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STUDIES ON NBVPS FOR FUNCTIONAL DIFFERENTIAL

EQUATIONS WITH ONE-DIMENSIONAL p−LAPLACIAN

Yuji Liu1

Sufficient conditions for the existence of at least one solution to Neumann

boundary value problems for second order nonlinear functional differential equations

are established by using Mawhin fixed point theorem and Leray-Schauder’s fixed point
theorem, respectively. Some examples show that our results cannot be trivially deduced

from the previous works, see the remark at the end of Section 2.
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1. Introduction

In recent years, Neumann boundary value problems ( NBVPs for short ) have been
investigated in a large number of papers. Atslaga in [1] studied the following NBVP

(1)

{
x′′ = f(x), t ∈ (0, 1),
x′(0) = x′(1) = 0.

Under the assumptions that f is continuous, f has simple zeros at p1 < p2 < p3 < p4 < p5,
f(−∞) = −∞ and f(+∞) = +∞, the multiplicity results for solutions of NBVP(1) were
proved. The NBVP of the form

(2)

{
−x′′(t) +mx(t) = g(t)f(t, x(t)), 0 < t < 1,
u′(0) = u′(1) = 0,

was studied in papers [3,4,8,12,14-16], where m ∈ R, g : (0,+∞) → [0,+∞) and f :
(0, 1) × (0,+∞) → [0,+∞) are continuous and may be singular at t = 0 or t = 1 and
x = 0. The techniques involved are based on the fixed point theorems in cones in Banach
spaces such as the nonlinear alternative of Leray-Schauder [8], the Krasnoselskii fixed point
theorem [4,12,14,15], the Leggett-Williams fixed-point theorem [16].

In papers [5,6,7], the existence of solutions of the following NBVPs

(3)

{
−(φ(x′(t)))′ = f(t, x(t), x′(t)), t ∈ [a, b],
u′(a) = u′(b) = 0,

and

(4)

{
−(φ(x′(t)))′ = f(t, x(t)), t ∈ [a, b],
u′(a) = u′(b) = 0,

were studied, where 0 < a < b are constants, f is a continuous or Caratheodory function and
τ ∈ C[0, T ]. The upper and lower solutions method coupled with the monotone iterative
technique was used in these papers.
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In paper [9], Girg studied the following problem

(5)

{
(φ(u′(t)))′ + g(u′(t)) + h(u(t)) = f(t), 0 < t < T,
u′(0) = u′(T ) = 0,

Let f(t) = f̃ + f with f = 1
T

∫ T
0
f(t)dt. Denote

C̃[0, T ] =

{
u ∈ C[0, T ] :

∫ T

0

u(t)dt = 0

}
, C̃T = CT ∩ C̃[0, T ].

Under the following assumptions:
(i) φ is an increasing homeomorphism of I1 onto I2, where I1, I2 ⊂ R are open

intervals containing zero and φ(0) = 0;
(ii) g is continuous;
(iii) h is continuous, bounded real function having limits in ±∞ with

h(−∞) := lim
ξ→−∞

h(ξ) < lim
ξ→+∞

h(ξ) =: h(+∞);

(iv) φ is odd and there exist c, δ > 0 and p > 1 such that for all z ∈ (−δ, δ)∩Domφ :
c|z|p−1 ≤ |φ(z)|.

It was proved that NBVP(5) has at least one solution if s(f̃) + h(−∞) < f < s(f̃) +
h(+∞). and √

3

T
b−
√
T sup
ξ∈R
|h(ξ)| > 0, ||f̃ ||L2 <

√
3

T
b−
√
T sup
ξ∈R
|h(ξ)|.

Afrouzi and Moghaddam in [2] studied the following Neumann-Robin boundary value
problem

(6)

{
−(φp(x

′(t)))′ = λf(x(t)), t ∈ [0, 1],
x′(0) = 0, x′(1) + αx(1) = 0,

where α ∈ R, λ > 0 are parameters and p > 1, and p′ = p
p−1 is the conjugate exponent of p

and p(x) := |x|p−2x for all x ∈ R, where (φp(u
′))′ is the one dimensional p-Laplacian and

f ∈ C2[0,+∞) such that f(0) < 0, or f(0) > 0, and also f is increasing and concave up.
The existence and multiplicity of nonnegative solutions of BVP(6) were studied.

In papers [13], the NBVPs of the form

(7)

{
[φ(x′(t))]′ = −f(t, x(t), x(τ(t))), t ∈ [0, T ],
u′(0) = u′(T ) = 0,

and {
x′′(t) = g(t, x(t), x(τ(t)), x′(t)), t ∈ [0, T ],
u′(0) = u′(T ) = 0,

(7)′

was studied, where f : [0, T ] × R2 → R and g : [0, T ] × R3 → R are continuous and
τ ∈ C([0, T ], [0, T ]), φ : R → R is an increasing homeomorphism such that φ(0) = 0. The
methods used in [13] are based upon the upper and lower solutions methods and the mono-
tone iterative technique. It was showed that the monotone technique produces two mono-
tone sequences that converge uniformly to extremal solutions of NBVP(7) and NBVP(7)′,
respectively.

Motivated by the paper [13], we study the following NBVP for the functional differ-
ential equation with one-dimensional p−Laplacian

(8)

 (φ(u′(t)))′ = f(t, u(t), u(τ(t)), u′(t)), t ∈ (0, T ),
u′(0) = 0,
u′(T ) = 0,
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where T > 0, τ ∈ C([0, T ], [0, T ]), φ : R → R is an increasing homeomorphism such that
φ(0) = 0 whose inverse function s denoted by φ−1, f is a L1-Carathéodory function on [0, T ],
i.e. f : (0, T )×R3 → R satisfies the following conditions:

(i) f(·, x, y, z) is measurable for all (x, y, z) ∈ R3.
(ii) f(t, ·, ·, ·) is continuous for almost all t ∈ (0, T ).
(iii) For each K > 0 there exists hK ∈ L1(0, T ) such that |x|+ |y|+ |z| ≤ K implies

|f(t, x, y, z)| ≤ hK(t) for almost all t ∈ (0, T ).
A function x : [0, T ] → R is called a solution of NBVP(8) if x ∈ C1[0, T ], [φ(x′)]′ ∈

L1(0, T ) and x satisfies (8).
The purpose of this paper is to establish new sufficient conditions for the existence of

at least one solutions of NBVP (8) by using Mawhin’s fixed point theorem and Schauder’s
fixed point theorem [11]. It is interesting that we allow f to be sublinear, at most linear
or superlinear. The methods used in this paper are different from those used in papers
[1-10,11-16] and so are the assumptions and techniques new.

This paper is organized as follows. In Section 2, main results are given, and two
examples are presented to illustrate them, whereas the known results in the current literature
do not cover them, in Section 3, we prove the main results, i.e., Theorems 2.1-2.3.

2. Main Results and Examples

Let us list some conditions.
(A) there exists a positive constant M0 such that

(i)
[ ∫ T

0
f(t,M0, y, 0)dt

][ ∫ T
0
f(t,−M0, y, 0)dt

]
< 0 for all y ∈ R;

(ii) there exist q ∈ L1([0, T ]) and Φ : [0,+∞)→ [0,+∞) nondecreasing with 1/Φ(x)
integrable over bounded intervals such that |f(t, x, y, z))| ≤ q(t)Φ(|z|) for all (t, x, y) ∈
(0, T )× [−M0,M0]2, z ∈ R and∫ +∞

TM0

dσ

Φ(φ−1(σ))
>

∫ T

0

q(s)ds.

(B) there exists a constant M > 0 such that

xf(t, x, y, 0) > 0, t ∈ (0, T ), |x| > M and |y| > M.

(C) there exist the Carathéodory functions h : (0, T )×R3 → R, gi : (0, T )×R→ R,
and function r ∈ L1(0, T ) such that

(i) f(t, x, y, z) = h(t, x, y, z)+g1(t, x)+g2(t, y)+g3(t, z)+r(t) holds for all (t, x, y, z) ∈
(0, T )×R3;

(ii) there exist constants θ ≥ 0 and β > 0 such that

h(t, x, y, z)z ≥ β|z|θ+1

holds for all (t, x, y, z) ∈ (0, T )×Rz;
(iii) there exist the limits

lim
|x|→+∞

sup
t∈[0,T ]

|gi(t, x)|
|x|θ

= ri ∈ [0,+∞), i = 1, 2, 3.

(C′) there exist the Carathéodory functions h : (0, T )×R3 → R, gi : (0, T )×R→ R,
and function r ∈ L1(0, T ) such that (C)(i) and (C)(iii) hold and
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(ii) there exist constants θ ≥ 0 and β > 0 such that

h(t, x, y, z)z ≤ −β|z|θ+1

holds for all (t, x, y, z) ∈ (0, T )×R3.

Theorem 2.1. Suppose that (B) and (C) hold. Then BVP(8) has at least one
solution if T θ(r1 + r2) + r3 < β.

Theorem 2.2. Suppose that (B) and (C ′) hold. Then BVP(8) has at least one
solution if T θ(r1 + r2) + r3 < β.

Theorem 2.3. Assume that conditions (A) holds. Then BVP(8) has at least one
solution.

Now, we present examples that our results can readily apply, whereas the known re-
sults in the current literature do not cover them.

Example 2.1. Consider the NBVP

(9)

{
x′′(t) = [x′(t)]

3
5

1+2[sin x(t)]8 + p(t)[x(t)]
3
5 + q(t)[x′(t)]

3
5 + r(t),

x′(0) = x′(T ) = 0,

where p, q, r ∈ C0(0, T ) with p(t) > 0. Corresponding to NBVP(8), one sees that

f(t, x, y, z) =
z

3
5

1 + 2[sinx]8
+ p(t)x

3
5 + q(t)z

3
5 + r(t),

we set

h(t, x, y, z) =
z

3
5

1 + 2[sinx]8
,

and

g1(t, x) = p(t)x
3
5 , g2(t, y) = 0, g3(t, y) = q(t)y

3
5

and β = 1/3, θ = 3/5.
It is easy to check that r1 = ||p|| and r2 = 0, r3 = ||q||, where ||p|| = maxt∈[0,T ] |p(t)|

and ||q|| = maxt∈[0,T ] |q(t)|. It follows that

f(t, x, y, z) = h(t, x, y, z) + g1(t, x) + g2(t, y) + g3(t, z) + r(t),

zh(t, x, , y, z) =
z

8
5

1 + 2[sinx]8
≥ 1

3
|z| 85 = β|z|θ+1,

and

lim
x→+∞

sup
t∈[0,T ]

gi(t, x)

|x|θ
= ri, i = 1, 2, 3.

On the other and, we have

xf(t, x, y, 0) = x
(
p(t)x

3
5 + r(t)

)
.

Since p ∈ C0[0, T ] with p(t) > 0, there exists k > 0 such that p(t) > k for all t ∈ [0, T ].
Then

xf(t, x, y, 0) = x
(
p(t)x

3
5 + r(t)

)
> kx2 + r(t)x.

It is easy to see that there exists M > 0 such that xf(t, x, y, 0) > 0 for all t ∈ [0, T ] and
(x, y) ∈ R2. Hence (B) and (C) hold.

It follows from Theorem 2.1 that NBVP(9) has at least one solution if

T
3
5 ||p||+ ||q|| < 1

3
.
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Example 2.2. Consider the NBVP

(10)

{
[φ(x′(t))]′ = − [x(t)]5

1+2[sin x(t)]8 + p(t)[x(t)]5 + q(t)[x′(t)]5 + r(t),

x′(0) = x′(1) = 0,

where φ(x) = |x|4x, p, q, r ∈ C0(0, 1). Corresponding to the assumptions of Theorem 2.2,
we set

h(t, x, y, z) = − z5

1 + 2[sinx]8
,

and

g1(t, x) = p(t)x5, g2(t, y) = 0, g3(t, z) == q(t)z5

and β = 1/3, θ = 5, T = 1.
It is easy to check that r1 = ||p||, r2 = 0 and r3 = ||q||. Similarly to Example 2.1, we

can show that (B) and (C′) hold. It follows from Theorem 2.2 that NBVP(10) has at least
one solution if

1

3
> ||p||+ ||q||.

Example 2.3. Consider the NBVP

(11)

{
[φ(x′(t))]′ = (r(t) + x3(t))[x′(t)]5 + x3(t) + r(t), t ∈ (0, T ),
x′(0) = x′(1) = 0,

where φ(x) = |x|4x, r ∈ C0(0, 1)
. Corresponding to the assumptions of Theorem 2.3, we set∫ T

0

f(t,M0,M0, 0)dt

∫ T

0

f(t,−M0,M0, 0)dt =

∫ T

0

(M3
0 + r(t))dt

∫ T

0

(−M3
0 + r(t))dt

and

|(r(t) + x3(t))[x′(t)]5 + x3(t) + r(t)| ≤ (M3
0 + r(t))(|x′(t)|5 + 1)

if |x(t)| ≤M0 for all t ∈ [0, T ].
Choose Φ(x) = x5 + 1, and q(t) = M3

0 + r(t). Then |f(t, x, y, z)| ≤ q(t)Φ(φ−1(z)).
It follows from Theorem 2.3 that NBVP(11) has at least one solution if∫ T

0

[M3
0 + r(t)]dt <

∫ +∞

TM0

1

x5 + 1
dx.

One sees that imply that there is a large number of functions that satisfy the condi-
tions of Theorem 2.3. In addition, the conditions∫ T

0

(M3
0 + r(t))dt

∫ T

0

(−M3
0 + r(t))dt < 0

and ∫ T

0

[M3
0 + r(t)]dt <

∫ +∞

TM0

1

x5 + 1
dx

are also easy to check.

Remark. Examples 2.1-2.3 can not be coved by the theorems obtained in [8,4,14-
16,12] since here f may changes sign. Comparing to the results obtained in [5,7,13,6], we
do not need the existence of upper and lower solutions when establish the existence results
for solutions. Our results ( Theorem 2.1-2.3 ) are different from those ones in [1,9,10] since
we do not need the assumption |f(t, y, p)| ≤ A(t, y)|p2 +B(t, y).
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3. Proofs of Theorems

To get the existence results for solutions of NBVP(8), we need two fixed point theo-
rems, one is Mawhin’s fixed point theorem and the other Schauder’s fixed point theorem.

Let X and Y be Banach spaces, L : D(L) ⊂ X → Y be a Fredholm operator of index
zero, P : X → X, Q : Y → Y be projectors such that Im P = Ker L, Ker Q = Im L, X =
Ker L⊕Ker P, Y = Im L⊕ Im Q. It follows that

L|D(L)∩Ker P : Dom L ∩Ker P → Im L

is invertible, we denote the inverse of that map by Kp.

If Ω is an open bounded subset of X, D(L) ∩ Ω 6= ∅, the map N : X → Y will be
called L−compact on Ω if QN(Ω) is bounded and Kp(I −Q)N : Ω→ X is compact.

Theorem GM[11]. Let L be a Fredholm operator of index zero and let N be
L−compact on Ω. Assume that the following conditions are satisfied:

(i). Lx 6= λNx for every (x, λ) ∈ [(D(L) \KerL) ∩ ∂Ω]× (0, 1);
(ii). Nx /∈ ImL for every x ∈ KerL ∩ ∂Ω;
(iii). deg(∧QN

∣∣
KerL , Ω ∩ KerL, 0) 6= 0, where ∧ : Y/ImL → KerL is the isomor-

phism.
Then the operator equation Lx = Nx has at least one solution in D(L) ∩ Ω.

Theorem LS[11]. Suppose T : X → X is completely continuous operator. If
there exists a open bounded subset Ω such that 0 ∈ Ω ⊂ X and x 6= λTx for all x ∈
D(T ) ∩ ∂Ω and λ ∈ [0, 1], then there is at least one x ∈ Ω such that x = Tx.

We use the Sobolev space W 1,1(0, T ) defined by

W 1,1(0, T ) = {x : [0, T ]→ R|x is absolutely continuous on [0, T ] with x′ ∈ L1[0, T ]}.
Let the Banach space be X = C0[0, T ]× C0[0, T ] with the norm

||(x, y)|| = max

{
sup
t∈[0,T ]

|x(t)|, sup
t∈[0,T ]

|y(t)|

}
and D(L) = W 1,1(0, T ). Let Y = L1[0, T ] × L1[0, T ] × R2. Define the linear operator L :
D(L) ∩X → Y by

L

(
x(t)
y(t)

)
=


x′(t)
y′(t)
y(0)
y(T )

 for all (x, y) ∈ D(L) ∩X.

Define the nonlinear operator N : X → Y , for all (x, y) ∈ X, by

N

(
x(t)
y(t)

)
=


φ−1(y(t))
f(t, x(t), x(τ(t)), φ−1(y(t)))
0
0

 .

It is easy to show the following results. We omit their proofs since the proofs are
simple and standard.

(i). KerL = {(a, 0) : a ∈ R};
(ii). ImL = {(u, v, a, b) ∈ Y :

∫ T
0
v(t)dt = b− a};

(iii). L is a Fredholm operator of index zero;
(iv). There exist projectors P : X → X and Q : Y → Y such that KerL = ImP

and KerQ = ImL. There is an isomorphism ∧ : KerL→ Y/ImL.
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(v). Let Ω ⊂ X be an open bounded subset with Ω∩D(L) 6= ∅, then N is L−compact
on Ω;

(vi). (x, y) ∈ D(L) is a solution of the operator equation L(x, y) = N(x, y) implies
that x is a solution of NBVP(8).

Let Fx(t) = f(t, x(t), x(τ(t)), φ−1(y(t))). In fact, we have, for a ∈ R, (x, y) ∈ X and
(u, v) ∈ Y , that

P

(
x(t)
y(t)

)
=

(
x(0)
0

)
, Kp


u(t)
v(t)
a
b

 =

( ∫ t
0
u(s)ds∫ t

0
v(s)ds

)
,

Q


u(t)
v(t)
a
b

 =


0
1
T

(∫ T
0
v(t)dt− (b− a)

)
0
0

 ,

Kp(I −Q)N

(
x(t)
y(t)

)
= Kp(I −Q)

(
φ−1(y(t))
Fx(t)

)
=

( ∫ t
0
φ−1(y(s))ds∫ t

0
Fx(s)ds− t

T

∫ T
0
Fx(s)ds

)
,

∧
(
a
0

)
=


0
a
0
0

 .

Lemma 3.1. Suppose that (B) and (C) hold. Let Ω1 = {(x, y) : L(x, y) =
λN(x, y), ((x, y), λ) ∈ [(D(L)\KerL)]× (0, 1)}. Then Ω1 is bounded if T θ(r1 +r2)+r3 < β.

Proof. For (x, y) ∈ Ω1, we have L(x, y) = λN(x, y), λ ∈ (0, 1), i.e.

(12)

 x′(t) = λφ−1(y(t)),
y′(t) = λf(t, x(t), x(τ(t)), φ−1(y(t))),
y(0) = 0, y(T ) = 0.

Thus

λφ(λ)

∫ T

0

f(t, x(t), x(τ(t)),
1

λ
x′(t))x′(t)dt = 0.

We get from C(i) that∫ T

0

h

(
t, x(t), x(τ(t)),

1

λ
x′(t)

)
x′(t)dt+

∫ T

0

g1(t, x(t))x′(t)dt

+

∫ T

0

g2(t, x(τ(t))x′(t)dt+

∫ T

0

g3(t,
1

λ
x′(t))x′(t)dt+

∫ T

0

r(t)x′(t)dt = 0.

Then C(ii) implies that

λβ

∫ T

0

(
|x′(t)|
λ

)θ+1

dt ≤ λ

∫ T

0

h

(
t, x(t), x(τ(t)),

1

λ
x′(t)

)
x′(t)

λ
dt

−
∫ T

0

g1(t, x(t))x′(t)dt−
∫ T

0

g2(t, x(τ(t))x′(t)dt

−
∫ T

0

g3(t,
1

λ
x′(t))x′(t)dt−

∫ T

0

r(t)x′(t)dt.
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It follows from θ ≥ p− 1 that

β

∫ T

0

|x′(t)|θ+1dt ≤
∫ T

0

|g1(t, x(t))||x′(t)|dt+

∫ T

0

|g2(t, x(τ(t))||x′(t)|dt

+λθ
∫ T

0

∣∣∣∣g3

(
t,

1

λ
x′(t)

)∣∣∣∣ |x′(t)|dt+

∫ T

0

|r(t)||x′(t)|dt.

Now, we prove that there exists ξ ∈ [0, T ] such that |x(ξ)| ≤ M . It follows from (B)
that there exists M > 0 such that

xf(t, x, y, 0) > 0, t ∈ [0, T ], |x| > M and |y| > M.

Suppose maxt∈[0,T ] x(t) = x(t1) and mint∈[0,T ] x(t) = x(t2) with t1, t2 ∈ [0, T ]. It is
easy to see that x′(ti) = 0(i = 1, 2) and [φ(x′(t))]′|t=t1 ≤ 0 and [φ(x′(t))]′|t=t2 ≥ 0. We
consider three cases.

Case (i). x(t1) ≥ 0 and x(t2) ≤ 0. At this case, there exists ξ ∈ [0, T ] such that
x(ξ) = 0. The claim is true.

Case (ii). x(t1) < 0 and x(t2) < 0. At this case, if x(t1) < −M , then x(t2) < −M .
Hence x(t) < −M for all t ∈ [0, T ]. Then f(t, x(t2), x(τ(t2), 0)x(t2) > 0 implies that

f(t2, x(t2), x(τ(t2)), 0) < 0.

It follows that 0 ≤ [φ(x′(t))]′|t=t2 = λf(t, x(t2), x(τ(t2)), 0) < 0, a contradiction. Hence we
get that −M ≤ x(t1) < 0. The claim is true.

Case (iii). If x(t1) > 0 and x(t2) > 0. At this case, if x(t2) > M , then x(t1) > M .
Hence x(t) > M for all t ∈ [00, T ]. Then x(t1)f(t, x(t1), x(τ(t1)), 0) > 0 implies that
f(t, x(t1), x(τ(t1)), 0) > 0. It follows that 0 ≥ [φ(x′(t))]′|t=t1 = λf(t, x(t1), x(τ(t1)), 0) > 0,
a contradiction. Hence we get that M ≥ x(t2) > 0.

It follows from Cases 1, 2, and 3 that there exists ξ ∈ [0, T ] such that |x(ξ)| ≤M .
Now, we have, for t ∈ [0, T ], that

|x(t)| =
∣∣∣∣x(ξ) +

∫ t

ξ

x′(t)dt

∣∣∣∣ ≤M +

∫ T

0

|x′(t)|dt.

Choose ε > 0 such that

(13) β > (r1 + r2 + 2ε)T θ + r3 + ε.

From (C)(iii), there exists δ > 0 such that

|gi(t, x)| ≤ |x|θ(ri + ε), |x| > δ, t ∈ [0, T ], i = 1, 2, 3.

Then

β

∫ T

0

|x′(t)|θ+1dt

≤ (r1 + r2 + 2ε)

(
M +

∫ T

0

|x′(t)|dt

)θ ∫ T

0

|x′(t)|dt+ (r3 + ε)

∫ T

0

|x′(t)|θ+1dt

+

(
max

t∈[0,T ],|x|≤δ
|g1(t, x)|+ max

t∈[0,T ],|x|≤δ
|g2(t, x)|

+ max
t∈[0,T ],|x|≤δ

|g3(t, x)|
)
T

θ
θ+1

(∫ T

0

|x′(t)|θ+1dt

) 1
θ+1

+

(∫ T

0

|r(t)|
θ+1
θ dt

) θ
θ+1
(∫ T

0

|x′(t)|θ+1dt

) 1
θ+1

.
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We claim that there is a constant σ ∈ (0, 1), independent of λ, such that (1 + x)θ ≤
1 + (θ + 1)x for all x ∈ (0, σ]. In fact, let q(x) = (1 + x)θ − (1 + (θ + 1)x), we see q(0) = 0,
and q′(0) = −1 < 0 implies that there exists σ > 0 such that q(x) < 0 for all x ∈ (0, σ], so
the claim is valid.

Now, we prove that there exists M > 0 such that
∫ T

0
|x′(t)|θ+1ds ≤ M , we consider

two cases.
Case 1.

∫ T
0
|x′(s)|ds ≤ M

σ . We get

β

∫ T

0

|x′(t)|θ+1dt ≤ (r1 + r2 + 2ε)

(
M +

M

σ

)θ
T

θ
θ+1

(∫ T

0

|x′(t)|θ+1dt

) 1
θ+1

+(r3 + ε)

∫ T

0

|x′(t)|θ+1dt

+

(
max

t∈[0,T ],|x|≤δ
|g1(t, x)|+ max

t∈[0,T ],|x|≤δ
|g2(t, x)|

+ max
t∈[0,T ],|x|≤δ

|g3(t, x)|
)
T

θ
θ+1

(∫ T

0

|x′(t)|θ+1dt

) 1
θ+1

+

(∫ T

0

|r(t)|
θ+1
θ dt

) θ
θ+1
(∫ T

0

|x′(t)|θ+1dt

) 1
θ+1

.

Since β > r3 + ε, there is a constant M1 > 0 such that
∫ T

0
|x′(t)|θ+1dt ≤M1.

Case 2.
∫ T

0
|x′(s)|ds > M

σ . At this case, 0 < M∫ T
0
|x′(s)|ds < σ. We get

β

∫ T

0

|x′(t)|θ+1dt ≤ (r1 + r2 + 2ε)T θ
∫ T

0

|x′(t)|θ+1dt

+(r1 + r2 + 2ε)(θ + 1)MT
θ2

θ+1

(∫ T

0

|x′(t)|θ+1dt

) θ
θ+1

+(r3 + ε)

∫ T

0

|x′(t)|θ+1dt

+

(
max

t∈[0,T ],|x|≤δ
|g1(t, x)|+ max

t∈[0,T ],|x|≤δ
|g2(t, x)|

+ max
t∈[0,T ],|x|≤δ

|g3(t, x)|
)
T

θ
θ+1

(∫ T

0

|x′(t)|θ+1dt

) 1
θ+1

+

(∫ T

0

|r(t)|
θ+1
θ dt

) θ
θ+1
(∫ T

0

|x′(t)|θ+1dt

) 1
θ+1

.

Since β > (r1+r2+2ε)T θ+(r3+ε), there exists a constantM2 > 0 such that
∫ T

0
|x′(t)|θ+1dt ≤

M2.
Hence we get ∫ T

0

|x′(t)|θ+1dt ≤ max{M1,M2} =: M.

So, for all t ∈ [0, T ], we get

|x(t)| ≤M +

∫ T

0

|x′(t)|dt ≤M + T
θ
θ+1

(∫ T

0

|x′(t)|θ+1dt

) 1
θ+1

≤M + T
θ
θ+1M

1
θ+1 .
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It follows that |x(t)| ≤M + T
θ
θ+1M

1
θ+1 for all t ∈ [0, T ]. Then

(14) max
t∈[0,T ]

|x(t)| ≤M + T
θ
θ+1M

1
θ+1 .

It is easy to show, for t ∈ [0, T ], from the second equation in (12), that

(15)

∫ T

t

y′(s)φ−1(y(s))ds = λ

∫ T

t

f(s, x(s), x(τ(s)), φ−1(y(s)))φ−1(y(s))ds.

Denoted by G(x) =
∫ x

0
φ−1(s)ds. One sees

(16) G(y(t)) = −λ
∫ T

t

f(s, x(s), x(τ(s)), φ−1(y(s))φ−1(y(s))ds.

So

∫ T

0

f(s, x(s), x(τ(s)), φ−1(y(s))φ−1(y(s))ds = 0

and (C)(i)-(ii) imply that

β

∫ T

0

|φ−1(y(s))|θ+1ds

≤
∫ T

0

h(s, x(s), x(τ(s)), φ−1(y(s))φ−1(y(s))ds

= −
∫ T

0

g1(s, x(s))φ−1(y(s))ds−
∫ T

0

g2(s, x(τ(s))φ−1(y(s))ds

−
∫ T

0

g3(s, φ−1(y(s))φ−1(y(s)ds−
∫ T

0

r(s)φ−1(y(s))dt

≤
∫ T

0

|g1(s, x(s))||φ−1(y(s))|ds+

∫ T

0

|g2(s, x(τ(s))||φ−1(y(s))|ds

+

∫ T

0

|g3(s, φ−1(y(s))||φ−1(y(s))|ds+

∫ T

0

|r(s)||φ−1(y(s))|dt

Since (B) implies that there exists ξ ∈ [0, T ] such that |x(ξ)| ≤M , we get that

|x(t)| ≤M +

∣∣∣∣∣
∫ ξ

t

x′(s)ds

∣∣∣∣∣ ≤M +

∫ T

0

|φ−1(y(s))|ds.
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Then

β

∫ T

0

|φ−1(y(s))|θ+1ds

≤ (r1 + r2 + 2ε)

(
M +

∫ T

0

|φ−1(y(t))|dt

)θ ∫ T

0

|φ−1(y(t))|dt

+(r3 + ε)

∫ T

0

|φ−1(y(t))|θ+1dt

+

(
max

t∈[0,T ],|x|≤δ
|g1(t, x)|+ max

t∈[0,T ],|x|≤δ
|g2(t, x)|

+ max
t∈[0,T ],|x|≤δ

|g3(t, x)|
)
T

θ
θ+1

(∫ T

0

|φ−1(y(t))|θ+1dt

) 1
θ+1

+

(∫ T

0

|r(t)|
θ+1
θ dt

) θ
θ+1
(∫ T

0

|φ−1(y(t))|θ+1dt

) 1
θ+1

.

Similarly we can prove that there exists M3 > 0 such that∫ T

0

|φ−1(y(s))|θ+1ds ≤M3.

Then using (C), we get similarly that

G(y(t)) ≤ (r1 + r2 + 2ε)T θM3 + (r1 + r2 + 2ε)(θ + 1)MT
θ2

θ+1M
θ
θ+1

3

+(r3 + ε)M3

+

(
max

t∈[0,T ],|x|≤δ
|g1(t, x)|+ max

t∈[0,T ],|x|≤δ
|g2(t, x)|

+ max
t∈[0,T ],|x|≤δ

|g3(t, x)|
)
T

θ
θ+1M

1
θ+1

3 +

(∫ T

0

|r(t)|
θ+1
θ dt

) θ
θ+1

M
1
θ+1

3 .

It follows that

|G(y(t))| ≤ (r1 + r2 + 2ε)T θM3 + (r1 + r2 + 2ε)(θ + 1)MT
θ2

θ+1M
θ
θ+1

3

+(r3 + ε)M3 +

(∫ T

0

|r(t)|
θ+1
θ dt

) θ
θ+1

M
1
θ+1

3

+

(
max

t∈[0,T ],|x|≤δ
|g1(t, x)|+ max

t∈[0,T ],|x|≤δ
|g2(t, x)|

+ max
t∈[0,T ],|x|≤δ

|g3(t, x)|
)
T

θ
θ+1M

1
θ+1

3 .

It is easy to see that there exists a constant M̃ > 0 such that G(||y||) ≤ M̃ . Then there

exists a constant M̃0 > 0 such that ||y|| ≤ M̃0.
It follows that, for (x, y) ∈ Ω1, there is H > 0 such that ||(x, y)|| ≤ H. Hence Ω1 is

bounded. The proof is complete.

Lemma 3.2. Suppose (B) holds. Then Ω2 = {(x, y) ∈ KerL : N(x, y) ∈ ImL} is
bounded.
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Proof. For (a, 0) ∈ KerL, we have N(a, 0) = (0, f(t, a, a, 0), 0, 0). Nx ∈ ImL implies
that ∫ T

0

f(t, a, a, 0)dt = 0.

From condition (B), there is M > 0 such that

xf(t, x, y, 0) > 0, t ∈ [0, T ], |x|, |y| > M.

If a > M then f(t, a, a, 0) > 0. It follows that
∫ T

0
f(t, a, a, 0)dt > 0, a contradiction to∫ T

0
f(t, a, a, 0)dt = 0. If a < −M , similar contradiction can be induced. Thus Ω2 is bounded.

The proof is complete.

Lemma 3.3. Suppose (B) holds. Let either Ω3 = {(x, y) ∈ KerL : λ ∧ (x, y) + (1−
λ)QN(x, y) = 0, λ ∈ [0, 1]}. Then Ω3 is bounded, where ∧ : KerL → Y/ImL defined by
∧(a, 0) = (0, a, 0, 0).

Proof. Consider

Ω3 = {(x, y) ∈ KerL : λ ∧ (x, y) + (1− λ)QN(x, y) = 0, λ ∈ [0, 1]}.

We will prove that Ω3 is bounded. For (a, 0) ∈ Ω3, and λ ∈ [0, 1], we have

−(1− λ)

∫ T

0

f(t, a, a, 0)dt = λaT.

Then

−(1− λ)

∫ T

0

af(t, a, a, 0)dt = λa2T.

If λ = 1, then a = 0. If λ ∈ [0, 1), from condition (B), there is M > 0 such that
xf(t, x, y, 0) > 0, t ∈ [0, T ], |x|, |y| > M. If a > M then f(t, a, a, 0) > 0. Then we
get

0 > −(1− λ)

∫ T

0

af(t, a, a, 0)dt = λa2T ≥ 0,

a contradiction. If a < −M , similar contradiction can be induced. Hence |a| ≤ M . Thus
Ω3 is bounded. The proof is complete.

Proof of Theorem 2.1. We know that L is a Fredholm operator of index zero and
N is L−compact on Ω. Since (x, y) is a solution of L(x, y) = N(x, y) implies that x is a
solution of equation (5). It suffices to get a solution (x, y) of L(x, y) = N(x, y). To do this,
we construct an open bounded set Ω such that (i), (ii) and (iii) of Theorem GM hold.

Set Ω be a open bounded subset of X such that Ω ⊃ ∪3
i=1Ωi. By the definition of Ω,

we have Ω ⊃ Ω1 and Ω ⊃ Ω2, thus, from Lemma 2.1 and Lemma 2.2, that L(x, y) 6= λN(x, y)
for (x, y) ∈ D(L) \KerL) ∩ ∂Ω and λ ∈ (0, 1); N(x, y) /∈ ImL for (x, y) ∈ KerL ∩ ∂Ω.

In fact, let H((x, y), λ) = ±λ ∧ (x, y) + (1− λ)QN(x, y). According the definition of
Ω, we know Ω ⊃ Ω3, thus H((x, y), λ) 6= 0 for (x, y) ∈ ∂Ω ∩ KerL, thus, from Lemma 2.3,
by homotopy property of degree,

deg(QN |KerL,Ω ∩KerL, 0) = deg(H(·, 0),Ω ∩KerL, 0)

= deg(H(·, 1),Ω ∩KerL, 0) = deg(±∧,Ω ∩KerL, 0) 6= 0.

Thus by Theorem GM, L(x, y) = N(x, y) has at least one solution (x, y) in D(L) ∩ Ω, then
x is a solution of equation (8). The proof is completed.
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Proof of Theorem 2.2. The proof is similar to that of the proof of Theorem 2.1
and is omitted.

Now we begin to prove Theorem 2.3. Set y(t) = φ(x′(t)), then BVP(8) is transformed
into

(17)

 x′(t) = φ−1(y(t)),
y′(t) = f(t, x(t), x(τ(t)), φ−1(y(t))), 0 < t < T
y(0) = y(T ) = 0 .

It is easy to see that x is a solution of BVP(8) if (x, y) is a solution of problem (17).
Note that the homogeneous problem x′(t) = 0, y′(t) = 0, y(0) = y(T ) = 0 has non-

trivial solutions. So, we shall consider the following problem, for m > 1:

(18)

 x′(t) = φ−1(y(t)),
y′(t)− 1

mx(t) = f(t, x(t), x(τ(t)), φ−1(y(t))), 0 < t < T
y(0) = y(T ) = 0 .

and consider BVP(17) as a limiting case when m→ +∞.
Our aim is to provide sufficient conditions on f that which make BVP(18) solvable.

First, we show that solutions to BVP(18) are uniformly bounded, independently of m. Then,
we use the Arzela-Ascoli theorem to obtain the solvability of BVP(17).

We use the Sobolev space W 1,1(0, T ) defined by

W 1,1(0, T ) = {x : [0, T ]→ R|x is absolutely continuous on [0, T ] with x′ ∈ L1[0, T ]}.

Let the Banach space be X = C0[0, T ]× C0[0, T ] with the norm

||(x, y)|| = max

{
sup
t∈[0,T ]

|x(t)|, sup
t∈[0,T ]

|y(t)|

}
and D(L) = {(x, y) ∈W 1,1(0, T ) : x′ ∈ L1[0, T ], y′ ∈ L1[0, T ]}. Let Y = L1[0, T ]×L1[0, T ]×
R2. Define the linear operator L : D(L) ∩X → Y by

L

(
x(t)
y(t)

)
=


x′(t)

y′(t)− 1
mx(t)

y(0)
y(T )

 for all (x, y) ∈ D(L) ∩X.

Define the nonlinear operator Nf : X → Y , for all (x, y) ∈ X, by

Nf

(
x(t)
y(t)

)
=


φ−1(y(t))

f(t, x(t), x(τ(t)), φ−1(y(t)))
0
0

 .

It follows that BVP(18) is equivalent to

(19) L(x, y) = Nf (x, y),

in the sense that every solution of BVP(18) is a solution of (19) and vice-versa.
It is easy to show that the operator L is invertible and the operator Nf (·, ·) is con-

tinuous and completely continuous.
Since our arguments are based on Theorem LS, we shall consider a one-parameter

family of problems related to (19). For 0 ≤ λ ≤ 1, consider

(20) L(x, y) = λNf (x, y).

Proof of Theorem 2.3. We divide the proof into two steps.
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Step 1. For λ ∈ (0, 1], prove that any possible solution (x, y) of

(21)

 x′(t) = λφ−1(y(t)),
y′(t)− 1

mx(t) = λf1

(
t, x(t), x(τ(t)), φ−1(y(t))

)
0 < t < T,

y(0) = y(T ) = 0,

where

f1(t, x, y, z) =


max

{
f(t, x, y, z),−M0

m +
∫ T

0
f(t,M0, y, 0)dt

}
x > M0

f(t, x, y, z) −M0 ≤ x ≤M0

min
{
f(t, x, y, z), M0

m +
∫ T

0
f(t,−M0, y, 0)dt

}
x < −M0

satisfies |x(t)| ≤M0 for all t ∈ I.

Let (x, y) be a solution of (21). Use (A)(i), without loss of generality, we prove only

the case when
∫ T

0
f(t,M0,M0, 0)dt > 0 and

∫ T
0
f(t, −M0,M0, 0)dt < 0. The other case is

similar.
We remark that any solution (x, y) of (21) that satisfies |x(t)| ≤ M0 is a solution of

(20), because in this case

f1(t, x(t), x(τ(t)), φ(y(t)) ≡ f(t, x(t), x(τ(t)), φ(y(t))).

Let t0 ∈ [0, T ] be a value where x achieves its positive maximum. Then x′(t0) = 0.
We prove that x(t0) ≤M0, then x(t) ≤M0 for all t ∈ [0, T ]. Three cases are considered.

Case 1. x(t0) > M0 and t0 ∈ (0, T ). Then there exists a > 0 such that x(t) > M0 for
all t ∈ [t0, t0 + a] ⊂ [0, T ]. It follows from the differential equation in (21) and the definition
of f1 that for all t ∈ [t0, t0 + a],

[φ(x′(t))]′ ≥ φ(λ)

(
1

m
x(t)− λM0

m
+ λ

∫ T

0

f(t,M0, x(τ(t)), 0)dt

)

≥ φ(λ)

(
x(t)−M0

m
+ λ

∫ T

0

f(t,M0, x(τ(t)), 0)dt

)
> 0.

This implies that φ(x′(t)) =
∫ t
t0

[φ(x′(s)]′ds > 0 for all t ∈ [t0, t0 + a], which yields

x(t)− x(t0) =

∫ t

t0

x′(τ)dτ > 0 for all t ∈ [t0, t0 + a].

This contradicts that x(t0) is the maximum of x. Hence x(t) ≤M0 for all t ∈ [0, T ].
Case 2. t0 = 0. Similarly to Case 1, we can prove that x(t0) ≤M0. Then x(t) ≤M0

for all t ∈ [0, T ].
Case 3. t0 = T . Then there exists b > 0 such that x(t) > M0 for all t ∈ [t0− b, t0] ⊂

[0, T ]. It follows from the differential equation in (21) and the definition of f1 that for all
t ∈ [t0, t0 + a],

[φ(x′(t))]′ ≥ φ(λ)

(
1

m
x(t)− λM0

m
+ λ

∫ T

0

f(t,M0, x(τ(t)), 0)dt

)

≥ φ(λ)

(
x(t)−M0

m
+ λ

∫ T

0

f(t,M0, x(τ(t)), 0)dt

)
> 0.

This implies that φ(x′(t)) = −
∫ t0
t

[φ(x′(s)]′ds < 0 for all t ∈ [t0 − b, t0], which yields

x(t)− x(t0) = −
∫ t0

t

x′(τ)dτ > 0 for all t ∈ [t0 − b, t0].
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This contradicts that x(t0) is the maximum of x. Hence x(t) ≤M0 for all t ∈ [0, T ].

Now, in case x achieves a negative minimum at t = τ0 such that x(τ0) < −M0 and
τ0 ∈ (0, T ) then there exists b > 0 such that y(t) < −M0 for all t ∈ [τ0, τ0 + b]. It follows
from the differential equation in (21) and the definition of f1 that for all t ∈ [τ0, τ0 + b],

[φ(x′(t))]′ ≤ φ(λ)

(
x(t) +M0

m
+ λ

∫ T

0

f(t,M0, x(τ(t)), 0)dt

)
< 0.

which leads to φ(x′(t)) =
∫ t
τ0

[φ(x′′(s))]′ds < 0 for all t ∈ [τ0, τ0 + b] and

(22) x(t)− x(τ0) =

∫ t

τ0

x′(s)ds < 0 for all t ∈ [τ0, τ0 + b] .

This contradicts that x(τ0) is the minimum of x on [0, T ].
We can handle the case of a minimum at τ0 = 0 or τ0 = T in a similar way as above.

Hence, we have proved that

(23) −M0 ≤ x(t) ≤M0 for all t ∈ [0, T ],

which completes the proof of Step 1.

Step 2. Prove that there exists M1 > 0 such that |y(t)| ≤ M1 for all t ∈ [0, T ] for
any solution y of (21) with |x(t)| ≤M0 for all t ∈ [0, T ].

Let (x, y) be a solution of (21) such that |x(t)| ≤M0 for all t ∈ [0, T ]. Condition (A2)
implies ∣∣∣∣ [φ(x′(t))]′

φ(λ)

∣∣∣∣ ≤ |x(t)|
m

+ λq(t)Φ

(
|x′(t)|
λ

)
≤ |x(t)|

m
+ q(t)Φ

(
|x′(t)|
λ

)
≤ M0 + q(t)Φ

(
|x′(t)|
λ

)
for all t ∈ [0, T ].

On the other hand,∣∣∣∣x′(t)λ

∣∣∣∣ = φ−1

(∣∣∣ ∫ t

0

[
φ(x′(s))

φ(λ)

]′
ds
∣∣∣) ≤ φ−1

(∫ t

0

∣∣∣∣∣
[
φ(x′(s))

φ(λ)

]′∣∣∣∣∣ ds
)

for all t ∈ [0, T ].

Hence ∣∣∣∣x′(t)λ

∣∣∣∣ ≤ φ−1

(
M0t+

∫ t

0

q(s)Φ

(
|x′(s)|
λ

)
ds

)
for all t ∈ [0, T ] .

Since 0 ≤ t ≤ T , we infer that∣∣∣∣x′(t)λ

∣∣∣∣ ≤ φ−1

(
M0T +

∫ t

0

q(s)Φ

(
|x′(s)|
λ

)
ds

)
for all t ∈ [0, T ] .

Let

u(t) = M0T +

∫ t

0

q(s)Φ

(
|x′(s)|
λ

)
ds for all t ∈ [0, T ] .

Then

u(t) ≥ TM0,

∣∣∣∣x′(t)λ

∣∣∣∣ ≤ φ−1(u(t)), u′(t) = q(t)Φ

(
|x′(t)|
λ

)
for all t ∈ [0, T ].

Since φ is nondecreasing, we get

u′(t)

Φ(φ−1(u(t)))
≤ q(t) for all t ∈ [0, T ].
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It follows that ∫ t

0

u′(s)ds

Φ(φ−1(u(s)))
≤
∫ t

0

q(s)ds ≤
∫ T

0

q(s)ds.

This implies ∫ u(t)

TM0

dσ

Φ(φ−1(σ))
=

∫ u(t)

u(0)

dσ

φ(σ)
≤
∫ T

0

q(s)ds.

The condition (A)(ii) implies that there exists M1 > 0 such that u(t) ≤M1 for all t ∈ [0, T ].

Therefore,
∣∣∣x′(t)
λ

∣∣∣ ≤M1 for all t ∈ [0, T ]. Hence |y(t)| ≤M1 for all t ∈ [0, T ].

We have seen in the above discussion that any possible solution (x, y) of (21) satisfies

|x(t)| ≤M0 and |y(t)| ≤M1 for all t ∈ [0, T ] .

Let M := M0 +M1. Then ‖(x, y)‖ ≤M . It is clear that problem (21) is equivalent to

(24) (x, y) = λL−1Nf1(x, y)

Let U := {(x, y) ∈ X; ‖(x, y)‖ < 1 + M}. Then we can easily show that for any λ, the
operator L−1Nf1(·, ·) is a completely continuous operator (see [6]) and

(x, y) = λL−1Nf1(·, ·)
has no fixed point on ∂U , the boundary of U .

Therefore, Theorem LS implies that

(x, y) = L−1Nf1(., .)

has at least one solution in U , i.e., there exists (x, y) ∈ U such that

(x, y) = L−1Nf1(x, y)

, which means that (x, y) is a solution of (21) for λ = 1. But, we have seen that any solution
of (21), satisfying |x(t)| ≤M0 is also a solution of (19). Hence (21), with λ = 1, has at least
one solution. But (19) is exactly (21) for λ = 1. Hence, we have proved that for each m > 1,
problem (19) has at least one solution, which we denote by (xm, ym). Moreover, (xm, ym),
satisfies the estimates

(25) |xm(t)| ≤M0 and |ym(t)| ≤M1 for allt ∈ [0, T ].

Furthermore, M0 and M1 are independent of m. This shows that the sequences {(xm, ym)}
is uniformly bounded.

Now,

ym(t) =

∫ t

0

y′(s)ds =
1

m

∫ t

0

xm(s)ds+ λ

∫ t

0

f(s, xm(s), xm(τ(s)), ym(s)ds.

This implies

ym(t2)− y(t1) =
1

m

∫ t2

t1

xm(s)ds+ λ

∫ t2

t1

f(s, xm(s), xm(τ(s)), ym(s))ds .

Since m > 1 and f ∈ Car([0, T ]×R2), we have

|ym(t2)− ym(t1)| ≤M0|t2 − t1|+
∫ t2

t1

hM0(s)ds .

This shows that {ym} is equicontinuous.

Also, xm(t) = xm(0) +
∫ t

0
x′m(s)ds implies

xm(τ2)− xm(τ1) =

∫ τ2

τ1

x′m(s)ds = λ

∫ τ2

τ1

φ−1(y(s))ds
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By Step 2 we have |ym(t) ≤ M1 for all t ∈ [0, T ]. Thus |ym(τ2)− ym(τ1)| ≤ M1|τ2 − τ1| So
that {ym} is also equicontinuous.

By the Arzela-Ascoli theorem, we can extract from {(xm, ym)} subsequences, which
we label the same, and that are uniformly convergent on [0, T ]. Let x(t) = limm→+∞ xm(t)
and y(t) = limm→+∞ ym(t). Then (x, y) is a solution of (17). Hence x is a solution of
BVP(8). This completes the proof of Theorem 2.3.
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