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RENYI ENTROPY BASED SPECTRAL DESCRIPTORS FOR
SAR IMAGE CONTENT RETRIEVAL

Anca POPESCU', Inge GAVAT?, Mihai DATCU

Aceasta lucrare prezintd o metodd de mdsura a continutului informational al
reprezentarii spectral Wigner-Ville a imaginilor Radar cu Apertura Sintetica (SAR),
intr-o abordare bazata pe imagete, care folosette masura stohastica parametrica
datd de Entropia Rényi. Pe baza conceptelor informationale definite de Flandrin, se
efectueaza o analiza locald a reprezentarii timp-frecventd a unei imagete SAR,
rezultdnd intr-o serie de descriptori ce pot fi folositi pentru a identifica prezenta
unei anumite Categorii de Scend intr-o bazd de date de imagete, si de a regdsi
imagetele cu continut similar din perspectiva masurii informationale definite.

In this paper we measure the informational content of the Wigner-Ville
spectral representation of SAR images in a patch-wise approach, making use of the
parametric stochastic measure given by the Rényi Entropy. Following the
informational measures defined by Flandrin, we perform a local analysis of the
time-frequency representation of the SAR patch, resulting in a set of descriptors with
Sfurther use to identify the presence of a given Scene Class in a patch database and
to retrieve the patches that have similar content with respect to this specific
informational measure.

Keywords: High Resolution SAR, Rényi Entropies, Image Classification
1. Introduction

With the increased interest in the usage of Synthetic Aperture Radar data
for a variety of applications, and the growing number of spaceborne missions,
there has been a constant interest in the understanding and modeling of the SAR
system. From the information theory perspective, an interesting and key issue
regarding the understanding of the SAR products was the amount of information
that is contained in a SAR image. The analysis and interpretation of a SAR image
is not a straightforward task to perform, due to the various physical and
geometrical effects induced by the coherent acquisition mode and wave
propagation factors. Measuring the information contained in a SAR image
requires a good distinction between what is information and what is noise in a
SAR product.
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Frost and Shanmugan [1] developed a statistical model for imaging radar
systems, in which the radar system is considered as a noisy communication
channel with multiplicative noise. Through the estimation of Mutual Information
(M), the authors evaluate the average amount of information that can be extracted
about the imaged targets from the radar image. The analysis was made under the
assumption that a resolution cell is made of a large number of scatterers (which
applies for medium and low resolution images) and the received signal is modeled
as a narrowband Gaussian random process. The average MI was defined as the
rate at which information is transferred over a communication channel.

I(X,Y)=H(X)-H(Y | X) (1)

where, X represents the imaged targets and Y the final radar image. The
probability density function of X was modeled as a uniform distribution due to
lack of a priori data. The experiments were conducted over SEASAT-A SAR
images of 25 x 25 meters resolution and an equivalent number of looks N=3. An
important remark of the paper was that the fundamental limitation on the
information content is set by N. Later, in 2006, [2] used an information theoretic
approach to model SAR images for change detection purposes. The authors
derived a pixel feature for multi-temporal SAR image analysis from information
theory concepts. The idea was that the negative of the logarithm of the probability
of an amplitude level in one image conditional to the level of the same pixel in the
other image would give an estimate of the degree of change occurred between
passes. The topic of information content of SAR images was reiterated by Datcu
in [3]. As a continuation of the work of [1], the authors proposed an approach
suitable for high resolution images. The authors noted that for this kind of data it
is difficult to correctly take into account the correlation between neighboring
pixels due to the high resolution (meter, sub-meter) and stressed the importance of
temporal and spatial correlation of speckle, following the work of [4]. The authors
modeled the scene using a Gauss Markov Random Fields approach and
emphasized the fact that both radiometric and spatial resolution have to be taken
into account in order to completely define a measure of information content (i.e.
MI). The SAR channel was modeled as a communication channel affected by a
Gamma distributed multiplicative noise. The noise variance was proven to depend
inversely proportional on the number of looks. Unlike [1], the probability density
function of the scene is no longer considered uniform but instead is estimated
through GMREF, taking into account the correlation between neighboring pixels
(i.e. if a pixel is strongly different from its neighbors then it is more likely that it
is a manifestation of noise, rather than a real variation of the scene reflectivity).
The authors draw some interesting conclusions, among which the fact that the MI
is an increasing function of the number of looks and that the urban areas have the
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maximum value of MI, due to the increased heterogeneity compared to areas
dominated by vegetation. Considering the definition of the MI, this last
conclusion can be interpreted as the fact that an area with increased heterogeneity
will have an increased value of the entropy. Entropy is a measure of the
informational content of signals. The areas which are dominated by vegetation,
with a pronounced uniform and homogeneous character, can be described by a
small number of samples which means that the redundancy will be increased and
the entropy will be lower. Conversely, the areas which contain various targets,
especially man-made ones, will require longer descriptors, the redundancy will be
lower and the entropy will have a larger value.

The scope of this paper is to try to verify whether or not entropy can be
used as a feature for high resolution SAR image classification purposes. As an
information measure, we will employ the generalized Rényi entropies. In
literature, the entropy has been used in the analysis and processing of SAR images
especially to improve the performances of classification schemes but also as a
parameter or feature for classification [5], [6]. Moreover [7] used the entropy of
the reflected signal in order to determine the randomness of the model of
polarimetric SAR images built based on statistical parameters. The technique
proposed by the authors is reiterated in [8] and used for an unsupervised
classification of the types of landcover and man-made objects using as test data
polarimetric SAR images.

The Rényi entropy as a descriptive measure was used in multimedia as
well as in remote sensing applications. [9] use local directional Rényi entropy to
build a local image descriptor for image feature extraction. The authors use
entropy to measure the local saliency of images and define a descriptor with
invariant properties to transformations such as translation, rotation, scale,
illumination, occlusion, deformation and viewpoint variation and apply the
method on multimedia images for object recognition purposes. The authors of
[10] use the Rényi entropy as a similarity metric for clustering applications. In
[11] the authors define a Jensen-Rényi based divergence measure for image
registration purposes in inverse Synthetic Aperture Radar applications.

Throughout this paper we will employ the Rényi entropy as an information
measure and a descriptor of SAR images, in an approach that takes into account
the context of high resolution SAR scenes. When resolution increases up to meter
resolution, a pixel level analysis does not offer sufficient information to
distinguish the various scene categories, especially for the case of images which
contain urban and man-made elements. This is why we will use an image analysis
method in a localized approach with an extended analysis window; such that the
size can ensure that the context details are being captured, thus helping to a better
understanding of the scene content.
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The analysis window is set to a size of 200 x 200 pixels and sweeps the
entire scene and decomposes it into patches of equal size. Next, the analysis is
performed locally, in a patch-based manner. However, we do take into account the
non-stationary character of the SAR signal within a patch. For this reason, the
Rényi entropy will be used as an estimate of the informational content and
complexity of the time-frequency (TF) representation of each patch.

2. The Rényi Entropy. Theoretical Considerations

Information theory provides a measure of uncertainty or entropy that can
be maximized mathematically to find the probability distribution that is
maximally unbiased. Maximum entropy in terms of Shannon entropy is given by:

max(H(X))=-Y_ p;log(p;)
i>1 , With Zpl- =1 ()
C(X) = constraints i1
The system under test is the scene imaged by a SAR system. Given the
complete randomness of the input, no constraint is known a priori. In the
expression given above, p; denotes a probability, in terms of probability

distributions, that is subject for evaluation (what is the best estimate p; so
that H(X)is maximized) [12]. Thus, we estimate the TF representation of the
SAR image and we substitute the probability distribution with the Wigner-Ville
spectrum normalized so thatz‘l.21 p; =1.

This paper focuses on the application of entropy measures to TF
representations (TFRs) to measure the complexity and information content of the
non-stationary SAR signal via the TF plane. Given the negative values taken on
by most TFRs, the Shannon entropy as described by (2) cannot be applied. In [13]
a thorough study on the possibilities of measuring signal complexity and
information content based on entropies, shows that the Rényi entropy can be used
for this kind of applications.

Ho (Cy) =—=[[ Cy(t, )log, (Cy (¢, f))drdf (3)
L togs [[C%s e, fdidr @

Ho(Co)=

In information theory, the Rényi entropy is an extension of Shannon’s
entropy through the relaxation of the additivity constraint. The Rényi entropy,
named after Alfred Rényi, is one of a family of functionals for quantifying the
diversity, uncertainty or randomness of a system:
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1

Ha(cs):
l-a

N
InY" pf (5)
i=1

In the above equation the parameter o is greater or equal to 0 and it
becomes obvious that when o=1 the Rényi entropy tends to the Shannon entropy.
For a random variable X taking values with probabilities given by the p series, the
Rényi entropy is a continuous positive decreasing function of o. In addition to
appearing immune to the negative TFR values, the third order Rényi entropy
measures signal complexity. The restrictions for a and Cs (the joint TF function
that indicates how the frequency content of a signal s changes over time) are given
in [13]. Also, the third order Rényi entropy is well defined for large classes of
signals and TFRs. The most important properties of these entropies are:

1. Component counting — a two component signal s+7; contains exactly one bit
more information than the one component signal s: H, (I, 7 )= Hg(I5) +1

2. Invariance to TF representations (such as the Wigner Ville representation
employed here) cross-terms interferences;

3. Amplitude and phase sensitivity (amplitude discrepancies alter the asymptotic
saturation level of the Rényi entropy, while phase offsets induce strong
oscillations between saturation levels);

4. Invariance to information-invariant signal transformations;

Boundaries: lower bound given by a single Gaussian pulse;

6. Dimensions (for simple signals composed of disjoint, equal amplitudes of one
basic function, the Rényi dimension counts the number of components).

Proofs of the above listed properties are given in [13]. In the next section
we will revise some of the fundamental properties of the Wigner-Ville TF
representation of non-stationary signals and we will discuss the applicability of
the Rényi entropy over TFRs to measure complexity.

W

3. Wigner-Ville Time-Frequency Representation

The Fourier analysis, although very useful for the study of stationary
signals with invariant properties over time, is inadequate for non-stationary
signals for which TF representations resolve issues like the change of
wavenumber with space and of frequency with time, and generally allow for the
investigation of signal properties in both the space and the wave number domains.

The use of the Wigner distribution for TF analysis of non-stationary
signals provides a great advantage compared to other methods, due to the
precision of the spectral evolution localization, though the presence of
interference terms may make the interpretation difficult. The Wigner-Ville
distribution is defined as:
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Wt f) = j x(t+t/2)x" (1 =/ 2)e T g 6)

—00

The WVD is a functional that keeps the time and frequency shifts and
satisfies the marginals. An interpretation of (5) can be given in terms of
probability distributions: (5) is the Fourier transform of the energy function of the
signal. The most important properties of the Wigner distribution are given below
(a more detailed description is given in [14]):

1.  Energy preservation (by integrating the WV of a signal in the TF plane one

gets the signal’s energy) : E, = ” W, (¢, [)dtdf
2. Marginals (the energy spectral density and the instantaneous power can be

(W = x(HI?
[w.. dr = x() P

obtained as marginal distributions of WV) :

3. Real values
4.  Covariance translation in time-and frequency
5. Filtering compatibility (if y =x*h then WWD(y)= WWD(x)x WWD(h), where *

denotes time convolution)

6. Modulation compatibility (if y is obtained by modulating x with a function m
then WWD(y)= WWD(x)* WWD(m), where * denotes frequency convolution)

7.  Interference (The WD computation of a multi-component signal introduces
spurious “cross- terms” due to its intrinsic bi-linearity)

The Wigner Distribution might be interpreted as a local or regional spatial
frequency representation of an image. It presents two main advantages with
respect to other local representations. First, the WD is a real valued function and
encodes directly the Fourier phase information. Second, the election of the
appropriate window size, which depends on the kind of analyzed information, is
not required for the computation of the WD. The WD of a 2-D image is a 4-D
function that involves Fourier transformation for every point of the original
image. The WD doubles the number of variables of the represented image. In this
way, the WD of 2-D images is a 4-D function (2 spatial coordinates and 2 spatial-
frequency coordinates). The most of the applications of the WD in image
processing have been carried out through digital implementations. The definition
of the discrete 4-D Wigner Distribution is given by (7).

N/2-1 N/2-1
We(ng,ny,m,m)=2 % D rp(ng,ny ky, k) - exp{=2,[(
k=-N/2k,=—N/2

27m,, e, + (27zmv

2am, 7)
6 kT
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In (6), the term re(ng,ny. ke k) denotes the product between the shifted image
(vertically and horizontally by &,k ) and its 180° rotation: f(n, +ky,n, +k,)

and £ (n, —ky,ny, —k,).

In [12] was showed that a pixel level analysis based on the Rényi entropy
of the TF representation of a square window centered on the current pixel can
offer information regarding the structure of the image. The method captured the
main targets visible in the image and offered information about the statistic of the
analyzed scene. One of the conclusions of the paper was that the size of the
analysis window contributes to the estimation performances. A larger analysis
window led to better results. This can be explained by the fact that the text data
had an increased resolution of a few meters and a pixel level analysis could not
capture content and context information. Moreover, the analyzed data was
composed of detected images, having only amplitude information. In this paper
we will take into account these conclusions and we will extend the method
proposed in [12]. First of all, the analysis will be performed on a larger window
that will respond to the requirements of the high resolution data content. The
analyzed scene contains both homogeneous areas, dominated by vegetation, water
courses and water bodies, as well as urban areas where the objects are very
diverse and the propagation mechanisms and geometrical effects are strongly
visible. Using a patch-based approach (patches are obtained by applying a regular
grid over the scene), we will try to understand how the entropy of the TF
representation of a patch can be used as a descriptor of a given region in the scene.
We will show that it can be an important parameter for SAR image indexing,
being able to discriminate between different types of scene contents. Moreover,
we consider two cases for comparison: one in which we use only the amplitude
information if the image, where the speckle statistic has to be taken into account,
and one in which the complex SAR signal in employed, where we can make use
both of the amplitude and of the phase of the SAR signal.

4. Feature extraction procedure

For the analysis we have employed meter resolution TerraSAR-X data
acquired in High Resolution Spotlight mode (~1m resolution) over Bucharest. The
input data is composed of the Single Look Complex image for the first approach
the detected version (amplitude representation) of the image for the second
approach, and the complex interferogram for the third approach. The database
description was detailed in the previous chapter. Due to the fact that the area
covered by the interferometric data does not map the exact area covered by the
SLC and detected data due to co-registration, and in order to reduce the
computational time, we performed the analysis on a reduced set of interferometric
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patches. Thus, the number of classes identified in the interferometric database is
smaller than the number of classes identified in the complex and detected
databases. The input data is approximately 10.000 x 6000 pixels, covering a great
part of the city and including a large number of scene classes, from urban
elements that form residential areas, business centers, bridges, industrial sites, and
sport fields, to natural landscape like parks, water basins and courses, and so on.
Over the original image we apply a regular grid and break the data into non-
overlapping patches of 200 x 200 pixels. Thus we obtain a consistent patch
database which will be used in the following processing steps. Over each patch we
compute the Wigner-Ville spectrum which is normalized to meet the requirements
of a probability distribution. Next, the a-parameterized Rényi entropy is computed
for each patch and normalized for clustering purposes. The o parameter was set in
turn to take the values 3, 5 and 7. For each patch we obtain thus a single value of
the Rényi entropy parameter. The values are used to form a coefficients map
which is classified in the final step, and thus a scene class map is generated, from
which class masks can be extracted. The map quality is assessed through visual
inspection by an image analyst, comparing optical image information with the
generated class masks.

Normalization of Aloha
L DT aramefrization
probability p P
. o=3, 0 =5, a=7
distribution

Single Look Time — frequenc
& . Patch database quency
Complex High . representation .
. formation . . Computation
Resolution SAR . (Wigner-Ville .
—» Regular grid |— —=  of Renyi
fmage / 200 x 200 spectrum) entro
Detected SAR . computation per Py
. pixels
image patch L

Coefficients
map formation
—» and scene
reconstruction

and indexing

Normalization
to the range
[0, 1] and
clustering

Fig.1. Feature extraction

Feature extraction is described in Fig 1: for the first approach the input
data is formed of meter resolution Single Look Complex SAR images; for the
second approach the analysis is performed over detected SAR images over the
same geographical area; after the formation of the patch database by applying a
regular grid over the data, the Wigner-Ville spectrum is computed in a patch-wise
approach and normalized to meet the requirements of a probability distribution;
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next, the o-parameterized Rényi entropy is computed for each patch and
normalized for clustering purposes;the scene is recomposed from the normalized
coefficients and the classification map is generated.

5. On the applicability of the Rényi entropy to the TFR

The key step in the processing chain is the computation of the TF
representation and the verification of constraints. In order for the Rényi entropy to
be defined for the TF representation, as given in equation 3, the double integral
has to be defined. Thus the condition that is imposed for the TFR is that

j j C%(t, f)dudf >0 (8)

For some classes of signals the above condition is not met and the Rényi
entropy is not applicable. However, as shown in [13], the Rényi entropy of order 3
is well defined for a large range of signals. Moreover, Gaussian smoothing of the
TFR with small kernels can be employed to resolve these issues. To check for
these consistency requirements, we performed a statistical analysis over the patch
database to verify that the computed TFR meets the positivity constraint. Fig. 2
gives an example of the TFR over a patch, and it’s smoothed version with a
Gaussian filter of kernel size 5. The spectrum is depicted both as an image and as
a 3-D surface. The results show that there are no dominant negative peaks, at least
in the smoothed version, which allows for the applicability of the Rényi entropy.

6. Working with discrete signals

In the experiments we employed a pre-normalized version of the TFR, in
other words, the expression under the double integral in equation 3 is divided by
the integral over the time and frequency domains of the TFR. This is equivalent to
normalizing the signal energy. The Renyi entropy of order & becomes:

Ha(cs)=1— 0g) ﬂ(” Cs(t./) J didf ©)

C(u,v)dudv

Since the signal under analysis is discrete, with a finite number of samples, with
the signal sampling given by the pulse repetition frequency (PRF) the formula for

the Rényi entropy in the discrete case can be written as:
a

Cln,k
Ha(cs[n,k])——logzzz % (10)

u v
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7. Computation of the Rényi Coefficients Maps. Classification results

The discrete Rényi entropy was computed over the previously obtained
patch databases, formed of complex and detected patches. The varying parameter
was o, which was set to the values 3, 5 and 7. These values were selected in order
to test whether or not the value of the parameter should be limited to 0=3, or if
other values of a can provide good estimates of the information content of the
patches and thus could be used as descriptors of the patch. After the computation
of the values of the Rényi entropy for the TF representation of each patch, the
original SAR scene could be reconstructed. Fig. 5 depicts the results obtained for
the two databases. The images marked as (a) depict the normalized Rényi
coefficient maps for different values of the parameter a. The ones marked as (b)
depict the classification maps obtained after a K-means classification of the
coefficients maps, with a number of clusters equal to 5. Fig. 3Error! Reference
source not found. shows the statistics of the values of the Rényi coefficients
corresponding to the classes obtained by a binary classification: “Urban Area” and
“Green Area”. Three values of the o parameter were considered: 3, 5, and 7. The
numbers in table 1 confirm the expected values of the Rényi entropy.

Table 1
Statistics of the Rényi coefficients for binary classification
o value/ database Urban Vegetation
Mean Variance (* 107 Mean Variance (* 10™%)

0=3 , complex 4.56 1.8 4.69 3.1

0=3 , detected 426 0.72 433 0.93
0=5, complex 2.30 0.58 2.37 0.94
o=5 , detected 2.13 0.18 2.16 0.23
0=7 , complex 1.53 0.26 1.58 0.42
o=7 , detected 1.42 0.08 1.44 0.10

We mentioned previously that the areas with increased heterogeneity
should exhibit larger values of the entropy. This is true in the case where the
entropy is computed directly on the image’s pixels values, in other words directly
on the image histogram.
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Fig. 2. Example of TF representation of a complex patch

Fig. 2 shows: (left to right) the representation of the Wigner-Ville
spectrum as an image, as a 3-D surface, the smoothed version with a Gaussian
filter and the 3-D representation of the TF representation, c%(, r)required for the

double integral condition; no dominant negative peak is noticeable.

In our analysis, due to the fact that the entropy is computed on the image
spectrum rather than on the image histogram, the entropy is an indicator or the
spectrum homogeneity. It is expected that the areas covered with vegetation
should have more uniform spectra, which in information theory terms translates
into less information. Consequently, the entropy will be higher. In opposition to
this, the urban areas will have more pronounced spectra, which will lead to a
decrease of the values of the entropy. This fact is shown in table 1 where it can be
seen that the entropy of the urban areas is lower than the entropy of the green
areas in all the six considered cases (for both databases and for the three values of
the alpha parameter).
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Histograms of Renyi coefficients for urban areas in the complex case

Fig. 3. Histograms of Rényi coefficients computed for the complex database, for binary
classification: urban areas and vegetated areas

Fig. 3 depicts the distributions of the values of the Rényi entropies as
functions of the alpha parameter and the considered classes. By analyzing the
numbers in table 1 we can see that both the mean value and the variance of the
entropy decrease with a. Although in all of the six considered cases all coefficient
maps seem to discriminate between the vegetated and urban areas, the
classification results (Fig. 5b) prove that not all coefficient maps have the same
discriminative properties. Lower values of a (3 and 5) seem to give better
classification results. Comparing the results obtained between the single look
complex and detected databases, it appears that the complex signal contains more
information than the amplitude signal, and this increased information is useful for
scene classification. The most visible result is the case of a=7, where for the
detected database the most distinctive class is formed of areas covered by
vegetation, although the precision is visibly lower than for smaller values of a.

A first assessment was performed through visual inspection of the results.
An example is given in Fig. 4, which shows the optical projection of the analyzed
area, and the overlays of the vegetation masks obtained from the complex and
detected databases over the optical image. The results show the precision is
increased when the complex signal is employed. The false alarm rate is much
higher in the detected case. Although in all of the six considered cases all
coefficient maps seem to discriminate between the vegetated and urban areas, the
classification results (Fig 5b) prove that not all coefficient maps have the same
discriminative properties. Lower values of o (3 and 5) seem to give better
classification results. Comparing the results obtained between the two databases,
it appears that the complex signal contains more information than the amplitude
signal, and this increased information is useful for scene classification. The most
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visible result is the case of a=7, where for the detected database the most
distinctive class is formed of areas covered by vegetation, although the precision
is visibly lower than for smaller values of a.

ey ~ : 5 ) o 34
BT i \ 5 ‘ = g W i, b AP

Fig. 4. (upper): optical Google Earth projection of the analyzed area, original SAR image, and
(lower): the overlays of the vegetation masks obtained from the complex and detected databases
over the optical image, for alpha =3

8. Validation of Method

Table 2 shows a comparative result of the Single Look Complex and
Detected databases and complements the results presented in Fig. 4.

By analyzing the precision, recall and accuracy values, one can state that
for the detected database the best results are obtained by using the Rényi entropies
parameterized by o=3. The table shows mean values of precision, recall and
accuracy. The quality of the classification improves if the SLC database is
employed. The maximum precision however is obtained for the Rényi entropy
parameterized by o=5 for the class “Continuous Urban Fabric”.
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Complex, a =3 Detected, a =3

Fig. 5. (a) depicts the normalized Rényi coefticient maps for different values of the parameter a.
The ones marked as (b) depict the classification maps obtained after a K-means classification of
the coefficients maps, with a number of clusters equal to 5

Given the fact that the analyzed area comprises mostly densely populated
areas in which the living facilities are mostly apartment blocks with very similar
architecture, the number of patches in the database was very large. Thus, there is
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little variability in the class which makes it easier to retrieve compared to other
more heterogeneous classes. Hence, we can state that with the increased
resolution, the phase information becomes important even with single band data.

Table 2
Mean Precision and Recall for classification on 16 annotated classes using Renyi coefficients
Complex Detected
Alpha Precision Recall Accuracy Precision Recall Accuracy
(mean) % (mean) % (mean) % (mean) % (mean) % (mean) %
3 44.80 41.68 94.50 43.20 40.71 94.18
5 46.81 41.53 94.47 40.18 39.70 94.06
7 43.92 4091 94.22 45.51 39.02 94.22
Precision - Renyi Entropy coefficients on SLC database
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Precision - Renyi Entropy coefficients, INSAR database
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Fig. 7 Precision (left) and Recall (right) of classification using the Renyi Entropy parameterized by
o= 3, 5 and 7on interferometric database;

Figs. 6, 7 and 8 present the Precision and Recall graphs for the Single
Look Complex and Interferometric databases. The graphs depict the results
obtained for the selected values of alpha. The Rényi entropy is parameterized by
0=3, 5, 7. By analyzing the graphs, one can conclude that a value of a=5 would be
preferred in the case of SLC data, while for interferometric data a=7 would yield
better results. Overall, a number of 8 classes can be discriminated based on the
Rényi Entropy of the patches spectra using the SLC database, with precision
higher than 45%. On the other hand, by using the interferometric database, the
number of identifiable classes increases to 11 (with precision higher than 45%).
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Fig. 8 Comparison of precision of classification obtained on Single Look Complex patches and
Interferometric patches

The usage of interferometric information increases the precision in the
case of coherent targets, such as buildings or roads. Areas with high dynamics and
low coherence between acquisitions are better discriminated by SLC data.

9. Conclusions

In this paper we introduced the Rényi entropies of the TF representations
as a descriptor for scene classification in a patch-wise approach. The most
important properties of the Rényi entropies were presented and the applicability of
the entropies on the Wigner-Ville representations of SAR signals was discussed.
The tests were performed on three annotated databases, consisting of detected,
single look complex and interferometric SAR data. The results show that the
complex data adds value to the classification in the case of increased resolution.
Moreover, interferometric data was proven to be better suited for urban classes’
identification. The Rényi entropies were parameterized with o=3, 5, and 7. A
lower value of a is required for good classification of detected SAR data, while
larger values are required when the phase information is taken into account. A
number of 8 classes were identified with precision higher than 45% using SLC
data with Rényi entropies of order o=5. Adding the interferometric information
allowed to increase the number of classes to 11.
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