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EVOLUTION OF BOUND AND SCATTERING STATES IN 

FRACTIONAL HEAVISIDE STEP-DIRAC DELTA FUNCTION 

POTENTIALS 

Khaled ALEDEALAT1, Abdalla OBEIDAT2, Maen GHARAIBEH3, Adnan 

JARADAT4, Khitam KHASAWINAH5, Mohammad QASEER6,                        

Akram A. ROUSAN7 

Fractional calculus is used to introduce intermediate potential wells 

between the attractive Dirac delta function and the negative potential step. 

Schrodinger equation is solved numerically to obtain solutions for bound states 

and scattering states. The ground states and their eigen energies evolve until they 

coincide with bound state for the Dirac delta potential as the intermediate 

potential evolves into the Dirac delta function potential. For scattering states, the 

transmission coefficients were obtained and shown to agree with the value of the 

potential step and then increases to one as the intermediate potential takes the 

shape of the Dirac delta potential. The disagreement between the transmission 

coefficients for Dirac delta function and the corresponding intermediate potential 

was explained by examining the continuity of the derivative of the wave function 

across the intermediate potentials. 
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1. Introduction 

Fractional calculus has been applied to study the evolution of different 

phenomena in physics [1]-[7].  For example Engheta [1] introduced fractional 

order electric multipoles that can serve as intermediate sources between integer 

order point multipoles.  Rousan et al [2] used similar approach to study the 

evolution of the gravitational fields from a point mass to semi-infinite linear mass 

distribution. Different groups [4]-[7] studied electrical circuits and developed   

fractional differential equations that can combine multiple circuits simultaneously.  

On the other hand, the potential well has been used as a model to solve 

quantum physical problems in nuclear, atomic, condensed matter physics and 

others. The well-known example in condensed matter is the Kronig- Penny Model 

which explains the existence of energy bands in solid materials [8].  The effect of 

the potential wells and potential barriers get much interest in the scattering theory 
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[9]. Solving the time independent Schrodinger equation for such potentials 

provides information about the quantum states of the particles, and hence more 

understanding of the realistic potential it models.  

Recently, fractional calculus was introduced to quantum mechanics by the 

pioneer work of   Laskin who presented the term fractional Schrödinger equation 

[10]. Principally, the time derivative can be generalized to non- integer order 

leading to time fractional Schrodinger equation [11] or by varying the space 

derivative to non-integer order leading to space fractional Schrodinger equation 

[12]-[13] or by varying both leading to Space–time fractional Schrödinger 

equation [14]-[16]. Different potential wells were proposed using the fractional 

Schrödinger equation such as the Dirac delta function wells [17]-[20]. Therefore, 

the fractional derivative concept can be aimed to generate the evolution of 

quantum states and their eigen energies as the derivative admits non-integer 

values. 

In this work we will apply the fractional calculus to vary the nature of 

potentials rather than the time or the space derivatives. We will start from a 

negative potential step where no bound states exist and vary this potential to 

approach the attractive Dirac delta function potential where only one bound state 

exists. This approach will generate the evolution of the bound states and their 

energies and it will give us new perspective about the behavior of the scattering 

states. 

2. Fractional Heaviside step-Dirac delta function Potentials 

The mathematical form of the attractive Dirac delta function potential can 

be expressed as follows: 

𝑈(𝑥) = −𝑈0𝑥0𝛿(𝑥)      (1) 

where 𝑥0 = 1 , is introduced for the purpose of dimensionality since the delta 

function has the unit of (1/x). This potential allows only one bound state given by 

[21]: 

              𝜓(𝑥) =
√𝑚𝑈0𝑥0

ℏ
Exp(

−𝑚𝑈0𝑥0|𝑥|

ℏ2
)    (2) 

with the corresponding energy of 

                                   𝐸 = −
𝑚(𝑈0𝑥0)2

2ℏ2
      (3) 

On the other hand, the negative Heaviside step potential, which is basically a 

potential drop, is given by: 

𝑈(𝑥) = −𝑈0𝐻(𝑥)       (4) 

This potential does not allow any bound state.  

Recalling that the derivative of the Heaviside step function gives the Dirac delta 

function, therefore, we anticipate that the fractional derivative of the step potential 

which is equivalent to the fractional integral of the Dirac delta function would 

yield an intermediate potential. This potential can be expressed mathematically as 
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follows: 

𝑈𝛼(𝑥) =
𝑑𝛼

𝑑(𝑥−𝑎)𝛼
[−𝑈0𝐻(𝑥)] = −𝑈0𝑥0

𝛼 𝑑𝛼−1

𝑑(𝑥−𝑎)𝛼−1
𝛿(𝑥) =

−𝑈0𝑥0
𝛼 𝑥−𝛼

Γ(1−𝛼)
     ,             𝑥 > 0         (5) 

where 𝑎 < 0 < 𝑥, and 0 < 𝛼 < 1, it is evident that for 𝛼 = 0, 𝑈𝛼(𝑥) 

reduces to the step potential and for 𝛼 = 1, 𝑈𝛼(𝑥) reduces to Dirac 

potential. 

In the above expression, we have used the fact that the fractional derivative of a 

constant is given by [22]: 
𝑑𝛼

𝑑(𝑥−𝑎)𝛼 (𝐶) = 𝐶
𝑥−𝛼

Γ(1−𝛼)
        (6) 

Here 𝑎 < 𝑥, as a result of that the fractional derivative of zero is zero. Therefore, 

𝑈𝛼(𝑥) = 0, 𝑥 ≤ 0       (7) 

 Based on this, Schrodinger equation can be expressed as follows: 
−ℏ2

2𝑚

𝑑2

𝑑𝑥2 𝜓(𝑥) − 𝑈0𝑥0
𝛼 𝑥−𝛼

Γ(1−𝛼)
𝐻(𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥)   (8) 

This equation cannot be solved analytically for an arbitrary value of 𝛼, therefore, 

we will solve it numerically using shooting method in Mathematica 8. The 

boundary conditions for bound states necessitate that the wave function and its 

derivative must vanish at both ends away from the potential. 

For scattering states, it is important to check the continuity of the derivative of the 

wave function at x = 0 where there is a discontinuity in the potential. Typically, 

the continuity is checked by directly integrating Schrodinger equation over an 

infinitesimal distance around the boundary points. For our case this can be done as 

follows: 

∫
𝑑2

𝑑𝑥2 𝜓(𝑥)𝑑𝑥
+𝜖

−𝜖
=

2𝑚

ℏ2 ∫ (𝑈(𝑥) − 𝐸)𝜓(𝑥)
+𝜖

−𝜖
𝑑𝑥     (9) 

where 𝜖 goes to zero. The left hand side gives the change in the first derivative of 

the wave function around zero. The second term in the right hand side always 

gives zero since the wave function must be finite. For a finite potential such as the 

potential drop, the first term in the right hand side is also zero and therefore, the 

derivative of the wave function is continuous.  

For the Dirac potential, the integration is straightforward using Dirac delta 

function properties and gives: 

∆[
𝑑

𝑑𝑥
𝜓(𝑥)] = −

2𝑚𝑈0

ℏ2
𝜓(0)       (10) 

Therefore, the derivative suffers from a discontinuity at the boundary. Finally, for 

the intermediate potential we get: 

∆ [
𝑑

𝑑𝑥
𝜓(𝑥)] =

2𝑚

ℏ2 ∫ 𝑈𝛼(𝑥)𝜓(𝑥)
+𝜖

−𝜖
𝑑𝑥 = −

2𝑚

ℏ2 ∫ 𝑈0𝑥0
𝛼 𝑥−𝛼

Γ(1−𝛼)
 𝜓(𝑥)

+𝜖

0
𝑑𝑥  (11) 

Since the potential does not change sign and the wave function must be 
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continuous then based on the mean value theorem for integrals 𝜓(𝑥) can be taken 

outside the integration and replaced by 𝜓(𝜉) where 𝜉 ∈ (0, 𝜖) [23] then we get: 

∆ [
𝑑

𝑑𝑥
𝜓(𝑥)] =

−2𝑚𝜓(𝜉)

ℏ2 𝑈0𝑥0
𝛼 𝜖1−𝛼

(1−α)Γ(1−𝛼)
      (12) 

It is clear that when 𝜖 goes to zero the right hand side must vanish for any 0 <
𝛼 < 1 and hence the derivative of the wave function is continuous for all 

intermediate potentials. It is worth mentioning here that only at the limit when 𝛼 

=1, the derivative suffers discontinuity since the intermediate potential in this case 

is the Dirac delta potential. 

3. Results and Discussion 

For the sake of simplicity, we will assume that 𝑈0 = 1, and 2𝑚/ℏ2 = 1, 

therefore, the energy is given in the units of 2𝑚/ℏ2. This is equivalent to scale x 

by the factor  (ℏ2/2𝑚)0.5 which is also one. 

Fig. 1 shows the fractional potentials for different values of 𝛼. It shows as  𝛼 goes 

to one, the potential dies off quickly and reduces to the shape of the Dirac delta 

function. For example, when 𝛼 = 0.99, the depth of the potential drops from 

infinite value to -0.1 just by moving to 𝑥 = 0.1. On the other hand, when 𝛼 goes 

to zero the potential rapidly saturates to -1 and almost does not change even for 

relatively large values of 𝑥. For instance, when 𝛼 = 0.01, the potential reaches -1 

just by moving to 𝑥 = 0.01. For the intermediate values of 𝛼, we see that the 

fractional potential gradually grows from the shape of the step function to the 

shape of the Dirac delta function as 𝛼 varies from 0 to 1. 

We have solved Schrodinger equation for different values of . Our result for the 

normalized ground state wave functions is shown in Figure 2. As 𝛼 goes to one, 

the wave functions become steeper and its maxima shift to the left towards zero 

and its shape becomes more symmetric. This tendency is expected since the 

fractional potential itself sharpens and becomes more symmetric as 𝛼 goes to one. 

This overall behavior describes the evolution of the wave function into the bound 

state of the Dirac delta potential. This resemblance is very close when 𝛼 = 0.99 at 

which the peak height is 0.703 where the peak height for the bound state of the 

Dirac delta potential is 0.707. In terms of symmetry, as α goes to one, the 

probability of finding a particle trapped in this potential increases gradually for <
0 , and decreases on the other side until it reaches 50.50% at  𝛼 = 0.99 and this is 

very close to 50% at either side of x which is the case for the bound state of the 

Dirac delta potential. 

Moreover, when 𝛼 goes to zero, the ground state wave function expands and its 

center shifts to the right away from zero. This will reduce the probability for 

position enormously for 𝑥 < 0. For example at 𝛼 = 0.01, the probability 
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decreases to less than 0.04% on the negative side of x and that is in some way 

little closer to the scattering state behavior which is characteristic for the step 

function potential. 

Fig. 3 shows (red dots) the energy of the ground state versus 𝛼. As  𝛼 goes to one 

the energy increases until it coincides with the energy of the bound state for the 

Dirac delta function which is−0.25, and that shows one more time the evolution 

process of the wave function. 

In contrast, as 𝛼 goes to zero the energy goes to −1 which basically is the depth of 

the potential drop and that is expected since the fractional potential progressively 

takes the shape of a negative step function. Furthermore, we have fitted these data 

(Fig. 3 blue line) with the following relation: 

𝐸𝛼 = −0.25 + 0.72𝑈𝛼(10) = −0.25 −
0.72×10−𝛼

Γ(1−𝛼)
     (13) 

In this relation the first term is the bound state energy for Dirac delta function, and 

the second is the variation term proportional to the potential energy at 𝑥 = 10,  

where the wave function mostly vanishes. Even though this formula is very 

simple, it fits the data very well. When 𝛼 = 1, it gives 𝐸𝛼 = −0.25, as it should 

be and when 𝛼 = 0, it gives 𝐸𝛼 = −0.97 where it is supposed to give -1. This 

deviation can be explained in the view of the fact that the wave function vanishes 

at a distance greater than 10 as 𝛼 approaches zero.    

Finally, we will investigate the scattering states where the energy can take any 

positive value. We picked 𝐸 = 0.5 for our study since it is comparable to the 

depth of the potential drop. 

For the negative potential step, the transmission coefficient for a beam of particles 

coming from left is given by: 

𝑇 =
4√𝐸(𝐸+𝑈0)

(√𝐸+√𝐸+𝑈0)
2 = 0.928      (14) 

And the transmission coefficient for the case of the Dirac delta function is given 

by [21]: 

𝑇 = (1 +
𝑚𝑈0

2𝑥0
2

2ℏ2𝐸
)

−1

= 0.667      (15) 

Fig. 4, shows the transmission coefficients for the case of the fractional potentials. 

It is obvious that when 𝛼 goes to zero the transmission probability agrees with the 

case for the potential drop. For instance when 𝛼 = 0.001, 𝑇 = 0.928. However, 

when α goes to one the transmission coefficient goes to one in disagreement with 

the case for Dirac potential. The reason for this is that even though the fractional 

potential takes the shape of the Dirac potential when 𝛼 goes one, the fractional 

potential does not cause a discontinuity in the derivative of the wave function. 

That is in contrast to the case of the Dirac potential as shown previously. 

Therefore, care must be taken whenever Dirac potential is employed for 

approximation purposes. 
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 When 𝛼 is close to zero, the fractional potential well is basically a potential drop 

as shown before and the transmission probability coincides with its expected 

value. As 𝛼 increases the width of the well decreases and that causes the 

transmission probability to oscillate. Such behavior has been noticed in the 

rectangular potential well [21]. The oscillatory behavior persists as far as the 

width of the well is finite, that is 𝛼 ≠ 1. As 𝛼 approaches one, the well becomes 

very narrow and that raises the transmission coefficient to one. Only at the limit 

when 𝛼 = 1, the width of the well is truly zero and the well in this case is the 

Dirac potential well and therefore the transmission probability falls down to 

0.667.    

4. Conclusion 

In this work we have applied the idea of evolution using fractional calculus on 

transforming the Heaviside step potential through intermediate steps into Dirac 

delta potential. The evolution of the correlated wave functions and their 

corresponding energies were studied by solving the time independent Schrodinger 

equation numerically for bound and scattering states. The transformation of the 

ground state wave functions for the intermediate potentials into the bound state of 

the Dirac delta function was demonstrated. The gradual change in the 

transmission coefficient was observed for the intermediate potentials from the 

value of the step potential to one. We explained the disagreement between the 

transmission coefficient for the Dirac potential and the corresponding 

intermediate potential by studying the derivative of the wave function. We 

showed that the derivative of wave function for the intermediate potential is 

always continuous in contrast to the discontinuity in the case of the Dirac 

potential. Therefore, care must be taken whenever Dirac delta function is used for 

approximation purposes. 

 

Fig.  1: The Fractional Heaviside step-Dirac delta function Potentials for different values of 𝛼 
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Fig.  2: The normalized ground state wave functions Ψ0(x) for different values of 𝛼 

 
Fig.  3: The ground states eigen energies for different values of 𝛼(in red dots) and the fitting curve 

(in blue). 

 

Fig.  4: The transmission coefficients for different values of 𝛼 
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