by the family of continuous seminorms {ρ̄i}ρ∈S(A) defined through

ρ̄i(x) :=
√
ρ(〈x, x〉) x ∈ Xi.

Then, the direct sum of {Xi}i∈N is considered as

⊕i∈NXi = {(xi)i∈N : xi ∈ Xi,
∑
i∈N
〈xi, xi〉 is convergent in A}.

It has been shown in [18, Example 3.2] that the direct sum ⊕i∈NXi is a Hilbert A-module
with A-valued inner product 〈x, y〉 =

∑
i〈xi, yi〉, where x = (xi)i∈N and y = (yi)i∈N are in

⊕i∈NXi, pointwise operations and a topology determined by the family of seminorms

ρ̄(x) =
√
ρ(〈x, x〉) x ∈ ⊕i∈NXi, ρ ∈ S(A).

The direct sum of a countable copies of a Hilbert module X is denoted by l2(X).

Let A be a pro-C∗-algebra and X be a pre-Hilbert A-module. We recall that an
element x in E is bounded if ‖x‖∞ = sup{ρ̄X(x) : ρ ∈ S(A)} <∞. We denote by b(X), the
set of all bounded elements in X. It is well-known that b(A) is a C∗-algebra in the C∗-norm
‖.‖∞ and b(X) is a Hilbert b(A)-module (see [20, Proposition 1.11] and [24, Theorem 2.1]
for more details).

Let A be a pro-C∗-algebra and X,Y be two Hilbert A-modules. An A-module map
T : X −→ Y is said to bounded if for each ρ ∈ S(A), there is Cρ > 0 such that ρ̄Y (T (x)) ≤
Cρρ̄X(x) for all x ∈ X, where ρ̄X ,and ρ̄Y are continuous seminorms onX and Y , respectively.
A bounded A-module map from X to Y is called an operator from X to Y . We denote the
set of all operators from X to Y by HomA(X,Y ), and set EndA(X) =HomA(X,X). Let
T ∈HomA(X,Y ). We say T is adjointable if there exists an operator T ∗ ∈HomA(X,Y ) such
that 〈T (x), y〉 = 〈x, T ∗(y)〉 for all x ∈ X and y ∈ Y . We denote by Hom∗A(X,Y ), the set of
all adjointable operators from X to Y and End∗A(X) =Hom∗A(X,X). By a little modification
in the proof of Lemma 3.2 from [24], we have the next result.

Proposition 2.2. Let T : X −→ Y and T ∗ : Y −→ X be two maps such that the equality

〈T (x), y〉 = 〈x, T ∗(y)〉

holds for all x ∈ X and y ∈ Y . Then, T ∈ Hom∗A(X,Y ).

It is easy to see that for any ρ ∈ S(A), the map defined via

ρ̂X,Y (T ) = sup{ρ̄Y (T (x)) : x ∈ X, ρ̄X(x) ≤ 1}, T ∈ HomA(X,Y ),

is a seminorm on HomA(X,Y ). Moreover, HomA(X,Y ) with the topology determined by
the family of seminorms {ρ̂X,Y }ρ∈S(A) is a complete locally convex space [15, Proposition
3.1]. Furthermore, by using [24, Lemma 2.2], for each y ∈ Y and ρ ∈ S(A), we get

ρ̄X(T ∗(x)) = sup{ρ〈T ∗(y), x〉 : ρ̄X(x) ≤ 1}
= sup{ρ〈T (x), y〉 : ρ̄X(x) ≤ 1}
≤ sup{ρ̄Y (T (x)) : ρ̄X(x) ≤ 1}ρ̄Y (y)

= ρ̄(T )ρ̄Y (y).
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Thus, for each ρ ∈ S(A), we have ρ̂Y,X(T ∗) ≤ ρ̂X,Y (T ). Since T ∗∗ = T , by replacing T with
T ∗, for each ρ ∈ S(A), we obtain ρ̂Y,X(T ∗) = ρ̂X,Y (T ). It follows from [20, Proposition 4.7]
that End∗A(X) is a pro-C∗-algebra for any Hilbert A-module X such that its topology is
taken from {ρ̂X}ρ∈S(A) [24]. By [24, Proposition 3.2], T is a positive element of End∗A(X) if
and only if 〈T (x), x〉 ≥ 0 for all x ∈ X.

Definition 2.3. Let X and Y be two Hilbert modules over pro-C∗-algebra A. Then, the
operator T : X −→ Y is called uniformly bounded (below), if there exists C > 0 such that
ρ̄Y (T (x)) ≤ Cρ̄X(x) (Cρ̄X(x) ≤ ρ̄Y (T (x))) for all ρ ∈ S(A) and x ∈ X. The number C is
called an upper bound for T and hence we set

‖T‖∞ = inf{C : C is an upper bound for T}.

Clearly, in this case we have ρ̂(T ) ≤ ‖T‖∞, for all ρ ∈ S(A).

Suppose that T is an invertible element in End∗A(X) which is uniformly bounded. By
[1, Proposition 3.2], we find

‖T−1‖−2
∞ 〈x, x〉 ≤ 〈T (x), T (x)〉 ≤ ‖T‖2∞〈x, x〉, (1)

for all x ∈ X.

3. Main results

Throughout this section, A is a pro-C∗-algebra, X and Y are two Hilbert A-modules.
Moreover, {Yi}i∈I is a countable sequence of closed submodules of Y .

Definition 3.1. Let X be a Hilbert pro-C∗-module. A sequence {xi}i∈I in X is said to
be the standard ∗-frame for X if for each x ∈ X, the series

∑
i∈I〈x, xi〉〈xi, x〉 is convergent

in A and there exist two strictly non-zero elements C and D in A such that

C〈x, x〉C∗ ≤
∑
i∈I
〈x, xi〉〈xi, x〉 ≤ D〈x, x〉D∗

for all x ∈ X. The elements C and D are called ∗-frame bounds for {xi}i∈I . The ∗-frame
is called tight if C = D and called Parseval if C = D = 1. In the above relation, if we only
have the upper bound, then {xi}i∈I is called a ∗-Bessel sequence.

Similar to Definition 3.1, we have the incoming definition for the sequences in the
operator setting.

Definition 3.2. A sequence Λ = {Λi ∈ Hom∗A(X,Yi)}i∈I is called a ∗-g-frame for X with
respect to {Yi}i∈I if for each x ∈ X, the series

∑
i∈I〈Λi(x),Λi(x)〉 is convergent in A and

there exist two strictly non-zero elements C and D in A such that for every x ∈ X,

C〈x, x〉C∗ ≤
∑
i∈I
〈Λi(x),Λi(x)〉 ≤ D〈x, x〉D∗.

The elements C and D are called ∗-g-frame bounds for Λ. The ∗-g-frame is called tight if
C = D and called Parseval if C = D = 1. If in the above we only need to have the upper
bound, then Λ is called a ∗-g-Bessel sequence. Since the sequence

∑
i∈I〈Λi(x),Λi(x)〉 is

convergent in A, the ∗-g-frame can be called standard but we use this definition without the
word standard if there is no risk of ambiguity. Besides, if for each i ∈ I, Yi = Y , we call it
a ∗-g-frame for X with respect to Y .

An example regarding to an ∗-g-frame for a Hilbert A-module X is indicated as
follows.
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Example 3.1. Let {xi}i∈I be a ∗- frame for X with bounds C and D. For i ∈ I, consider
the operator Λxi defined via

Λxi
: X −→ A; Λxi

(x) = 〈x, xi〉.

It is obvious that Λxi
is a bounded operator in HomA(X,A) which its adjoint is

Λ∗xi
: A→ X Λ∗xi

(a) = axi.

Hence, Λxi
∈Hom∗A(X,A), i ∈ I. Moreover, by assumption, for each x ∈ X

C〈x, x〉C∗ ≤
∑
i∈I
〈x, xi〉〈xi, x〉 =

∑
i∈I
〈Λi(x),Λi(x)〉 ≤ D〈x, x〉D∗.

Therefore, Λ = {Λxi
}i∈I is a ∗-g-frame for X with respect to A.

The following result will be used in this section.

Proposition 3.1. Let T be an uniformly bounded below operator in HomA(X,Y ). Then,
T is closed and injective.

Proof. Refer to [10, Proposition 2.3]. �

Lemma 3.1. [1, Lemma 3.1] Let X be a Hilbert module over C*-algebra A, S ∈ End∗A(X)
and S ≥ 0, i.e., this element is positive in C*-algebra End∗A(X). Then, for each x ∈ X,
〈S(x), x〉 ≤ ‖S‖〈x, x〉.

Let Λ = {Λi ∈ Hom∗A(X,Yi)}i∈I be a ∗-g-frame for X with respect to {Yi}i∈I and
bounds C and D in A. We define the corresponding ∗-g-frame transform

TΛ : X → ⊕i∈IYi TΛ(x) = {Λix}i∈I .

Since Λ is a ∗-g-frame, we have

C〈x, x〉C∗ ≤
∑
i∈I
〈Λi(x),Λi(x)〉 ≤ D〈x, x〉D∗,

for all x ∈ X. Thus, TΛ is well-defined. Besides, for any ρ ∈ S(A) and x ∈ X, we obtain

(ρ(C))ρ̄X(x) ≤ ρ̄⊕i∈IYi
(TΛ(x)) ≤ (ρ(D))ρ̄X(x).

From the above, it concludes that the ∗-g-frame transform is an uniformly bounded below
operator in HomA(X,⊕i∈IYi). Thus, by Proposition 3.1 , TΛ is closed and injective. Here,
we define the synthesis operator T ∗Λ : ⊕i∈IYi −→ X for ∗-g-frame Λ through

T ∗Λ({yi}i) :=
∑
i∈I

Λ∗i (yi), (2)

where Λ∗i is the adjoint operator of Λi.

Proposition 3.2. The synthesis operator defined by (2) is well-defined, uniformly bounded
and adjoint of the transform operator.

Proof. Since Λ = {Λi : i ∈ I} is a ∗-g-frame for X with respect to {Yi : i ∈ I}, there exist
two strictly nonzero elements C and D in A such that for every x ∈ X,

C〈x, x〉C∗ ≤
∑
i∈I
〈Λi(x),Λi(x)〉 ≤ D〈x, x〉D∗.
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Let J be an arbitrary finite subset of I. Using Cauchy-Bunyakovskii inequality and [24,
Lemma 2.2], for any ρ ∈ S(A) and (yi) ∈ ⊕i∈IYi we have(

ρ̄X

(∑
i∈J

Λ∗i (yi)

))2

=

{
sup

(
ρ〈
∑
i∈J

Λ∗i (yi), x〉

)
: x ∈ X, ρ̄X(x) ≤ 1

}2

=

{
sup

(
ρ

(∑
i∈J
〈yi,Λi(x)〉

))
: x ∈ X, ρ̄X(x) ≤ 1

}2

≤ sup
ρ̄X(x)≤1

(
ρ

(∑
i∈J
〈yi, yi〉

))(
ρ

(∑
i∈J
〈Λi(x),Λi(x)〉

))

≤ sup
ρ̄X(x)≤1

(ρ(D))2(ρ̄X(x))2ρ

(∑
i∈J
〈yi, yi〉

)

≤ sup
ρ̄X(x)≤1

(ρ(D))2ρ

(∑
i∈J
〈yi, yi〉

)
.

Due to the convergence of series
∑
i∈I〈yi, yi〉 in A, the above relation shows that

∑
i∈I Λ∗i (yi)

is convergent. Hence, T ∗Λ is well-defined. On the other hand, for any x ∈ X and (yi) ∈ ⊕i∈IYi
we get

〈TΛ(x), (yi)i〉 = 〈(Λix)i, (yi)i〉 =
∑
i∈I
〈Λi(x), yi〉

=
∑
i∈I
〈x,Λ∗i (yi)〉 = 〈x,

∑
i∈I

Λ∗i (yi)〉 = 〈x, T ∗Λ({yi}i)〉.

Thus, Proposition 2.2 implies that the synthesis operator is adjoint of the transform operator.
Furthermore, for any ρ ∈ S(A) we reach

ρ̄X(T ∗Λ(y)) ≤ ρ(D)ρ̄⊕i∈IYi(y), y = (yi)i ∈ ⊕i∈IYi.
Therefore, the synthesis operator is uniformly bounded. �

Let Λ = {Λi : i ∈ I} be a ∗-g-frame for X with respect to {Yi : i ∈ I}. Define the
corresponding ∗-g-frame operator SΛ = T ∗ΛTΛ : X −→ X via SΛ(x) =

∑
i∈I Λ∗iΛix. Then,

SΛ is a combination of two bounded operators and so it is a bounded operator.

Theorem 3.1. Let Λ = {Λi : i ∈ I} be a ∗-g-frame for X with respect to {Yi : i ∈ I}
with frame bounds C and D. Then, SΛ is an invertible positive operator. Moreover, it is a
self-adjoint operator such that

C∗CIX ≤ SΛ ≤ D∗DIX (3)

and

D−1(D∗)−1IX ≤ S−1
Λ ≤ C−1(C∗)−1IX , (4)

where IX is the identity function on X, and also we have

(ρ(C−1)−2 ≤ ρ̄X(SΛ) ≤ (ρ(D))2.

Proof. According to the definition of the transform operator, for any x ∈ X we can write

〈TΛ(x), TΛ(x)〉 = 〈{Λi(x)}i∈I , {Λi(x)}i∈I〉 =
∑
i∈I
〈Λi(x),Λi(x)〉.

By hypotheses, we get

C〈x, x〉C∗ ≤ 〈TΛ(x), TΛ(x)〉 ≤ D〈x, x〉D∗.
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On the other hand,

〈SΛ(x), x〉 = 〈T ∗ΛTΛ(x), x〉 = 〈TΛ(x), TΛ(x)〉 = 〈x, T ∗ΛTΛ(x)〉 = 〈x, SΛ(x)〉.
Consequently, SΛ is a self-adjoint operator. For any x ∈ X, we find

C〈x, x〉C∗ ≤ 〈SΛ(x), x〉 ≤ D〈x, x〉D∗. (5)

From (5), it follows that the ∗-g-frame operator is positive and (3) is obtained as well. Now,
suppose that SΛ(x) = 0 for any x ∈ X. By (5), we observe that 〈x, x〉 = 0, which implies
SΛ is invertible. For x ∈ X, we have

C〈S−1
Λ x, S−1

Λ x〉C∗ ≤
∑
i∈I
〈ΛiS−1

Λ x,ΛiS
−1
Λ x〉 = 〈S−1

Λ x, x〉,

and

〈x, S−1
Λ (x)〉 =

∑
i∈I
〈ΛiS−1

Λ (x),ΛiS
−1
Λ (x)〉 ≤ D〈S−1

Λ (x), S−1
Λ (x)〉D∗.

The last relations necessitate that for all x ∈ X
D−1〈S−1

Λ (x), x〉(D∗)−1 ≤ 〈S−1
Λ (x), S−1

Λ (x)〉 ≤ C−1〈S−1
Λ (x), x〉(C∗)−1

and so

D−1(D∗)−1S−1
Λ ≤ (S−1

Λ )2 ≤ C−1(C∗)−1S−1
Λ .

Since S is a positive operator, D−1(D∗)−1IX ≤ S−1
Λ ≤ C−1(C∗)−1IX . Applying the Cauchy-

Bunyakovskii inequality and [24, Lemma 2.2], we have(
ρ̄X

(∑
i∈J

Λ∗iΛi(x)

))2

=

{
sup ρ

(
〈
∑
i∈J

Λ∗iΛi(x), y〉

)
: y ∈ X, ρ̄X(y) ≤ 1

}2

=

{
sup ρ

(∑
i∈J
〈Λi(x),Λi(y)〉

)
: y ∈ X, ρ̄X(y) ≤ 1

}2

≤ sup
ρ̄X(y)≤1

(
ρ

(∑
i∈J
〈Λi(x),Λi(x)〉

))(
ρ

(∑
i∈J
〈Λi(y),Λi(y)〉

))
≤ sup
ρ̄X(y)≤1

(ρ(D))2(ρ̄X(y))2(ρ(D))2(ρ̄X(x))2

≤ (ρ(D))4(ρ̄X(x))2.

for all ρ ∈ S(A) and x, y ∈ X. Hence,

(ρ̄X(SΛ(x)))2 =

(
ρ̄X

(∑
i∈J

Λ∗iΛi(x)

))2

=

{
sup ρ

(
〈
∑
i∈J

Λ∗iΛi(x), y〉

)
: y ∈ X, ρ̄X(y) ≤ 1

}2

≤ (ρ(D))4(ρ̄X(x))2.

Furthermore, ρ̄X(SΛ(x))(ρ(C−1))−2 ≤ ρ̄X(SΛ(x)). Therefore

(ρ(C−1))−2 ≤ ρ̄X(SΛ(x)) ≤ (ρ(D))2.

This finishes the proof. �

Proposition 3.3. Let Λ = {Λi : i ∈ I} be a standard ∗-g-frame for X with respect to
{Yi : i ∈ I}, with ∗-frame bound in b(A). Then, Λ = {Λi : i ∈ I} is a standard ∗-g-frame for

X with respect to {Yi : i ∈ I}, with lower and upper frame bounds ‖S
−1
2

Λ ‖−2
∞ and ‖S

1
2

Λ‖2∞,
respectively.
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Proof. By our assumptions,
∑
i∈I〈Λi(x),Λi(x)〉 is convergent in A. Theorem 3.1 implies

that S
1
2

Λ is invertible and positive and there are C,D in b(A) such that

C〈x, x〉C∗ ≤ 〈S
1
2

Λ (x), S
1
2

Λ (x)〉 ≤ D〈x, x〉D∗.

The last relation shows that ρ̄X(S
1
2

Λ ) ≤ ρ(D)ρ̄X(x) and ρ̄X(S
1
2

Λ ) ≤ ρ(D) for all x ∈ X. Since

D ∈ b(A), S
1
2

Λ ∈ b(End∗A(X)). According [22], we have

‖S
−1
2

Λ ‖−2
∞ 〈x, x〉 ≤

∑
i∈I〈Λi(x),Λi(x)〉 ≤ ‖S

1
2

Λ‖2∞〈x, x〉. �

In the upcoming result, some relations between Parseval ∗-frame and Parseval ∗-g-
frame for Hilbert modules and also for operators are presented.

Theorem 3.2. For each i ∈ I, let Λ = {Λi ∈ Hom∗A(X,Yi)}i∈I and {xij : j ∈ Ji} be a
Parseval ∗-frame for Yi. Then, the following assertions hold.

(i) {Λi : i ∈ I} is a Parseval ∗-g-frame for X if and only if {Λ∗i xij : j ∈ Ji, i ∈ I} is a
Parseval ∗-frame for X.

(ii) The ∗-g-frame operator of {Λi : i ∈ I} is the ∗-frame operator of Γ = {Λ∗i xij : j ∈
Ji, i ∈ I}.

Proof. (i) It follows from the assumptions that

〈Λi(x),Λi(x)〉 =
∑
j∈Ji

〈Λi(x), xij〉〈xij ,Λi(x)〉.

Therefore ∑
i∈I
〈Λi(x),Λi(x)〉 =

∑
i∈I

∑
j∈Ji

〈Λi(x), xij〉〈xij ,Λi(x)〉.

for all x ∈ X. Since for every i , Λi is adjointable and so the above equality can be
summarized as follow:∑

i∈I
〈Λi(x),Λi(x)〉 =

∑
i∈I

∑
j∈Ji

〈x,Λ∗i (xij)〉〈Λ∗i (xij), x〉,

which shows that {Λi : i ∈ I} is a Parseval ∗-g-frame for X if and only if {Λ∗i (xij) : j ∈
Ji, i ∈ I} is a Parseval ∗-frame for X.

(ii) Let SΛ and SΓ be the ∗-frame operators for Λ and Γ, respectively. Then

SΓ(x) =
∑
i∈I

∑
j∈Ji

〈x,Λ∗i (xij)〉Λ∗i (xij), SΛ(x) =
∑
i∈I

Λ∗iΛi(x)

for all x ∈ X. On the other hand, for every i ∈ I and x ∈ X, Λi(x) =
∑
j∈Ji〈Λi(x), xij〉xij .

Since Λi(x) ∈ Yi and the last equality is the reconstruction formula for Λix with respect to
Parseval ∗-frame {xij : j ∈ Ji}, we get

SΓ(x) =
∑
i∈I

∑
j∈Ji

〈x,Λ∗i (xij)〉Λ∗i (xij) =
∑
i∈I

∑
j∈Ji

〈Λi(x), xij〉Λ∗i (xij)

=
∑
i∈I

Λ∗i (
∑
j∈Ji

〈Λi(x), xij〉xij) =
∑
i∈I

Λ∗iΛi(x) = SΛ(x).

for all x ∈ X. The proof of part (ii) is now complete. �

Proposition 3.4. Let Λ = {Λi ∈ Hom∗A(X,Yi)}i∈I be a ∗-g-frame for X whit bounds C
and D and ∗-g-frame operator SΛ. If T ∈ End∗A(X) is an invertible operator such that both
are uniformly bounded, then {ΛiT : i ∈ I} is a ∗-g-frame for X with respect to {Yi}i∈I and
with ∗-g-frame operator T ∗SΛT .
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Proof. Note that ΛiT ∈Hom∗A(X,Yi). In addition, by (1), for each x ∈ X we have

C‖T−1‖−1
∞ 〈x, x〉‖T−1‖−1

∞ C∗ = C‖T−1‖−2
∞ 〈x, x〉C∗

≤ C〈T (x), T (x)〉C∗

≤
∑
i∈I
〈ΛiT (x),ΛiT (x)〉

≤ D〈T (x), T (x)〉D∗

≤ D‖T‖2∞〈x, x〉D∗

= D‖T‖∞〈x, x〉‖T‖∞D∗.

Therefore, the sequence {ΛiT : i ∈ I} is a ∗-g-frame for X whit respect to {Yi}i∈I and
bounds C‖T−1‖−1

∞ , D‖T‖∞. Besides, for any x ∈ X we obtain

T ∗SΛT (x) = T ∗
∑
i∈I

Λ∗iΛiT (x) =
∑
i∈I

T ∗Λ∗iΛiT (x) =
∑
i∈I

(ΛiT )∗(ΛiT )(x).

This means that T ∗SΛT is the ∗-g-frame operator for ΛiT ∈Hom∗A(X,Yi). �

As a main result in this section, we present a reconstruction formula for elements of
a Hilbert pro-C*-module as follows.

Theorem 3.3. Let Λ = {Λi ∈ Hom∗A(X,Yi)}i∈I be a ∗-g-frame for X with bounds C and

D and ∗-g-frame operator SΛ . For each i ∈ I, set Λ̃i = ΛiS
−1
Λ . Then, Λ̃ = {Λ̃i : i ∈ I}

is a ∗-g-frame for X whit respect to {Yi}i∈I and bounds CD−1(D∗)−1, DC−1(C∗)−1 and
∗-g-frame operator S−1

Λ . Furthermore, for each x ∈ X we have the following reconstruction

formula x =
∑
i∈I(Λ̃i)

∗Λi(x) =
∑
i∈I Λ∗i Λ̃i(x). Λ̃ is called the canonical dual *-g-frame of

Λ.

Proof. In Proposition 3.4, put T = S−1
Λ . Then, we conclude {Λ̃i = ΛiS

−1
Λ : i ∈ I} is

a ∗-g-frame for X with respect to {Yi}i∈I and ∗-g-frame operator such that T ∗SΛT =
S−1

Λ SΛS
−1
Λ = S−1

Λ .
Moreover, by Theorem 3.1, for x ∈ X we have

C〈S−1
Λ (x), S−1

Λ (x)〉C∗ ≤
∑
i∈I
〈ΛiS−1

Λ (x),ΛiS
−1
Λ (x)〉 = 〈S−1

Λ (x), x〉

and 〈x, S−1
Λ (x)〉 =

∑
i∈I〈ΛiS

−1
Λ (x),ΛiS

−1
Λ (x)〉 ≤ D〈S−1

Λ (x), S−1
Λ (x)〉D∗. The two last rela-

tions show that D−1〈S−1
Λ (x), x〉(D∗)−1 ≤ 〈S−1

Λ (x), S−1
Λ (x)〉 ≤ C−1〈S−1

Λ (x), x〉(C∗)−1 for all

x ∈ X. Hence D−1(D∗)−1S−1
Λ ≤ (S−1

Λ )2 ≤ C−1(C∗)−1S−1
Λ . Since S is positive operator,

we arrive at D−1(D∗)−1IX ≤ S−1
Λ ≤ C−1(C∗)−1IX . According to this and that Λ is a

∗-g-frame, we get∑
i∈I
〈Λ̃i(x), Λ̃i(x)〉 =

∑
i∈I
〈ΛiS−1

Λ (x),ΛiS
−1
Λ (x)〉

≤ D〈S−1
Λ (x), S−1

Λ (x)〉D∗ ≤ DC−1〈S−1
Λ (x), x〉(C∗)−1D∗

≤ DC−1(C∗)−1C−1〈x, x〉(C∗)−1D∗ ≤ DC−1(C∗)−1〈x, x〉C−1(C∗)−1D∗,

for all x ∈ X. Similarly, we find∑
i∈I
〈Λ̃i(x), Λ̃i(x)〉 =

∑
i∈I
〈ΛiS−1

Λ (x),ΛiS
−1
Λ (x)〉

≥ C〈S−1
Λ (x), S−1

Λ (x)〉C∗ ≥ CD−1〈S−1
Λ (x), x〉(D∗)−1C∗ ≥ CD−1(D∗)−1D−1〈x, x〉(D∗)−1D∗

≥ CD−1(D∗)−1〈x, x〉D−1(D∗)−1C∗,
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for all x ∈ X. In addition

x = S−1
Λ SΛ(x) = S−1

Λ

∑
i∈I

Λ∗iΛi(x) =
∑
i∈I

S−1
Λ Λ∗iΛi(x) =

∑
i∈I

(Λ̃i)
∗Λi(x),

for all x ∈ X. Once more, x = SΛS
−1
Λ (x) =

∑
i∈I Λ∗iΛi(S

−1
Λ (x)) =

∑
i∈I Λ∗i Λ̃i(x). This

completes the proof. �
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