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EVOLUTION OF BOUND AND SCATTERING STATES IN
FRACTIONAL HEAVISIDE STEP-DIRAC DELTA FUNCTION
POTENTIALS

Khaled ALEDEALAT?, Abdalla OBEIDAT?, Maen GHARAIBEH?, Adnan
JARADAT*, Khitam KHASAWINAH®, Mohammad QASEERS,
Akram A. ROUSAN’

Fractional calculus is used to introduce intermediate potential wells
between the attractive Dirac delta function and the negative potential step.
Schrodinger equation is solved numerically to obtain solutions for bound states
and scattering states. The ground states and their eigen energies evolve until they
coincide with bound state for the Dirac delta potential as the intermediate
potential evolves into the Dirac delta function potential. For scattering states, the
transmission coefficients were obtained and shown to agree with the value of the
potential step and then increases to one as the intermediate potential takes the
shape of the Dirac delta potential. The disagreement between the transmission
coefficients for Dirac delta function and the corresponding intermediate potential
was explained by examining the continuity of the derivative of the wave function
across the intermediate potentials.
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1. Introduction

Fractional calculus has been applied to study the evolution of different
phenomena in physics [1]-[7]. For example Engheta [1] introduced fractional
order electric multipoles that can serve as intermediate sources between integer
order point multipoles. Rousan et al [2] used similar approach to study the
evolution of the gravitational fields from a point mass to semi-infinite linear mass
distribution. Different groups [4]-[7] studied electrical circuits and developed
fractional differential equations that can combine multiple circuits simultaneously.

On the other hand, the potential well has been used as a model to solve
quantum physical problems in nuclear, atomic, condensed matter physics and
others. The well-known example in condensed matter is the Kronig- Penny Model
which explains the existence of energy bands in solid materials [8]. The effect of
the potential wells and potential barriers get much interest in the scattering theory
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[9]. Solving the time independent Schrodinger equation for such potentials
provides information about the quantum states of the particles, and hence more
understanding of the realistic potential it models.

Recently, fractional calculus was introduced to quantum mechanics by the
pioneer work of Laskin who presented the term fractional Schrodinger equation
[10]. Principally, the time derivative can be generalized to non- integer order
leading to time fractional Schrodinger equation [11] or by varying the space
derivative to non-integer order leading to space fractional Schrodinger equation
[12]-[13] or by varying both leading to Space-time fractional Schrddinger
equation [14]-[16]. Different potential wells were proposed using the fractional
Schrodinger equation such as the Dirac delta function wells [17]-[20]. Therefore,
the fractional derivative concept can be aimed to generate the evolution of
quantum states and their eigen energies as the derivative admits non-integer
values.

In this work we will apply the fractional calculus to vary the nature of
potentials rather than the time or the space derivatives. We will start from a
negative potential step where no bound states exist and vary this potential to
approach the attractive Dirac delta function potential where only one bound state
exists. This approach will generate the evolution of the bound states and their
energies and it will give us new perspective about the behavior of the scattering
states.

2. Fractional Heaviside step-Dirac delta function Potentials

The mathematical form of the attractive Dirac delta function potential can
be expressed as follows:

U(x) = —Upxe6(x) 1)
where x, = 1 , is introduced for the purpose of dimensionality since the delta
function has the unit of (1/x). This potential allows only one bound state given by
[21]:

P(x) = L% Ry (oolxl) @)
with the corresponding energy of
E = _m(onO)z (3)

2h?
On the other hand, the negative Heaviside step potential, which is basically a

potential drop, is given by:

U(x) = —UoH (x) (4)
This potential does not allow any bound state.
Recalling that the derivative of the Heaviside step function gives the Dirac delta
function, therefore, we anticipate that the fractional derivative of the step potential
which is equivalent to the fractional integral of the Dirac delta function would
yield an intermediate potential. This potential can be expressed mathematically as
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follows:
as
Ua () = 5 [~UpH(0)] = —Upx§ 7 6(x) =
x—(x
—Upx§ 0 T x>0 (%)

wherea < 0 < x,and 0 < a < 1, itis evident that for &« = 0, U, (x)

reduces to the step potential and for « = 1, U, (x) reduces to Dirac

potential.

In the above expression, we have used the fact that the fractional derivative of a
constant is given by [22]:

d _ x~
d(x—a)? ©=c r(1-a) (6)
Here a < x, as a result of that the fractional derivative of zero is zero. Therefore,
U,(x)=0, x<0 (7
Based on this, Schrodinger equation can be expressed as follows:
—n2 g2
o 2z W (%) — Upxg m a)H )Yx) = EY(x) (8)

This equation cannot be solved analytically for an arbitrary value of «a, therefore,
we will solve it numerically using shooting method in Mathematica 8. The
boundary conditions for bound states necessitate that the wave function and its
derivative must vanish at both ends away from the potential.

For scattering states, it is important to check the continuity of the derivative of the
wave function at x = 0 where there is a discontinuity in the potential. Typically,
the continuity is checked by directly integrating Schrodinger equation over an
infinitesimal distance around the boundary points. For our case this can be done as
follows:

[ L pdx =22 U0 - By dx 9)
where € goes to zero. The left hand side gives the change in the first derivative of
the wave function around zero. The second term in the right hand side always
gives zero since the wave function must be finite. For a finite potential such as the
potential drop, the first term in the right hand side is also zero and therefore, the
derivative of the wave function is continuous.

For the Dirac potential, the integration is straightforward using Dirac delta
function properties and gives:

A= p(0)] = (0) (10)

Therefore, the derivative suffers from a discontinuity at the boundary. Finally, for
the intermediate potential we get:

A @) =22 [T U0 dx = =22 [7 Uoxg S Y dx (11)

F(1

ZmUO

Since the potential does not change sign and the wave function must be
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continuous then based on the mean value theorem for integrals ¥ (x) can be taken
outside the integration and replaced by (&) where ¢ € (0, €) [23] then we get:

a4 _ 2y, a €
A[dxl'b(x)]_ 2 Uoxo (1-a)C(1-a)

1-a

(12)

It is clear that when e goes to zero the right hand side must vanish for any 0 <
a <1 and hence the derivative of the wave function is continuous for all
intermediate potentials. It is worth mentioning here that only at the limit when «a
=1, the derivative suffers discontinuity since the intermediate potential in this case
is the Dirac delta potential.

3. Results and Discussion

For the sake of simplicity, we will assume that U, = 1, and 2m/h? = 1,
therefore, the energy is given in the units of 2m/h2. This is equivalent to scale x
by the factor (A2/2m)%> which is also one.

Fig. 1 shows the fractional potentials for different values of «. It shows as « goes
to one, the potential dies off quickly and reduces to the shape of the Dirac delta
function. For example, when a = 0.99, the depth of the potential drops from
infinite value to -0.1 just by moving to x = 0.1. On the other hand, when a goes
to zero the potential rapidly saturates to -1 and almost does not change even for
relatively large values of x. For instance, when ¢ = 0.01, the potential reaches -1
just by moving to x = 0.01. For the intermediate values of a, we see that the
fractional potential gradually grows from the shape of the step function to the
shape of the Dirac delta function as «a varies from 0 to 1.

We have solved Schrodinger equation for different values of a. Our result for the
normalized ground state wave functions is shown in Figure 2. As a goes to one,
the wave functions become steeper and its maxima shift to the left towards zero
and its shape becomes more symmetric. This tendency is expected since the
fractional potential itself sharpens and becomes more symmetric as a goes to one.
This overall behavior describes the evolution of the wave function into the bound
state of the Dirac delta potential. This resemblance is very close when a = 0.99 at
which the peak height is 0.703 where the peak height for the bound state of the
Dirac delta potential is0.707. In terms of symmetry, as o goes to one, the
probability of finding a particle trapped in this potential increases gradually for <
0, and decreases on the other side until it reaches 50.50% at a = 0.99 and this is
very close to 50% at either side of x which is the case for the bound state of the
Dirac delta potential.

Moreover, when a goes to zero, the ground state wave function expands and its
center shifts to the right away from zero. This will reduce the probability for
position enormously forx < 0. For example ata = 0.01, the probability
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decreases to less than 0.04% on the negative side of x and that is in some way
little closer to the scattering state behavior which is characteristic for the step
function potential.
Fig. 3 shows (red dots) the energy of the ground state versus a. As a goes to one
the energy increases until it coincides with the energy of the bound state for the
Dirac delta function which is—0.25, and that shows one more time the evolution
process of the wave function.
In contrast, as a goes to zero the energy goes to —1 which basically is the depth of
the potential drop and that is expected since the fractional potential progressively
takes the shape of a negative step function. Furthermore, we have fitted these data
(Fig. 3 blue line) with the following relation:

0.72x10~¢

Eq = —=0.25 + 0.72U4(10) = —0.25 — === (13)

In this relation the first term is the bound state energy for Dirac delta function, and
the second is the variation term proportional to the potential energy at x = 10,
where the wave function mostly vanishes. Even though this formula is very
simple, it fits the data very well. When a = 1, it gives E, = —0.25, as it should
be and when a = 0, it gives E, = —0.97 where it is supposed to give -1. This
deviation can be explained in the view of the fact that the wave function vanishes
at a distance greater than 10 as a approaches zero.
Finally, we will investigate the scattering states where the energy can take any
positive value. We picked E = 0.5 for our study since it is comparable to the
depth of the potential drop.
For the negative potential step, the transmission coefficient for a beam of particles
coming from left is given by:
_ 4JE(E+Up)
~ (VE+/ERTo)’
And the transmission coefficient for the case of the Dirac delta function is given
by [21]:

= 0.928 (14)

2,2y 1

T=(1+252)  =0.667 (15)
Fig. 4, shows the transmission coefficients for the case of the fractional potentials.
It is obvious that when a goes to zero the transmission probability agrees with the
case for the potential drop. For instance when ¢ = 0.001, T = 0.928. However,
when a goes to one the transmission coefficient goes to one in disagreement with
the case for Dirac potential. The reason for this is that even though the fractional
potential takes the shape of the Dirac potential when a goes one, the fractional
potential does not cause a discontinuity in the derivative of the wave function.
That is in contrast to the case of the Dirac potential as shown previously.
Therefore, care must be taken whenever Dirac potential is employed for

approximation purposes.
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When « is close to zero, the fractional potential well is basically a potential drop
as shown before and the transmission probability coincides with its expected
value. As «a increases the width of the well decreases and that causes the
transmission probability to oscillate. Such behavior has been noticed in the
rectangular potential well [21]. The oscillatory behavior persists as far as the
width of the well is finite, that is @ # 1. As a approaches one, the well becomes
very narrow and that raises the transmission coefficient to one. Only at the limit
when a = 1, the width of the well is truly zero and the well in this case is the
Dirac potential well and therefore the transmission probability falls down to
0.667.

4. Conclusion

In this work we have applied the idea of evolution using fractional calculus on
transforming the Heaviside step potential through intermediate steps into Dirac
delta potential. The evolution of the correlated wave functions and their
corresponding energies were studied by solving the time independent Schrodinger
equation numerically for bound and scattering states. The transformation of the
ground state wave functions for the intermediate potentials into the bound state of
the Dirac delta function was demonstrated. The gradual change in the
transmission coefficient was observed for the intermediate potentials from the
value of the step potential to one. We explained the disagreement between the
transmission coefficient for the Dirac potential and the corresponding
intermediate potential by studying the derivative of the wave function. We
showed that the derivative of wave function for the intermediate potential is
always continuous in contrast to the discontinuity in the case of the Dirac
potential. Therefore, care must be taken whenever Dirac delta function is used for
approximation purposes.
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Fig. 1: The Fractional Heaviside step-Dirac delta function Potentials for different values of «
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Fig. 3: The ground states eigen energies for different values of a(in red dots) and the fitting curve
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