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RÉNYI ENTROPY BASED SPECTRAL DESCRIPTORS FOR 
SAR IMAGE CONTENT RETRIEVAL 

Anca POPESCU1, Inge GAVĂŢ2, Mihai DATCU 

Această lucrare prezintă o metodă de măsura a conţinutului informaţional al 
reprezentării spectral Wigner-Ville a imaginilor Radar cu Apertura Sintetică (SAR), 
într-o abordare bazată pe imagete, care foloseţte măsura stohastică parametrică 
dată de Entropia Rényi. Pe baza conceptelor informaţionale definite de Flandrin, se 
efectuează o analiză locală a reprezentării timp-frecvenţă a unei imagete SAR, 
rezultând într-o serie de descriptori ce pot fi folosiţi pentru a identifica prezenţa 
unei anumite Categorii de Scenă într-o bază de date de imagete, şi de a regăsi 
imagetele cu conţinut similar din perspectiva măsurii informaţionale definite. 

In this paper we measure the informational content of the Wigner-Ville 
spectral representation of SAR images in a patch-wise approach, making use of the 
parametric stochastic measure given by the Rényi Entropy. Following the 
informational measures defined by Flandrin, we perform a local analysis of the 
time-frequency representation of the SAR patch, resulting in a set of descriptors with 
further use to identify the presence of a given Scene Class in a patch database and 
to retrieve the patches that have similar content with respect to this specific 
informational measure.  
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1. Introduction 

With the increased interest in the usage of Synthetic Aperture Radar data 
for a variety of applications, and the growing number of spaceborne missions, 
there has been a constant interest in the understanding and modeling of the SAR 
system. From the information theory perspective, an interesting and key issue 
regarding the understanding of the SAR products was the amount of information 
that is contained in a SAR image. The analysis and interpretation of a SAR image 
is not a straightforward task to perform, due to the various physical and 
geometrical effects induced by the coherent acquisition mode and wave 
propagation factors. Measuring the information contained in a SAR image 
requires a good distinction between what is information and what is noise in a 
SAR product. 
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Frost and Shanmugan [1] developed a statistical model for imaging radar 
systems, in which the radar system is considered as a noisy communication 
channel with multiplicative noise. Through the estimation of Mutual Information 
(MI), the authors evaluate the average amount of information that can be extracted 
about the imaged targets from the radar image. The analysis was made under the 
assumption that a resolution cell is made of a large number of scatterers (which 
applies for medium and low resolution images) and the received signal is modeled 
as a narrowband Gaussian random process. The average MI was defined as the 
rate at which information is transferred over a communication channel.     
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where, X represents the imaged targets and Y the final radar image. The 
probability density function of X was modeled as a uniform distribution due to 
lack of a priori data. The experiments were conducted over SEASAT-A SAR 
images of 25 x 25 meters resolution and an equivalent number of looks N=3. An 
important remark of the paper was that the fundamental limitation on the 
information content is set by N. Later, in 2006, [2] used an information theoretic 
approach to model SAR images for change detection purposes. The authors 
derived a pixel feature for multi-temporal SAR image analysis from information 
theory concepts. The idea was that the negative of the logarithm of the probability 
of an amplitude level in one image conditional to the level of the same pixel in the 
other image would give an estimate of the degree of change occurred between 
passes. The topic of information content of SAR images was reiterated by Datcu 
in [3]. As a continuation of the work of [1], the authors proposed an approach 
suitable for high resolution images. The authors noted that for this kind of data it 
is difficult to correctly take into account the correlation between neighboring 
pixels due to the high resolution (meter, sub-meter) and stressed the importance of 
temporal and spatial correlation of speckle, following the work of [4]. The authors 
modeled the scene using a Gauss Markov Random Fields approach and 
emphasized the fact that both radiometric and spatial resolution have to be taken 
into account in order to completely define a measure of information content (i.e. 
MI). The SAR channel was modeled as a communication channel affected by a 
Gamma distributed multiplicative noise. The noise variance was proven to depend 
inversely proportional on the number of looks. Unlike [1], the probability density 
function of the scene is no longer considered uniform but instead is estimated 
through GMRF, taking into account the correlation between neighboring pixels 
(i.e. if a pixel is strongly different from its neighbors then it is more likely that it 
is a manifestation of noise, rather than a real variation of the scene reflectivity). 
The authors draw some interesting conclusions, among which the fact that the MI 
is an increasing function of the number of looks and that the urban areas have the 
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maximum value of MI, due to the increased heterogeneity compared to areas 
dominated by vegetation. Considering the definition of the MI, this last 
conclusion can be interpreted as the fact that an area with increased heterogeneity 
will have an increased value of the entropy. Entropy is a measure of the 
informational content of signals. The areas which are dominated by vegetation, 
with a pronounced uniform and homogeneous character, can be described by a 
small number of samples which means that the redundancy will be increased and 
the entropy will be lower. Conversely, the areas which contain various targets, 
especially man-made ones, will require longer descriptors, the redundancy will be 
lower and the entropy will have a larger value.  

The scope of this paper is to try to verify whether or not entropy can be 
used as a feature for high resolution SAR image classification purposes. As an 
information measure, we will employ the generalized Rényi entropies. In 
literature, the entropy has been used in the analysis and processing of SAR images 
especially to improve the performances of classification schemes but also as a 
parameter or feature for classification [5], [6]. Moreover [7] used the entropy of 
the reflected signal in order to determine the randomness of the model of 
polarimetric SAR images built based on statistical parameters. The technique 
proposed by the authors is reiterated in [8] and used for an unsupervised 
classification of the types of landcover and man-made objects using as test data 
polarimetric SAR images.  

The Rényi entropy as a descriptive measure was used in multimedia as 
well as in remote sensing applications. [9] use local directional Rényi entropy to 
build a local image descriptor for image feature extraction. The authors use 
entropy to measure the local saliency of images and define a descriptor with 
invariant properties to transformations such as translation, rotation, scale, 
illumination, occlusion, deformation and viewpoint variation and apply the 
method on multimedia images for object recognition purposes. The authors of 
[10] use the Rényi entropy as a similarity metric for clustering applications. In 
[11] the authors define a Jensen-Rényi based divergence measure for image 
registration purposes in inverse Synthetic Aperture Radar applications.  

Throughout this paper we will employ the Rényi entropy as an information 
measure and a descriptor of SAR images, in an approach that takes into account 
the context of high resolution SAR scenes. When resolution increases up to meter 
resolution, a pixel level analysis does not offer sufficient information to 
distinguish the various scene categories, especially for the case of images which 
contain urban and man-made elements. This is why we will use an image analysis 
method in a localized approach with an extended analysis window; such that the 
size can ensure that the context details are being captured, thus helping to a better 
understanding of the scene content.  
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The analysis window is set to a size of 200 x 200 pixels and sweeps the 
entire scene and decomposes it into patches of equal size. Next, the analysis is 
performed locally, in a patch-based manner. However, we do take into account the 
non-stationary character of the SAR signal within a patch. For this reason, the 
Rényi entropy will be used as an estimate of the informational content and 
complexity of the time-frequency (TF) representation of each patch. 

2. The Rényi Entropy. Theoretical Considerations 

Information theory provides a measure of uncertainty or entropy that can 
be maximized mathematically to find the probability distribution that is 
maximally unbiased. Maximum entropy in terms of Shannon entropy is given by: 

 

 ∑
∑

≥
≥ =

⎪⎩

⎪
⎨
⎧

=

−=

1
1 1,
sconstraint)(

)log())(max(

i
ii

ii
pwith

XC

ppXH
                     (2) 

The system under test is the scene imaged by a SAR system. Given the 
complete randomness of the input, no constraint is known a priori.  In the 
expression given above, ip  denotes a probability, in terms of probability 
distributions, that is subject for evaluation (what is the best estimate ip̂  so 
that )(XH is maximized) [12]. Thus, we estimate the TF representation of the 
SAR image and we substitute the probability distribution with the Wigner-Ville 
spectrum normalized so that 11 =∑ ≥i ip .  

This paper focuses on the application of entropy measures to TF 
representations (TFRs) to measure the complexity and information content of the 
non-stationary SAR signal via the TF plane. Given the negative values taken on 
by most TFRs, the Shannon entropy as described by (2) cannot be applied. In [13] 
a thorough study on the possibilities of measuring signal complexity and 
information content based on entropies, shows that the Rényi entropy can be used 
for this kind of applications.  
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In information theory, the Rényi entropy is an extension of Shannon’s 

entropy through the relaxation of the additivity constraint. The Rényi entropy, 
named after Alfred Rényi, is one of a family of functionals for quantifying the 
diversity, uncertainty or randomness of a system: 
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In the above equation the parameter α is greater or equal to 0 and it 

becomes obvious that when α=1 the Rényi entropy tends to the Shannon entropy. 
For a random variable X taking values with probabilities given by the p series, the 
Rényi entropy is a continuous positive decreasing function of α. In addition to 
appearing immune to the negative TFR values, the third order Rényi entropy 
measures signal complexity. The restrictions for α and Cs (the joint TF function 
that indicates how the frequency content of a signal s changes over time) are given 
in [13]. Also, the third order Rényi entropy is well defined for large classes of 
signals and TFRs. The most important properties of these entropies are: 
1. Component counting – a two component signal s+Ts contains exactly one bit 

more information than the one component signal s: 1)()( +=+ sTs IHIH
s αα  

2. Invariance to TF representations (such as the Wigner Ville representation 
employed here) cross-terms interferences; 

3. Amplitude and phase sensitivity (amplitude discrepancies alter the asymptotic 
saturation level of the Rényi entropy, while phase offsets induce strong 
oscillations between saturation levels); 

4. Invariance to information-invariant signal transformations; 
5. Boundaries: lower bound given by a single Gaussian pulse; 
6. Dimensions (for simple signals composed of disjoint, equal amplitudes of one 

basic function, the Rényi dimension counts the number of components). 
Proofs of the above listed properties are given in [13]. In the next section 

we will revise some of the fundamental properties of the Wigner-Ville TF 
representation of non-stationary signals and we will discuss the applicability of 
the Rényi entropy over TFRs to measure complexity. 

3. Wigner-Ville Time-Frequency Representation 

The Fourier analysis, although very useful for the study of stationary 
signals with invariant properties over time, is inadequate for non-stationary 
signals for which TF representations resolve issues like the change of 
wavenumber with space and of frequency with time, and generally allow for the 
investigation of signal properties in both the space and the wave number domains.  

The use of the Wigner distribution for TF analysis of non-stationary 
signals provides a great advantage compared to other methods, due to the 
precision of the spectral evolution localization, though the presence of 
interference terms may make the interpretation difficult. The Wigner-Ville 
distribution is defined as: 
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The WVD is a functional that keeps the time and frequency shifts and 

satisfies the marginals. An interpretation of (5) can be given in terms of 
probability distributions: (5) is the Fourier transform of the energy function of the 
signal. The most important properties of the Wigner distribution are given below 
(a more detailed description is given in [14]): 

1. Energy preservation (by integrating the WV of a signal in the TF plane one 
gets the signal’s energy) : ∫∫= dtdfftWE xx ),(  

2. Marginals (the energy spectral density and the instantaneous power can be 

obtained as marginal distributions of WV) : 
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3. Real values  
4. Covariance  translation in time-and frequency 
5. Filtering compatibility (if hxy ∗=  then WWD(h)WWD(x)WWD(y) ∗= , where * 

denotes time convolution) 
6. Modulation compatibility (if y is obtained by modulating x with a function m 

then WWD(m)WWD(x)WWD(y) ∗= , where * denotes frequency convolution) 
7. Interference (The WD computation of a multi-component signal introduces 

spurious “cross- terms” due to its intrinsic bi-linearity) 
The Wigner Distribution might be interpreted as a local or regional spatial 

frequency representation of an image. It presents two main advantages with 
respect to other local representations. First, the WD is a real valued function and 
encodes directly the Fourier phase information. Second, the election of the 
appropriate window size, which depends on the kind of analyzed information, is 
not required for the computation of the WD. The WD of a 2-D image is a 4-D 
function that involves Fourier transformation for every point of the original 
image. The WD doubles the number of variables of the represented image. In this 
way, the WD of 2-D images is a 4-D function (2 spatial coordinates and 2 spatial-
frequency coordinates). The most of the applications of the WD in image 
processing have been carried out through digital implementations. The definition 
of the discrete 4-D Wigner Distribution is given by (7). 
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In (6), the term ),,,( yxyxf kknnr denotes the product between the shifted image 

(vertically and horizontally by yx kk , ) and its 180° rotation: ),( yyxx knknf ++  

and ),( yyxx knknf −−∗ .  
In [12] was showed that a pixel level analysis based on the Rényi entropy 

of the TF representation of a square window centered on the current pixel can 
offer information regarding the structure of the image. The method captured the 
main targets visible in the image and offered information about the statistic of the 
analyzed scene. One of the conclusions of the paper was that the size of the 
analysis window contributes to the estimation performances. A larger analysis 
window led to better results. This can be explained by the fact that the text data 
had an increased resolution of a few meters and a pixel level analysis could not 
capture content and context information. Moreover, the analyzed data was 
composed of detected images, having only amplitude information. In this paper 
we will take into account these conclusions and we will extend the method 
proposed in [12]. First of all, the analysis will be performed on a larger window 
that will respond to the requirements of the high resolution data content. The 
analyzed scene contains both homogeneous areas, dominated by vegetation, water 
courses and water bodies, as well as urban areas where the objects are very 
diverse and the propagation mechanisms and geometrical effects are strongly 
visible. Using a patch-based approach (patches are obtained by applying a regular 
grid over the scene), we will try to understand how the entropy of the TF 
representation of a patch can be used as a descriptor of a given region in the scene. 
We will show that it can be an important parameter for SAR image indexing, 
being able to discriminate between different types of scene contents. Moreover, 
we consider two cases for comparison: one in which we use only the amplitude 
information if the image, where the speckle statistic has to be taken into account, 
and one in which the complex SAR signal in employed, where we can make use 
both of the amplitude and of the phase of the SAR signal.   

4. Feature extraction procedure 

For the analysis we have employed meter resolution TerraSAR-X data 
acquired in High Resolution Spotlight mode (~1m resolution) over Bucharest. The 
input data is composed of the Single Look Complex image for the first approach 
the detected version (amplitude representation) of the image for the second 
approach, and the complex interferogram for the third approach. The database 
description was detailed in the previous chapter. Due to the fact that the area 
covered by the interferometric data does not map the exact area covered by the 
SLC and detected data due to co-registration, and in order to reduce the 
computational time, we performed the analysis on a reduced set of interferometric 
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patches. Thus, the number of classes identified in the interferometric database is 
smaller than the number of classes identified in the complex and detected 
databases. The input data is approximately 10.000 x 6000 pixels, covering a great 
part of the city and including a large number of scene classes, from urban 
elements that form residential areas, business centers, bridges, industrial sites, and 
sport fields, to natural landscape like parks, water basins and courses, and so on. 
Over the original image we apply a regular grid and break the data into non-
overlapping patches of 200 x 200 pixels. Thus we obtain a consistent patch 
database which will be used in the following processing steps. Over each patch we 
compute the Wigner-Ville spectrum which is normalized to meet the requirements 
of a probability distribution. Next, the α-parameterized Rényi entropy is computed 
for each patch and normalized for clustering purposes. The α parameter was set in 
turn to take the values 3, 5 and 7. For each patch we obtain thus a single value of 
the Rényi entropy parameter. The values are used to form a coefficients map 
which is classified in the final step, and thus a scene class map is generated, from 
which class masks can be extracted. The map quality is assessed through visual 
inspection by an image analyst, comparing optical image information with the 
generated class masks. 

 
Fig.1. Feature extraction 

 
Feature extraction is described in Fig 1: for the first approach the input 

data is formed of meter resolution Single Look Complex SAR images; for the 
second approach the analysis is performed over detected SAR images over the 
same geographical area; after the formation of the patch database by applying a 
regular grid over the data, the Wigner-Ville spectrum is computed in a patch-wise 
approach and normalized to meet the requirements of a probability distribution; 
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next, the α-parameterized Rényi entropy is computed for each patch and 
normalized for clustering purposes;the scene is recomposed from the normalized 
coefficients and the classification map is generated. 

5. On the applicability of the Rényi entropy to the TFR 

The key step in the processing chain is the computation of the TF 
representation and the verification of constraints. In order for the Rényi entropy to 
be defined for the TF representation, as given in equation 3, the double integral 
has to be defined. Thus the condition that is imposed for the TFR is that  

 0),( >∫∫ dtdfftCs
α                                                 (8) 

 
For some classes of signals the above condition is not met and the Rényi 

entropy is not applicable. However, as shown in [13], the Rényi entropy of order 3 
is well defined for a large range of signals. Moreover, Gaussian smoothing of the 
TFR with small kernels can be employed to resolve these issues. To check for 
these consistency requirements, we performed a statistical analysis over the patch 
database to verify that the computed TFR meets the positivity constraint. Fig. 2 
gives an example of the TFR over a patch, and it’s smoothed version with a 
Gaussian filter of kernel size 5. The spectrum is depicted both as an image and as 
a 3-D surface. The results show that there are no dominant negative peaks, at least 
in the smoothed version, which allows for the applicability of the Rényi entropy. 

6. Working with discrete signals 

In the experiments we employed a pre-normalized version of the TFR, in 
other words, the expression under the double integral in equation 3 is divided by 
the integral over the time and frequency domains of the TFR. This is equivalent to 
normalizing the signal energy. The Renyi entropy of order   becomes: 
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Since the signal under analysis is discrete, with a finite number of samples, with 
the signal sampling given by the pulse repetition frequency (PRF) the formula for 
the Rényi entropy in the discrete case can be written as: 
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7. Computation of the Rényi Coefficients Maps. Classification results 

The discrete Rényi entropy was computed over the previously obtained 
patch databases, formed of complex and detected patches. The varying parameter 
was α, which was set to the values 3, 5 and 7. These values were selected in order 
to test whether or not the value of the parameter should be limited to α=3, or if 
other values of α can provide good estimates of the information content of the 
patches and thus could be used as descriptors of the patch. After the computation 
of the values of the Rényi entropy for the TF representation of each patch, the 
original SAR scene could be reconstructed. Fig. 5 depicts the results obtained for 
the two databases. The images marked as (a) depict the normalized Rényi 
coefficient maps for different values of the parameter α. The ones marked as (b) 
depict the classification maps obtained after a K-means classification of the 
coefficients maps, with a number of clusters equal to 5. Fig. 3Error! Reference 
source not found. shows the statistics of the values of the Rényi coefficients 
corresponding to the classes obtained by a binary classification: “Urban Area” and 
“Green Area”. Three values of the α parameter were considered: 3, 5, and 7. The 
numbers in table 1 confirm the expected values of the Rényi entropy.  

Table 1 
Statistics of the Rényi coefficients for binary classification  

α value/ database Urban  Vegetation  
Mean  Variance ( )  Mean  Variance ( ) 

α=3 , complex 4.56 1.8 4.69 3.1 
α=3 , detected 4.26 0.72 4.33 0.93 
α=5 , complex 2.30 0.58 2.37 0.94 
α=5 , detected 2.13 0.18 2.16 0.23 
α=7 , complex 1.53 0.26 1.58 0.42 
α=7 , detected 1.42 0.08 1.44 0.10 

 
We mentioned previously that the areas with increased heterogeneity 

should exhibit larger values of the entropy. This is true in the case where the 
entropy is computed directly on the image’s pixels values, in other words directly 
on the image histogram. 
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Fig. 2. Example of TF representation of a complex patch 

 
Fig. 2 shows: (left to right) the representation of the Wigner-Ville 

spectrum as an image, as a 3-D surface, the smoothed version with a Gaussian 
filter and the 3-D representation of the TF representation, ),( ftC s

α required for the 
double integral condition; no dominant negative peak is noticeable. 

In our analysis, due to the fact that the entropy is computed on the image 
spectrum rather than on the image histogram, the entropy is an indicator or the 
spectrum homogeneity. It is expected that the areas covered with vegetation 
should have more uniform spectra, which in information theory terms translates 
into less information. Consequently, the entropy will be higher. In opposition to 
this, the urban areas will have more pronounced spectra, which will lead to a 
decrease of the values of the entropy. This fact is shown in table 1 where it can be 
seen that the entropy of the urban areas is lower than the entropy of the green 
areas in all the six considered cases (for both databases and for the three values of 
the alpha parameter).  
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Fig. 3. Histograms of Rényi coefficients computed for the complex database, for binary 

classification: urban areas and vegetated areas  

Fig. 3 depicts the distributions of the values of the Rényi entropies as 
functions of the alpha parameter and the considered classes. By analyzing the 
numbers in table 1 we can see that both the mean value and the variance of the 
entropy decrease with α. Although in all of the six considered cases all coefficient 
maps seem to discriminate between the vegetated and urban areas, the 
classification results (Fig. 5b) prove that not all coefficient maps have the same 
discriminative properties. Lower values of α (3 and 5) seem to give better 
classification results. Comparing the results obtained between the single look 
complex and detected databases, it appears that the complex signal contains more 
information than the amplitude signal, and this increased information is useful for 
scene classification. The most visible result is the case of α=7, where for the 
detected database the most distinctive class is formed of areas covered by 
vegetation, although the precision is visibly lower than for smaller values of α.  

A first assessment was performed through visual inspection of the results.  
An example is given in Fig. 4, which shows the optical projection of the analyzed 
area, and the overlays of the vegetation masks obtained from the complex and 
detected databases over the optical image. The results show the precision is 
increased when the complex signal is employed. The false alarm rate is much 
higher in the detected case. Although in all of the six considered cases all 
coefficient maps seem to discriminate between the vegetated and urban areas, the 
classification results (Fig 5b) prove that not all coefficient maps have the same 
discriminative properties. Lower values of α (3 and 5) seem to give better 
classification results. Comparing the results obtained between the two databases, 
it appears that the complex signal contains more information than the amplitude 
signal, and this increased information is useful for scene classification. The most 
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visible result is the case of α=7, where for the detected database the most 
distinctive class is formed of areas covered by vegetation, although the precision 
is visibly lower than for smaller values of α. 

    

    
Fig. 4. (upper): optical Google Earth projection of the analyzed area, original SAR image, and 

(lower): the overlays of the vegetation masks obtained from the complex and detected databases 
over the optical image, for alpha = 3 

8. Validation of Method 

Table 2 shows a comparative result of the Single Look Complex and 
Detected databases and complements the results presented in Fig. 4.  

By analyzing the precision, recall and accuracy values, one can state that 
for the detected database the best results are obtained by using the Rényi entropies 
parameterized by α=3. The table shows mean values of precision, recall and 
accuracy. The quality of the classification improves if the SLC database is 
employed. The maximum precision however is obtained for the Rényi entropy 
parameterized by α=5 for the class “Continuous Urban Fabric”. 
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Fig. 5. (a) depicts the normalized Rényi coefficient maps for different values of the parameter α. 
The ones marked as (b) depict the classification maps obtained after a K-means classification of 

the coefficients maps, with a number of clusters equal to 5 
 
Given the fact that the analyzed area comprises mostly densely populated 

areas in which the living facilities are mostly apartment blocks with very similar 
architecture, the number of patches in the database was very large. Thus, there is 
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little variability in the class which makes it easier to retrieve compared to other 
more heterogeneous classes. Hence, we can state that with the increased 
resolution, the phase information becomes important even with single band data. 

Table 2 
Mean Precision and Recall for classification on 16 annotated classes using Renyi coefficients 

 
Alpha 

Complex Detected 
Precision 
(mean) % 

Recall 
(mean) % 

Accuracy 
(mean) % 

Precision 
(mean) % 

Recall 
(mean) % 

Accuracy 
(mean) % 

3 44.80 41.68 94.50 43.20 40.71 94.18 
5 46.81 41.53 94.47 40.18 39.70 94.06 
7 43.92 40.91 94.22 45.51 39.02 94.22 

 

 
 

 
Fig. 6 Precision (left) and Recall (right) of classification using the Renyi Entropy parameterized by 

α= 3, 5 and 7 on complex database;  
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Fig. 7 Precision (left) and Recall (right) of classification using the Renyi Entropy parameterized by 

α= 3, 5 and 7on interferometric database; 
 
Figs. 6, 7 and 8 present the Precision and Recall graphs for the Single 

Look Complex and Interferometric databases. The graphs depict the results 
obtained for the selected values of alpha. The Rényi entropy is parameterized by 
α=3, 5, 7. By analyzing the graphs, one can conclude that a value of α=5 would be 
preferred in the case of SLC data, while for interferometric data α=7 would yield 
better results. Overall, a number of 8 classes can be discriminated based on the 
Rényi Entropy of the patches spectra using the SLC database, with precision 
higher than 45%. On the other hand, by using the interferometric database, the 
number of identifiable classes increases to 11 (with precision higher than 45%). 
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Fig. 8 Comparison of precision of classification obtained on Single Look Complex patches and 

Interferometric patches 
 

The usage of interferometric information increases the precision in the 
case of coherent targets, such as buildings or roads. Areas with high dynamics and 
low coherence between acquisitions are better discriminated by SLC data. 

9. Conclusions 

 In this paper we introduced the Rényi entropies of the TF representations 
as a descriptor for scene classification in a patch-wise approach. The most 
important properties of the Rényi entropies were presented and the applicability of 
the entropies on the Wigner-Ville representations of SAR signals was discussed. 
The tests were performed on three annotated databases, consisting of detected, 
single look complex and interferometric SAR data. The results show that the 
complex data adds value to the classification in the case of increased resolution. 
Moreover, interferometric data was proven to be better suited for urban classes’ 
identification. The Rényi entropies were parameterized with α=3, 5, and 7. A 
lower value of α is required for good classification of detected SAR data, while 
larger values are required when the phase information is taken into account. A 
number of 8 classes were identified with precision higher than 45% using SLC 
data with Rényi entropies of order α=5. Adding the interferometric information 
allowed to increase the number of classes to 11. 
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