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STUDIES ON NBVPS FOR FUNCTIONAL DIFFERENTIAL
EQUATIONS WITH ONE-DIMENSIONAL p—LAPLACIAN

Yuji Liu?

Sufficient conditions for the existence of at least one solution to Neumann
boundary value problems for second order monlinear functional differential equations
are established by using Mawhin fized point theorem and Leray-Schauder’s fized point
theorem, respectively. Some examples show that our results cannot be trivially deduced
from the previous works, see the remark at the end of Section 2.
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1. Introduction

In recent years, Neumann boundary value problems ( NBVPs for short ) have been
investigated in a large number of papers. Atslaga in [1] studied the following NBVP

(1) 2" = f(z),t € (0,1),

2'(0) =42'(1) = 0.
Under the assumptions that f is continuous, f has simple zeros at p; < p2 < p3 < ps4 < ps,
f(=o00) = —oo and f(+00) = +oo, the multiplicity results for solutions of NBVP(1) were
proved. The NBVP of the form

@) { —x"(t) + mx(t) = g(t) f(t,z(t), 0<t <1,
w'(0) = u'(1) =0,

was studied in papers [3,4,8,12,14-16], where m € R, g : (0,+00) — [0,400) and f :
(0,1) x (0,400) — [0,+00) are continuous and may be singular at ¢ = 0 or ¢t = 1 and
x = 0. The techniques involved are based on the fixed point theorems in cones in Banach
spaces such as the nonlinear alternative of Leray-Schauder [8], the Krasnoselskii fixed point
theorem [4,12,14,15], the Leggett-Williams fixed-point theorem [16].

In papers [5,6,7], the existence of solutions of the following NBVPs

—(o(=' (1)) = f(t,z(t),2'(2)), t € [a,0],
(3) { u'(a) =/ (b) =0,

{ —(o(2'(1)))" = f(t,2(t)), t € [a,b],
u'(a) = v/ (b) =0,

were studied, where 0 < a < b are constants, f is a continuous or Caratheodory function and
7 € C[0,T). The upper and lower solutions method coupled with the monotone iterative
technique was used in these papers.
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In paper [9], Girg studied the following problem

(5) (p(u' (1)) + g(u'(t)) + h(u(t)) = f(t), 0<t<T,
u'(0) = u(T) =0,

Let f(t) = f+ f with f = & [ f(£)dt. Denote
T
Cl0,T) = {u e Clo,T]: / u(t)dt = 0} , Cr =CrnCo,T).
0

Under the following assumptions:
(i) ¢ is an increasing homeomorphism of Iy onto I, where I;,I C R are open
intervals containing zero and ¢(0) = 0;
(ii) g is continuous;
(iii) h is continuous, bounded real function having limits in +oo with
h(—o0) := lim h(§) < lim h(§) =: h(+00);
{——o0 £—+o0
(iv) ¢ is odd and there exist ¢, > 0 and p > 1 such that for all z € (—4§,0) NDom¢ :
clz[P~t < [g(2)]- - N
It was proved that NBVP(5) has at least one solution if s(f) + h(—o00) < f < s(f) +
h(+00). and

3 ~ 3

== VT sup [h(€)] > 0, ||fl[z2 < \/ 7b— VT sup [h(€)].

T €eR T ¢eR

Afrouzi and Moghaddam in [2] studied the following Neumann-Robin boundary value

problem

—(¢p(2' (1)) = Af(2(t)), t €[0,1],
(6) { 2'(0) =0, 2/(1) 4+ az(1) =0,

_p_
p—1
and p(z) := |z|P~2z for all © € R, where (¢,(u’))’ is the one dimensional p-Laplacian and
f € C?[0,4+00) such that f(0) < 0, or f(0) > 0, and also f is increasing and concave up.
The existence and multiplicity of nonnegative solutions of BVP(6) were studied.

In papers [13], the NBVPs of the form

[p(a' ()] = —f(t,z(t), x(7(t))), t€[0,T],
(™) { W(0) =/ (T) = 0,

where o € R, A > 0 are parameters and p > 1, and p’ = is the conjugate exponent of p

and
{ z(t) = g(t, x(t), z(7 (1)), 2'(t)), t € [0,T], (7Y
w'(0) = u/'(T) =0,

was studied, where f : [0,7] x R?> — R and g : [0,T] x R® — R are continuous and
7€ C([0,7],]0,T]), ¢ : R — R is an increasing homeomorphism such that ¢(0) = 0. The
methods used in [13] are based upon the upper and lower solutions methods and the mono-
tone iterative technique. It was showed that the monotone technique produces two mono-
tone sequences that converge uniformly to extremal solutions of NBVP(7) and NBVP(7)’,
respectively.

Motivated by the paper [13], we study the following NBVP for the functional differ-
ential equation with one-dimensional p—Laplacian

(@(u'(8)))" = [t u(t), u(r(t)),u' (1)), t € (0,T),
(8) w/'(0) =0,
' (T) =0,
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where T > 0, 7 € C([0,7],[0,7]), ¢ : R — R is an increasing homeomorphism such that
#(0) = 0 whose inverse function s denoted by ¢!, f is a L!-Carathéodory function on [0, T],
ie. f:(0,T)x R® — R satisfies the following conditions:

(i) f(-,r,y,2) is measurable for all (z,y,z) € R3.

(ii) f(¢,-,-,-) is continuous for almost all ¢ € (0,T).

(iii) For each K > 0 there exists hx € L'(0,T) such that |z| + |y| + |2| < K implies
|f(t, 2y, 2)| < hi(t) for almost all t € (0,T).

A function z : [0,T] — R is called a solution of NBVP(8) if = € C1[0,T], [¢(z')] €
LY(0,T) and x satisfies (8).

The purpose of this paper is to establish new sufficient conditions for the existence of
at least one solutions of NBVP (8) by using Mawhin’s fixed point theorem and Schauder’s
fixed point theorem [11]. It is interesting that we allow f to be sublinear, at most linear
or superlinear. The methods used in this paper are different from those used in papers
[1-10,11-16] and so are the assumptions and techniques new.

This paper is organized as follows. In Section 2, main results are given, and two
examples are presented to illustrate them, whereas the known results in the current literature
do not cover them, in Section 3, we prove the main results, i.e., Theorems 2.1-2.3.

2. Main Results and Examples

Let us list some conditions.

(A) there exists a positive constant My such that

(i) {fOT f(t, Mo,y70)dt] [fOT F(t,— Mo, y, O)dt} <0forallycR;

(ii) there exist ¢ € L'([0,7]) and ® : [0, +00) — [0, +00) nondecreasing with 1/®(x)
integrable over bounded intervals such that |f(t,z,y,2))| < q(t)®(|z|) for all (t,z,y) €
(O,T) X [—M(),M()P, z € R and

o w57, oo

(B) there exists a constant M > 0 such that
xf(t,z,y,0) >0, te (0,T), |z| > M and |y| > M.

(C) there exist the Carathéodory functions h : (0,7) x R* — R, g; : (0,T) x R — R,
and function r € L*(0,T) such that

(i) f(tv T, Y, Z) = h(tv LY, Z)+gl (ta $)+92(t7 y)+g3(t7 Z)+T(t) holds for all (t7 T, Y, Z) €
(0,T) x R3;

(ii) there exist constants # > 0 and 8 > 0 such that

h(t,z,y,2)z > Blz|**

holds for all (¢,x,y,2) € (0,T) x R?;
(iii) there exist the limits

(t
m  sup lgi(t, )|

o =T1i €[0,+00),i=1,2,3.
2|40 co.1)  |Z]

(C’) there exist the Carathéodory functions h: (0,T)x R®> — R, g; : (0,T)x R — R,
and function r € L'(0,T) such that (C)(i) and (C)(iii) hold and
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(ii) there exist constants # > 0 and 8 > 0 such that
h‘(t7 z, y7 Z)Z S _B|Z|‘9+1
holds for all (t,x,y,2) € (0,T) x R3.

Theorem 2.1. Suppose that (B) and (C) hold. Then BVP(8) has at least one
solution if T%(ry + 1) + 13 < 3.

Theorem 2.2. Suppose that (B) and (C’) hold. Then BVP(8) has at least one
solution if T%(ry + 1) + 73 < 3.

Theorem 2.3. Assume that conditions (A) holds. Then BVP(8) has at least one
solution.

Now, we present examples that our results can readily apply, whereas the known re-
sults in the current literature do not cover them.

Example 2.1. Consider the NBVP

o { 2(1) = T+ (O] + a0 (]} +r(r),
2'(0) = 2/(T) = 0,

where p,q,7 € C°(0,T) with p(t) > 0. Corresponding to NBVP(8), one sees that

3

Z5 3 3
t = 4 pt)as +qt)zt +r(t
f(t2,y,2) 1+2Singngrp( Jzs +q(t)zs +r(t),
we set
3
h(t,z z):L
Y 1+ 2[sinz]8’
and

3 3
g1t z) =p(t)zs, g2(t,y) =0, gs(t,y) = a(t)y®
and 8 =1/3, 0 =3/5.
It is easy to check that ry = |[p|| and ro = 0,73 = [|q||, where ||p|| = max;c[o,7 [p(t)]
and ||q|| = max;cjo, 7 |q(t)]. It follows that
ftx,y,2) = h(t, 2y, 2) + 91 (t, @) + g2(t,y) + g3(t, 2) + (1),

8

Z5 1 8
h(t - > |y = 0+1
h(t.9.2) = T 2 3141 = A
and
i (T
lim sup 9t @) =r;,i=1,2,3.

T=+00 1c(0,T] |20

On the other and, we have
3
zf(t.a,y,0) = (p)a? + (1))

Since p € C°[0,T] with p(t) > 0, there exists k > 0 such that p(t) > k for all t € [0,T].
Then

xf(t,z,y,0) =z (p(t)x% + r(t)) > ka? +r(t)w.

It is easy to see that there exists M > 0 such that zf(¢,z,y,0) > 0 for all ¢ € [0,T] and
(x,y) € R Hence (B) and (C) hold.
It follows from Theorem 2.1 that NBVP(9) has at least one solution if

3 1
T=lpll +Tlall < 3.
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Example 2.2. Consider the NBVP

(10) { (2’ (1)) = — 1l 4 p(O (O] + ()’ () +r(8),
2(0) = /(1) =0,

where ¢(x) = |z|*z, p,q,r € C°(0,1). Corresponding to the assumptions of Theorem 2.2,
we set

5
h(t,z,y,2) = TTr 2k
and
g1(t,z) = p(t)x®, galt,y) =0, gs(t,z) == q(t)z°

and 8 =1/3,0=5T=1.

It is easy to check that r; = ||p||, 72 = 0 and r3 = ||g||. Similarly to Example 2.1, we
can show that (B) and (C’) hold. It follows from Theorem 2.2 that NBVP(10) has at least
one solution if

1
3 > llpll +lall
Example 2.3. Consider the NBVP
(11) { [?Eg;(t))]’l(zl)(r(to) +23() [ ()] +23(t) + (1), t € (0,7),

where ¢(z) = |z|*z, r € C°(0,1)
. Corresponding to the assumptions of Theorem 2.3, we set

T T T T
/ F(£, Mo, Mo, 0)dt / F(t, — Mo, Mo, 0)dt = / (ME + (1))t / (=M + r(t))dt
0 0 0 0

and
|(r(t) + 2° (1)) [ (D] +2°(t) + r()] < (Mg + () (2" (t)]° + 1)

if |z(t)| < My for all ¢ € [0,T.
Choose ®(z) = 2° + 1, and q(t) = M3 + r(t). Then |f(t,z,y, 2)| < q(t)®(¢1(2)).
It follows from Theorem 2.3 that NBVP(11) has at least one solution if

Mgs + tdt</ —dx.
o< [ e

One sees that imply that there is a large number of functions that satisfy the condi-
tions of Theorem 2.3. In addition, the conditions

/T(M3 +r(t))dt /T(—Mg +r(t))dt <0
0 0

/OT[MS +r(t))dt < /+Oo 1w

T My x5+1

and

are also easy to check.

Remark. Examples 2.1-2.3 can not be coved by the theorems obtained in [8,4,14-
16,12] since here f may changes sign. Comparing to the results obtained in [5,7,13,6], we
do not need the existence of upper and lower solutions when establish the existence results
for solutions. Our results ( Theorem 2.1-2.3 ) are different from those ones in [1,9,10] since
we do not need the assumption |f(t,y,p)| < A(t,y)|p? + B(t,y).
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3. Proofs of Theorems

To get the existence results for solutions of NBVP(8), we need two fixed point theo-
rems, one is Mawhin’s fixed point theorem and the other Schauder’s fixed point theorem.

Let X and Y be Banach spaces, L : D(L) C X — Y be a Fredholm operator of index
zero, P: X = X, Q: Y — Y be projectors such that In P=Ker L, Ker @ =Im L, X =
Ker LoKer P, Y =Im L& Im Q. It follows that

L|D(L)mKerP : DomLNKer P—Im L

is invertible, we denote the inverse of that map by K.
If © is an open bounded subset of X, D(L)NQ # (), the map N : X — Y will be
called L—compact on Q if QN (Q) is bounded and K,(I — Q)N : Q — X is compact.

Theorem GM]J11]. Let L be a Fredholm operator of index zero and let N be
L—compact on €. Assume that the following conditions are satisfied:

(i). Lz # ANz for every (z,\) € [(D(L) \ KerL) N 9] x (0,1);

(ii). Nz ¢ ImL for every z € KerL N 99Q;

(iii). deg(AQN ‘KerL , QN KerL,0) # 0, where A : Y/ImL — KerL is the isomor-
phism.
Then the operator equation Lx = Nz has at least one solution in D(L) N .

Theorem LS[11]. Suppose T : X — X is completely continuous operator. If
there exists a open bounded subset {2 such that 0 € Q@ C X and =z # Az for all x €
D(T)NoQ and A € [0,1], then there is at least one x € Q such that z = Tz.

We use the Sobolev space W11(0,T) defined by
Wh(0,T) = {x : [0,T] — R|z is absolutely continuous on [0, T] with 2’ € L*[0,T]}.
Let the Banach space be X = C°[0,7] x C°[0,T] with the norm
t€[0,T) t€[0,T]

II(I,y)IImaX{ sup |x(t)], sup Iy(t)}

and D(L) = WH1(0,T). Let Y = L[0,7T] x L'[0,T] x R?. Define the linear operator L :
D(L)NX =Y by

o)
a(t) \_ | ¥
L( u(®) > =1 40 for all (z,y) € D(L)N X.
y(T)
Define the nonlinear operator N : X — Y, for all (z,y) € X, by
(t) ?El(y((g)) ((1)), o~ (y(1)))
x(t . t,x(t), z(7(t)), 0~ " (y(t
N< y(t) > B 8

It is easy to show the following results. We omit their proofs since the proofs are
simple and standard.

(i). KerL ={(a,0):a € R};

(ii). ImL = {(u,v,a,b) €Y : fOT v(t)dt =b—al;

(iii). L is a Fredholm operator of index zero;

(iv). There exist projectors P: X — X and @ : Y — Y such that KerL = ImP
and Ker@) = ImL. There is an isomorphism A : KerL — Y/ImL.
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(v). Let Q C X be an open bounded subset with QN D(L) # (), then N is L—compact
on

(vi). (z,y) € D(L) is a solution of the operator equation L(x,y) = N(z,y) implies
that z is a solution of NBVP(8).

Let Fu(t) = f(t,z(t),z(7(t)), "1 (y(t))). In fact, we have, for a € R, (z,y) € X and
(u,v) € Y, that

e
N
< 8
==
~——

Il

Lemma 3.1. Suppose that (B) and (C) hold. Let @ = {(z,y) : L(z,y) =
AN (z,9), ((z,y),\) € [(D(L)\KerL)] x (0,1)}. Then £, is bounded if Te(rl +7r2)+13 < .
Proof. For (z,y) € Q4, we have L(J; y) = AN(z,y), A € (0,1), i

a'(t) = Ao~ (y(1)),

(12) { y'(t) = /\f(t a(t), z(7(t), 6~ (y(t))),
y(0) =0, y(T)=0.

Thus
T 1

AB(N) f(t7 x(t), z(7(t)), Xx/(t))x/(t)dt = 0.
We get from C(i) that

T 1
/ h (t x(t )\ x'( )x dt+ g1(t,z(t))z'(t)dt
0
T T 1 T
+/ g2(t, z( / gs(t, ~2'(t dt+/ r(t)z'(t)dt = 0.
0 0 )‘ 0

Then C(i¢) implies that

5 <o) o
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It follows from 6 > p — 1 that
T

T T
/ 0+1 / 12
8 / ()t < / lgn (.2 (8) (1)t + / lga(t,2(r (8)) |2 (1) dt
0 T l / ! 4 !
A / 4 (t, o (t)) 1! (1))t + / Ir(8) |2 () dt.

Now, we prove that there exists & € [0,7] such that |x(£)] < M. It follows from (B)
that there exists M > 0 such that

xf(t,z,y,0) >0, t€[0,T], |x|> M and |y| > M.

Suppose max;epo, ) Z(t) = x(t1) and minycjo 7 2(t) = x(t2) with t1,to € [0,T]. Tt is
easy to see that 2/(¢;) = 0(¢ = 1,2) and [¢(2'(¢))]) |t=t, < 0 and [p(z'(t))] |¢=¢, > 0. We
consider three cases.

Case (i). z(t1) > 0 and z(t2) < 0. At this case, there exists £ € [0,T] such that
z(§) = 0. The claim is true.

Case (ii). z(t1) < 0 and x(t2) < 0. At this case, if x(t1) < —M, then z(t2) < —M.
Hence z(t) < —M for all t € [0,T]. Then f(¢,z(t2),z(7(t2),0)x(t2) > 0 implies that

f(ta, x(t2), x(7(t2)),0) < 0.

It follows that 0 < [(z'(¥))] |i=t, = Af(t, z(t2), z(7(t2)),0) < 0, a contradiction. Hence we
get that —M < z(t1) < 0. The claim is true.

Case (iii). If z(¢1) > 0 and z(t2) > 0. At this case, if z(t2) > M, then z(t1) > M.
Hence x(t) > M for all t € [00,7]. Then xz(t1)f(¢,x(t1),x(r(t1)),0) > 0 implies that
ft,z(ty), z(7(t1)),0) > 0. It follows that 0 > [p(2' ()] |t=¢;, = Mf(t,x(t1), z(7(t1)),0) > 0,
a contradiction. Hence we get that M > x(t2) > 0.

It follows from Cases 1, 2, and 3 that there exists £ € [0, 7] such that |z(£)] < M.

Now, we have, for ¢ € [0, T}, that

lz(t)] =
Choose € > 0 such that

(13) B> (r1 +71o4+2)T% + 75+ e
From (C)(iii), there exists 6 > 0 such that

z(§) +/; x’(t)dt’ < M+/OT |z’ ()| dt.

lgi(t, )| < \:z:|9(7’i +e), || >4, t€[0,T],i=1,2,3.
Then

T
8 / @/ (8)
T 4 T T
< (r1+ro+ 2€) <M+/0 |x/(t)dt> /O |$/(t)|dt+(r3+e)/0 |q:’(t)|9+1dt

t t
(g )+ s laat.0)

0 T e
+ ¢, T+ / "0+ de
i lalt.0))) < /1)

T o o+1 Tx/ . 7T
+</O |7(t)] dt) </0 |z’ (1)) +1dt> .
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We claim that there is a constant o € (0, 1), independent of ), such that (1 + z)? <
1+ (64 1)z for all € (0,0]. In fact, let q(z) = (1 +z)% — (1 + (6 + 1)z), we see q(0) = 0,
and ¢’(0) = —1 < 0 implies that there exists o > 0 such that ¢(z) < 0 for all z € (0, 0], so

the claim is valid. o o
Now, we prove that there exists M > 0 such that fOT |2’ (t)|?+1ds < M, we consider

two cases. .
Case 1. [ |/(s)|ds < 2. We get

1

T M\’ . r o
5/0 |/ ()| dt < (r1 + 7o + 2¢) <M+U> T+t /0 |2 ()9 dt
T
Hrate) [ 1@
0

+ a t, + a t,
<te[ol,1T11,f§c<6|gl( N o o5 1922

1

0 T o
+ t, T+t / ()|t
e Lot ) ( (1)

4 Lo i T 104y 10+1 -
+</0 Ir(t)] dt) (/O |x(t)|+dt> .

Since 8 > r3 + €, there is a constant M; > 0 such that fOT |2’ (t)[P+1dt < M;.

T, 4 M : M
Case 2. [, |2/(s)|ds > . At this case, 0 < T ()ds < 0. We get

T T
B |x'(t)\6+1dt < (ri+re+ 26)T0/ |x’(t)|0+1dt
0 0

02

“r(’l"l +ro 4+ 26)(9 + 1)MTﬁ (/T |x/(t>|9+1dt>

T
+(r3+e)/ |2’ (t) |0 dt
0

1a t,x ma t.x
(g 0+ e laa(e.0)

T
2]
+ t, To+t "(0)|9 dt
te[oﬁ;mg\gs( w)l) (/0 12" (t)]

T 7 [T 7T
+</0 r(t)|9dt> (/0 |x(t)|9+1dt> .

Since 3 > (rq+ro+2¢)T%+(r3-+¢), there exists a constant My > 0 such that fOT |z’ (¢)|9*1dt <
M.
Hence we get

T
/ |z’ (t)|?F dt < max{M;, My} =: M.
0

So, for all t € [0,T], we get

1
041

T T
lz(t)| < M +/ |/ (t)|dt < M + T (/ |x’(t)|9+1dt> <M+ T M,
0 0
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It follows that |«(t)] < M + T# M for all t € [0,T]. Then
1
(14) max |z(t)] < M + ToF 07+

t€[0,T)

It is easy to show, for ¢ € [0,T], from the second equation in (12), that

T T
(15) / ¥ ()6 (y(s))ds = A / £(s,2(5), 2(r(3)), 6~ (5()))6 (y(s))ds.

Denoted by G(z) = [; ¢~ *(s)ds. One sces

T
(16) Gly(®) = =A [ f(s.(s). (). 0 (0™ ()
So

T
/O F(s,2(5),2(r(5)), 6~ (u(5)) 6~ (y(s))ds = O
and (C)(i)-(ii) imply that

8 / 671 (y(s)) | ds

/ h(s 2(s), 2(r(5)), o~ (y(s))6~ (y(s))ds

0

IN

T T
- / 15, 2(5))6™ (y(s))ds — / ga(s, 2(r())d (y(s))ds
0 0
- / g5(s, 6 (y(s)) 6"

(y(s)ds — / r(s)6~ (y(s))dt

IN

/|glsa: )l |ds+/ g2 (s, 2(r () |6~ (u(s))|ds

/ 19a(s DI~ (y(s)lds + / ()67 (y(s))dt

Since (B) implies that there exists & € [0, 7] such that |z(£)| < M, we get that

/j 2'(s)ds

()] < M + <M+ / 167 (y(s))|ds.
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Then

8 / 1671 (u(s))|*+ ds
T o T
T1 T2 € -1 -1
< (m+ +2><M+ / 6 <y<t>>|dt> / 167 (y(0))|dt

T
+(rs +¢) / 1671 (y())| " dt

+ ma t,x)| + ma t,x
(te[o,T]7}§c<6|gl(’ ) te[o,T],fi\g(s'”(’ )

1

e lon(t.0)]) T ( / |¢_1(y(t))0+1dt>

tel0,T],|z|<é

4 Lo i o 6+1 o
+</ ()| dt) (/ 16 1<y<t>>|+dt> .

Similarly we can prove that there exists M3 > 0 such that

T
/ 167 (y(s)) |\ ds < M.

0
Then using (C), we get similarly that

02 2]

Gly(t)) < (ri+7ro+20)T Mg+ (r1 + 1o + 2€)(0 + 1) MT o+ MIH
+(7"3 + €)M3

+ ma t,x)| + ma t,x
(te[mﬂﬁﬁ'gl( ) te[o,T],l};@'gQ(’ )

te[0,T],|z|<é

| T . CES e
max |gs(t, w)l) To M + (/ r(t)ﬁdt) M.
0
It follows that
IGy(1)] < (r1+7o+ 20T Ms + (11 + 1o + 26)(0 + 1) MT 57 M

T 0+1 % 1
+(rs +¢)Ms + / [r(¢)| 7 dt M
0

+ a t, + a t,
(te[@%]ﬁ@'gl( N o 5 192(8: )

0 1.
ma t,x)| ) To T M+
b s o)) T
It is easy to see that there exists a constant M > 0 such that G(llyl]) < M. Then there
exists a constant My > 0 such that ||y|| < Mp.
It follows that, for (x,y) € i, there is H > 0 such that ||(z,y)|| < H. Hence {; is
bounded. The proof is complete.

Lemma 3.2. Suppose (B) holds. Then Qg = {(z,y) € KerL : N(x,y) € ImL} is
bounded.
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Proof. For (a,0) € KerL, we have N(a,0) = (0, f(t,a,a,0),0,0). Nz € ImL implies
that

T
/ ft,a,a,0)dt = 0.
0

From condition (B), there is M > 0 such that
af(t,x,y,0) >0, t€[0,T], |z[,[yl > M.

If @ > M then f(t,a,a,0) > 0. It follows that fOT f(t,a,a,0)dt > 0, a contradiction to

fOT flt,a,a,0)dt = 0. If a < —M, similar contradiction can be induced. Thus € is bounded.
The proof is complete.

Lemma 3.3. Suppose (B) holds. Let either Q3 = {(x,y) € KerL : AA (z,y) + (1 —
MQN(z,y) =0, A € [0,1]}. Then Qs is bounded, where A : KerL — Y/ImL defined by
A(a,0) = (0,a,0,0).

Proof. Consider

Q3 ={(z,y) e KerL: AA (z,y) + (1 = NQN(z,y) =0, A € [0,1]}.
We will prove that Q3 is bounded. For (a,0) € 3, and A € [0, 1], we have

T
—(1- )\)/ f(t,a,a,0)dt = AaT.
0
Then
T
—(1— )\)/ af(t,a,a,0)dt = \a®T.
0

If A =1, then a = 0. If A € [0,1), from condition (B), there is M > 0 such that
xf(t,x,y,0) > 0, t € [0,T], |z|,ly] > M. If a > M then f(¢,a,a,0) > 0. Then we
get

T
0>—(1- A)/ af(t,a,a,0)dt = \a®*T >0,
0

a contradiction. If @ < —M, similar contradiction can be induced. Hence |a| < M. Thus
3 is bounded. The proof is complete.

Proof of Theorem 2.1. We know that L is a Fredholm operator of index zero and
N is L—compact on €. Since (z,y) is a solution of L(z,y) = N(z,y) implies that = is a
solution of equation (5). It suffices to get a solution (x,y) of L(z,y) = N(x,y). To do this,
we construct an open bounded set €2 such that (i), (i) and (iii) of Theorem GM hold.

Set Q be a open bounded subset of X such that Q D U_;Q;. By the definition of Q,
we have Q D Q; and Q D Qs, thus, from Lemma 2.1 and Lemma 2.2, that L(x,y) # AN (z,y)
for (x,y) € D(L) \ KerL) N 9Q and A € (0,1); N(z,y) ¢ ImL for (x,y) € KerL N oA

In fact, let H((z,y),A) = £AA (z,y) + (1 = N)QN(z,y). According the definition of
Q, we know Q D Qs, thus H((z,y),A) # 0 for (x,y) € 9Q N KerL, thus, from Lemma 2.3,
by homotopy property of degree,

deg(QN|Kers, 2N KerL,0) = deg(H(-,0), 2N KerL,0)
= deg(H(-,1),2NKerL,0) = deg(£A, 2N KerL,0) # 0.

Thus by Theorem GM, L(x,y) = N(x,y) has at least one solution (x,y) in D(L) N Q, then
x is a solution of equation (8). The proof is completed.
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Proof of Theorem 2.2. The proof is similar to that of the proof of Theorem 2.1
and is omitted.

Now we begin to prove Theorem 2.3. Set y(t) = ¢(2’(¢)), then BVP(8) is transformed
into
a'(t) = ¢~ (y(t)),
(17) y'(t) = f(tx(t),x(r(t), 67 (y(1), 0<t<T
y(0) = y(T) = 0.
It is easy to see that x is a solution of BVP(8) if (z,y) is a solution of problem (17).
Note that the homogeneous problem z’(t) = 0,4'(t) = 0,y(0) = y(T") = 0 has non-
trivial solutions. So, we shall consider the following problem, for m > 1:

() = ¢~ (y(t)),
(18) Y (t) = () = f(t,z(t),2(r(t), 67 (y(t), 0<t<T
y(0) = y(T) = 0.
and consider BVP(17) as a limiting case when m — +oo0.
Our aim is to provide sufficient conditions on f that which make BVP(18) solvable.

First, we show that solutions to BVP(18) are uniformly bounded, independently of m. Then,
we use the Arzela-Ascoli theorem to obtain the solvability of BVP(17).

We use the Sobolev space W11(0,T) defined by
W10, T) = {x : [0,T] — R|x is absolutely continuous on [0, T] with 2’ € L*[0, T]}.
Let the Banach space be X = C°[0,7] x C°[0,T] with the norm
Iz, )l = maX{ sup |xz(t)], sup |y(t)}
te[0,7] te[0,7)

and D(L) = {(z,y) € WH1(0,T) : 2’ € L*[0,T),y' € L0, T]}. Let Y = L0, T] x L[0, T] x
R2. Define the linear operator L : D(L)N X — Y by

2(t)
e\ _ | v -Lew |
L< y(®) > (0} for all (z,y) € D(L)N X.
y(T)
Define the nonlinear operator Ny : X — Y, for all (z,y) € X, by
(t) St z(t) ¢El((23()t)q)5 Hy(1))
x(t . t,x(t), z(7(t)), o~ " (y(t
Nf( y(t) ) B 0
0

It follows that BVP(18) is equivalent to
(19) L(z,y) = Ny(z,y),

in the sense that every solution of BVP(18) is a solution of (19) and vice-versa.

It is easy to show that the operator L is invertible and the operator N¢(-,-) is con-
tinuous and completely continuous.

Since our arguments are based on Theorem LS, we shall consider a one-parameter
family of problems related to (19). For 0 < A < 1, consider

(20) L(z,y) = ANy(z,y).
Proof of Theorem 2.3. We divide the proof into two steps.
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Step 1. For X € (0, 1], prove that any possible solution (z,y) of
1

z'(t) = Ao~ (y(t)),
(21) Y () = () = M (La),a(r(1), 07 (y(1) ) 0<t<T,
y(0) =y(T) =0,
where
max{ f(t m,y,z),—% +f0T f(t,MO,y,O)dt} x> My
filt,x,y,2) =< f(t,z,y,z2) —My <z <M,

mm{f (t,z,y,z +f0 fMo,y,O)dt} x < —My

satisfies |z(t)| < My for all t € T.

Let (z,y) be a solution of (21). Use (A)(i), without loss of generality, we prove only
the case when fOT f(t, My, My, 0)dt > 0 and fOT f(t, =My, My, 0)dt < 0. The other case is
similar.

We remark that any solution (z,y) of (21) that satisfies |z(t)| < Mpy is a solution of
(20), because in this case

Si(t,x(t), 2(7(2), oy (1)) = f(t,2(1), 2(7(1)), o(y(1)))-

Let tg € [0,T] be a value where x achieves its positive maximum. Then z'(ty) = 0.
We prove that z(tg) < My, then z(t) < My for all ¢ € [0,T]. Three cases are considered.

Case 1. x(tg) > My and ¢y € (0,7). Then there exists a > 0 such that x(¢) > M, for
all t € [to,to+a] C [0,T]. It follows from the differential equation in (21) and the definition
of f1 that for all ¢ € [tg, to + al,

BN = o0 (ﬂ}a( o [ s Moo >>7o>dt>
B T
> PN (W +)\/0 f(t,Mo,x(T(t)),O)dt> > 0.
This implies that ¢(z f to ))'ds > 0 for all t € [tg,to + a], which yields

¢
x(t) — xz(tg) = / 2/ (r)dr >0 for all t € [to,to + al.
to

This contradicts that z(tg) is the maximum of z. Hence x(t) < My for all ¢t € [0,T].

Case 2. tg = 0. Similarly to Case 1, we can prove that z(tg) < My. Then x(t) < My
for all ¢t € [0, T7.

Case 3. ty = T. Then there exists b > 0 such that x(t) > My for all ¢ € [t —b,t9] C
[0,T]. It follows from the differential equation in (21) and the definition of f; that for all
t € [to, to + al,

Y

T
B O] 2 o) <1m<t>—AAfj+A / f<t,Mo,x<r<t>>,o>dt>

vV
=
>
S—
VR
8
=
S~—

TMO + A/OT F(t, My, 2(+(1)), 0)dt> =0

to

This implies that ¢(z'(t)) = — [,°[¢(2'(s)]'ds < 0 for all t € [ty — b, to], which yields

x(t)—x(to):—/tto "(T)dr >0 forall t € [ty — b, to].
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This contradicts that z(tg) is the maximum of z. Hence x(t) < M for all ¢ € [0, T].

Now, in case x achieves a negative minimum at ¢ = 7y such that z(m9) < —Mjp and
7o € (0,T) then there exists b > 0 such that y(t) < —My for all ¢ € [19, 79 + b]. It follows
from the differential equation in (21) and the definition of f; that for all ¢ € [rg, 70 + 8],

T
B < o) (“’”;MOH / f(t,Mo,x<r<t>>,o>dt><o.

which leads to ¢(2'(t)) = ft [p(z"(s))]'ds < 0 for all ¢ € |19, 7o + b] and

70
t
(22) z(t) — x(m0) = / x'(s)ds <0 for all t € [r9,70 + 1]
To
This contradicts that z(7p) is the minimum of x on [0, 7.
We can handle the case of a minimum at 79 = 0 or 79 = T in a similar way as above.
Hence, we have proved that

(23) — My < z(t) < My for all t € [0,T],
which completes the proof of Step 1.
Step 2. Prove that there exists M; > 0 such that |y(¢)] < M; for all ¢ € [0,T] for

any solution y of (21) with |z(t)| < M, for all t € [0,T].
Let (x,y) be a solution of (21) such that |z(t)| < M, for all ¢ € [0,T]. Condition (A2)

implies
[o(2 (1)) |z ()] =’ (1)]
| < B (52)
¢ B o (1)
< My+q(t)® |$/)(\t)|> for all t € [0,T.

On the other hand,
0o (| [ ) <o ([

Hence . /
<o (Mot+/0 o) ('”””i‘”) ds) for all £ € [0,7].

Since 0 <t < T, we infer that

ds) for all ¢ € [0,T].

(1)

YO £ 4 <MOT+ /th(s)@ (xlisﬂ) ds) for all £ € [0,T].
- ut) = MyT + /t q(s)® ('xli“")') ds for all t € [0,T].
Then '

2 < oo, wey = e () forati e .71

Since ¢ is nondecreasing, we get
u'(t)
(¢~ (u(t)))

u(t) > TMO7

<q(t) forallte[0,T].
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‘ M t s)as ! S S
/o 6 u() / a(s)ds < / als)ds.
u(t) do u(t) do T
/TMO 56 1(0) /u@ o) = / 4(s)ds.

The condition (A)(ii) implies that there exists My > 0 such that u(t) < M; for all ¢ € [0, T).
w/)(\t)‘ < M for all t € [0,T]. Hence |y(¢)| < M; for all ¢t € [0,T].

It follows that

This implies

Therefore,

We have seen in the above discussion that any possible solution (z,y) of (21) satisfies
|z(t)| < My and |y(t)| < M; forallte[0,T].
Let M := My + M;. Then ||(z,y)|| < M. It is clear that problem (21) is equivalent to
(24) (z,y) = AL_le1($7y)
Let U := {(z,y) € X;||(z,y)|| < 1+ M}. Then we can easily show that for any A, the
operator L' Ny, (-,-) is a completely continuous operator (see [6]) and
(z,y) = )‘LilNﬁ ()

has no fixed point on 9U, the boundary of U.
Therefore, Theorem LS implies that

(z,y) = L7'Np, ()

has at least one solution in U, i.e., there exists (z,y) € U such that

(z,y) = L' Ny, (2,y)
, which means that (x,y) is a solution of (21) for A = 1. But, we have seen that any solution
of (21), satisfying |z(t)| < M is also a solution of (19). Hence (21), with A = 1, has at least
one solution. But (19) is exactly (21) for A = 1. Hence, we have proved that for each m > 1,
problem (19) has at least one solution, which we denote by (2, ym). Moreover, (Zm, Ym ),
satisfies the estimates

(25) |zm (t)] < My and  |ym(t)] < My for allt € [0,T].

Furthermore, My and M; are independent of m. This shows that the sequences {(x, ym)}
is uniformly bounded.
Now,

Ym () :/0 y'(s)ds = %/0 xm(s)ds—l—)\/o F(s,2m(8), m(7(8)), ym/(s)ds.

This implies

(1) = y(02) = - [ (s A [0 5) () i ().

t1
Since m > 1 and f € Car([0,T] x R?), we have

ta
[Wom (£2) — Yo (t2)] < Molts — t1] + / o ()ds
t1

This shows that {y,,} is equicontinuous.
Also, ., (t) = 2, (0) + fot 2! (s)ds implies

() () = [ ala(e)ds = [ o (y(s))ds

T1
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By Step 2 we have |y,,(t) < M for all ¢ € [0,T]. Thus |ym(m2) — Ym(71)| < My|m2 — 71| So
that {y.,} is also equicontinuous.

By the Arzela-Ascoli theorem, we can extract from {(zm,ym)} subsequences, which

we label the same, and that are uniformly convergent on [0,T]. Let x(t) = lim,— 400 Tm (%)
and y(t) = limy 400 Ym(t). Then (z,y) is a solution of (17). Hence z is a solution of
BVP(8). This completes the proof of Theorem 2.3.
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