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¢ - CONTRACTIVE ORBITAL AFFINE ITERATED FUNCTION
SYSTEMS

Alexandru Mihail', Irina Savu?

In this paper, we introduce the notion of p-contractive orbital affine iter-
ated function system (0AIFS for short), which is based on the notions of affine iterated
function system and @-contractive orbital iterated function system. We present two
results which give a description of the functions of an 0AIFS and establish sufficient
conditions to exist a norm with specific properties on the linear spaces where the func-
tions are defined. Two examples are provided.
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1. Introduction

The concept of iterated function system (IFS for short) was introduced by J. Hutchin-
son in [9] and in the last decades, many generalizations of this concept have been considered.
For example, there have been studied IFSs consisting of ¢-contractions (see [10]), convex
contractions (see [7]), systems with an infinite number of functions (see [6], [8], [11]), graph-
directed Markov systems (see [13]) and others. Also, important contibutions in the study of
IF'Ss are presented in [12] and [22]. For certain types of IFSs, the fractal operator associated
is Picard (see [15]), but there have been introduced and studied IFSs for which the fractal
operator is weakly Picard. For the last case, let us mention the orbital iterated function
systems, which have been studied largely in [16], [17] and [20]. An orbital iterated function
system is a finite family of continuous functions defined on a metric space (X, d) having the
property that on the orbit of every element x € X, the functions are contractions with the
same contractivity constant. It was proved (see [16]) that the fractal operator associated to
such a system is weakly Picard.

An important type of IFS is represented by the affine iterated function systems. For
example, in [1], the authors studied the hyperbolic affine iterated function systems and in
[14], R. Miculescu and A. Mihail gave an alternative characterization of hyperbolic affine
infinite iterated function systems defined on an arbitrary normed space. Moreover, in [4],
the authors studied an application of affine iterated function systems, namely equilibrium
states of generalized singular value potentials. Affine iterated function systems have been
also studied in [2], [3], [5], [18], [19] and [23]).

In this paper, we use the notions of affine iterated function system and @-contractive
orbital iterated function system in order to introduce the notion of ¢-contractive orbital
affine iterated function system (oAIFS for short). This is an affine iterated function system

defined on the normed space (R", ||-||), consisting of a finite family of functions (f;),.; having
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the property that for every i € I, there exist A; € L (R™,R™) and a@; € R™ such that f; (z) =
A;z+a; for all z € R™. Moreover, there exists a comparison function ¢: [0,00) — [0, c0) such
that d (f; (v), fi (2)) < ¢ (d(y,2)) for every z € R", y,z € O (x) and i € I. We denote such a
system by 8 = ((R™,[|-||), (fi);e)- We present a result (see Theorem 3.1) which states that
there exist two linear subspaces Y, Z C R” such that Y+ Z =R", Y N Z = {Ogn~} and for
every i € I, there exist B; € L(Z,Z), C; € L(Y,Z) and b; € Z such that A; = {g Og"y]
Oy
bi
for all i € I. Moreover, we prove that we can find a norm ||-||,:R” — [0,00), such that

E

and a; = . We also prove that there exists a norm ||-||, on Z such that ||B;||, < ¢

, <1and ||B;||, < cfor all i € I (see Theorem 3.2). Two examples are provided.

2. Preliminaries

Notations and terminology

Given a set X, a function f: X — X and n € N*, by f* we mean fofo---of byn
times. By f° we mean the identity function.

Given a metric space (X,d), by:

- diam (A) we mean the diameter of the subset A of X;

- P, (X) we mean the set of non-empty compact subsets of X;

- the Hausdorff-Pompeiu metric we mean h: P, (X) x P, (X) — [0,00) given by
h(A,B) =max{d(A,B),d(B,A)}forall A,B € P,, (X),whered (A, B) = sugyig}fgd (z,v);

rE

- a weakly Picard operator we mean a function f: X — X having the property that
for every x € X, the sequence (f™ (x)),cy is convergent to a fixed point of f.

Results regarding the Hausdorff-Pompeiu metric

Proposition 2.1 (see [21]). For a metric space (X,d), we have

h < U A;, -ngi> <suph (4;, B;) (1)

iel iel

for every (A);c; and (B;);c; families of elements from P, (X).

Proposition 2.2 (see [21]). For a metric space (X,d), we have
h(A,B) < diam (AU B)

for every A, B € P,, (X).

Proposition 2.3 (see [21]). If the metric space (X,d) is complete, then the metric space
(Pep (X)), h) is complete.

Let Y, Z C R™ be two real linear spaces. By Y + Z wemean {y +z |y €Y, z € Z}
and by L (Y, Z) we denote the space of linear applications from Y to Z.

By 0y we mean the null vector from Y and by Iy we mean the identity function from
L(Y,Y). By dimY we mean the dimension of the space Y.

By Oy,z we denote the linear application from Y to Z which, applied to every element
from Y, is equal to 0z. If Y = Z, Oy y will be denoted by Oy.

If |-y isanormon Y and A € L(Y,Y), by ||Al|y we mean  sup
yEY,y#0y

lAylly
lylly -

Let Y, Z C R™ be two real linear spaces such that Y + Z =R"” and Y N Z = {Ogn }.
If z € R™, then there exist a unique y € Y and a unique z € Z such that y + z = z. In
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this case, we make the notation z = { Z } Let A € L(R",R") and =z = [ Z ] € R". We

A A

make the notation A = {Am Aoy

:|, where A1 € L(Y,Y) A € L(Z,Y A21 € L(Y, Z)

and Agy € L(Z,Z) are defined by Ay = [ Anz ] and Az = [ Arpz } for every y € Y and
Y

Agoz
Any ] + [ A2z

Aosvy Anyz } for every z = [ e R”.

z € Z. Let us note that Az = [

The shift (code) space

Given two sets A and B, by B* we mean the set of all functions from A to B.

For a set I and n € N*, we use the notation I{1:2m} "2 A (I). If n =0, then
Ag (I) consists of a single element, namely the empty word, denoted by A.

For n € N*, the elements of A, (I) are finite words with n letters from I, namely
a = ayag - -an. In this case, n is called the length of o and it is denoted by |a|. For
a € A, (I) and m € N*, by [a],, we mean the word formed with the first m letters from «
if m < n, or the word « if n < m. By [a], we mean the word A.

Let n € N*. For a family of functions (f;),.;, where f;: X — X for all i € I and
a = ajag---an € Ay (I), we use the notation f, = foq, 00 fo,. By f\ we mean the
identity function.

Let Y, Z C R" be two real linear spaces, (B;),c; C L(Y,Z), m € N* and a =
i1i - im € Ay (I). We use the notation B, = B;; o B, 0---0B; .

By A* (I) we mean the set of all finite words with letters from I, namely A* (I) =

By A (I) we mean the set IN". The elements of A (I) can be written as infinite words,
namely « = ajas---ap--- . For @« € A(I) and n € N*, by «,, we mean the letter on
position n in «. By [a], we mean the word formed with the first n letters from «. By [o]g
we mean A.

Orbital iterated function systems

Definition 2.1. Let (X, d) be a complete metric space and (f;);c; a finite family of contin-
wous functions, with fl X — X forallieI. Let B € P, (X). By the orbit of B we mean

the set O (B) = UN A(I fiay, (B). If B = {x}, for the orbit of {x} we make the notation
neN ae
0 (z).

Definition 2.2. A function ¢:[0,00) — [0,00) is called comparison function if ¢(r) < r for
all ¥ > 0 and ¢ is increasing and right continuous on [0, 00).

We note that if ¢:[0,00) — [0, 00) is a comparison function, then lim ¢™ (r) = 0 for

n—oo
all » > 0.

Definition 2.3. By an iterated function system (IFS) we mean a pair denoted by 8§ =
((X, d), (fi)iel)’ where (X, d) is a complete metric space and (f;);c; is a finite family of
continuous functions, with fi: X — X for all i € I. If there exists ¢:[0,00) — [0,00) a
comparison function such that

d(fi(y), fi(2)) <@ (d(y,2))

for every i € I and y,z € X, 8 is called p-contractive iterated function system. If there
exists a constant C € [0,1) such that ¢ (t) = C -t for allt € [0,00), 8 is called C-contractive
iterated function system.
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Definition 2.4. By a p-contractive orbital iterated function system (oIFS for short) we
mean a pair denoted by 8§ = ((X, d), (fi)iel) , where (X, d) is a complete metric space and
(fi)ier is a finite family of continuous functions, with fi: X — X for all i € I, having the
property that there exists ¢:[0,00) — [0,00) a comparison function such that

d(fi(y), fi(2)) < ¢(d(y,2))
foreveryx € X, i €1 and y,z € O(x). If there exists C € [0,1) such that ¢ (t) = C -t for
all t € [0,00), 8 is called C-contractive orbital iterated function system.

Definition 2.5. Let 8 = ((X,d), (fi);c;) be an oIFS. The fractal operator associated to 8 is
the function Fs: P, (X) — Pep (X) defined by Fs (K) = ‘Ulfi (K), for every K € Pep (X).
1€

Definition 2.6. Let 8§ = ((X, d), (fi)iel) be an IFS. By an attractor of 8§ we mean a fixed
point of the fractal operator associated to 8. We say that 8 has a unique attractor if there
exists a set denoted by A such that li_>m h(F§(K),A) = 0 and Fs(A) = A for every

K € P, (X).

Theorem 2.1 (see [17]). Every oIFS has at least one attractor. More precisely, the associ-
ated fractal operator is weakly Picard.

Let 8 = ((X,d), (fi);c;) be an oIFS. Then, for every K € P, (X), there exists a set
(an attractor) corresponding to K, denoted by Ax € P, (X), such that lim h (F§ (K),Ax) =
n—oo
0 and Fs (Akx) = Ax. If K = {z}, we will denote its corresponding attractor by A,.

Remark 2.1. Let 8§ = ((X,d),(fi);c;) be an oIFS. As for every x € X the sequence

(Fg ({x})),en is convergent to Ay, we have O (x) = O(x) U Ay. We note that O (z) is
bounded for every x € X.

Using a technique similar with the one used in [17] and [20], one can prove the
following:

Proposition 2.4. Let 8§ = ((X,d),(f;);c;) be an oIFS, (K,),cy @ sequence with K, €
P, (X) for alln € N and K € P, (X) such that lim h (K,, K) =0.
n— oo

Then, lim h (Ak,,Ak)=0.
n—oo

Proposition 2.5 (sce [17]). Let 8 = ((X,d), (fi);c;) be an oIFS. Then, Agp = A, for every
v€X and B € P, (O(m)).

Proposition 2.6 (see [17]). Let 8 = ((X,d), (f;);c;) be an oIFS. Then,
nglf[a]n (Az) = {aa ()}
and

d (f[oz]71 (.Z‘) ) Qo (‘T)) < (Pn (dlam (O (l‘)))
forallz € X, neN and o € A(I).
Definition 2.7. Let x,y € X. We say that x is equivalent with y and we use the notation
ey if Ay = Ay
Remark 2.2. The above relation is an equivalence relation. For an element x € X, we

denote its class by T .

Remark 2.3. If x,y € X such that x «~ y, then using Proposition 2.6, we obtain a, (x) =
aa ()
Remark 2.4. If z,y € X such that A, N Ay # O, then A, = Ay.
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Affine iterated function systems

Definition 2.8. On R™ we consider a fixzed norm denoted by ||-||. By an affine iterated
function system we mean a pair denoted by 8 = ((R™,||-]), (fi);c;), where (f;);c; is a finite
family of continuous functions, with f;:R"™ — R™ for all i € I, having the property that for
every i € I, there exist A; € L(R™,R™) and a@; € R™ such that f; (x) = A;x + a; for all
x € R".

Definition 2.9. Let 8 = (R, ||]|), (fi);c;) be an affine iterated function system. § is
called hyperbolic if there exists a norm ||| - ||| on R™ and C € [0,1) such that the system
(R™ |11}, (fi)ies) is a C-contractive iterated function system.

Definition 2.10. Let ¢: [0, 00) — [0,00) be a comparison function and 8 = ((R™,[|-), (fi);er)
an affine iterated function system. S is called p-hyperbolic if there exists a norm ||| - ||| on
R™ such that (R™, ||| - |[|), (fi);c;) is a ¢-contractive iterated function system.

Theorem 2.2 (see [14]). Let 8 = ((R™, |||}, (fi);c;) be an affine iterated function system.
Then, the following statements are equivalent:

1) 8 is hyperbolic;

2) there exists a comparison function pg such that 8 is po-hyperbolic;

3) 8 has a unique attractor.

Definition 2.11. By a y-contractive orbital affine iterated function system (0AIFS for
short) we mean a pair denoted by 8 = (R™, |||1), (fi);e;) which is an affine iterated function
system and has the property that there exists a comparison function ¢:[0,00) — [0,00) such
that 8 is a @-contractive orbital iterated function system.

3. Main results

Proposition 3.1. Let 8 = (R™, ||-|), (fi);c;) be an 0AIFS, m € N, m > 2 and o € Ay, ().

iel
Then, .
fo(@) = A0z + 00, + Y Apa),_, ba,
for all x € R™. -
Proof. By mathematical induction. O

Remark 3.1. Using Proposition 3.1, we have that

fa(@1) = fo (2) = Ao (21 — 32) (2)
for all z1,29 € R™, m € N* and a € A,,, (I).

Theorem 3.1. Let 8 = (R, |]-]]), (f:)
spaces Y, Z C R™ such that
DY+ Z=R",YNZ={0pn};
2) for every i € I, there exist B; € L(Z,Z), C; € L(Y,Z) and b; € Z such that
A= |:IY Ozy Oy |

ie,) be an oAIFS. Then, there exist two linear sub-

C; B and @; = b; |’
3) there exist c € (0,1) and a norm ||-||,, on Z such that ||B;||, < ¢ for alli € I.

Proof. Let us consider
Z = {z eR™| lim g[a]mz = Ogn for all @ € A(I)} .
m—roo

One can easily prove that Z is a linear subspace of R™. It results that there exists a
subspace of R™ denoted by Y such that Y + Z =R" and Y N Z = {Og~ }.
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This implies that there exist B; € L(Z,Z), C; € L(Y,Z), D, € L(Y,Y), E; €
L(Z)Y), b; € Z and ¢; € Y such that

't D; E; ~ |G
A; = |:Ci Bi:| and a; = [bj .
Claim 1. lim g[a]m (1 — 22) =0 for all x1,z9 € R™ with z1 « 2.
m—00

Justification: Let x1,z9 € R™ with 1 v~ 5. From Remark 3.1, Proposition 2.6 and
Remark 2.3, we have

hm A[a] (131 — 1‘2) = hm (.f[a] ( ) f[a]m (xg)) = Qg (1‘1) — Qg (132) = O

m—r o0

Claim 2. £ =z + Z for all z € R".
Justification: Let = € R™. Applying Proposition 2.6, we have

lim sup Hf () — aq (2)| < Jim o™ (diam (O (2))) = 0,

7n

SO

lim sup Hf

m— 00 acA(I) ’"

() = aa (z)] =0 (3)

for every x € R™.
Let 1,29 € R with 21 « z3. Using Remark 2.3, we have a, (1) = a4 (z2) for all
a € A(I). From Remark 3.1 and the triangle inequality, we obtain

vyl .
A, swp | A, (o1 = w2)|| = T sup S, (21) = fia, (22)]
= lim  sup | fla,, (21) = @ (21) + aa (x2) = fla), (z2)]|
m o0 GA )
<l sw [ fial,, (@1) = aq (22)|| + lim_ 2111\1(31)|\aa (22) = fia,, (@2)]]-

Using relation (3) and the above inequality, it results

lim sup Hg[a]’” (z1 — .732)” =0.
We deduce that 1 — x2 € Z, so x1 € x5 + Z. Hence, we proved that £ C x 4+ Z for
all z € R"™.
Let us consider x; € x + Z. Then,

fi,, (@1) = fla,, (@) + flo,, (@1) = fla),, (%)

7n m m

= fia),, (@) + Ay, (21— 2)

for all m € N* and a € A (I). By passing to limit as m — oo in the above relation and using
the fact that 1 —x € Z, we obtain a, (1) = a, (z). Applying Proposition 2.6 and Remark
2.4, we infer that x; «~~ z, so x1 € &. Therefore, x + Z C z, for all z € R".

From the both inclusions we deduce the conclusion of the claim.

For all p € N* and 5 € A, (I), we have fg(x) € O (z) and using Proposition 2.5, we
deduce that Ay, ) = A,. Hence, fg (x) € & and it results that O (z) C 2 for all x € R™.

Let x € R" and ¢ € I. As f; (x) € O(z), we have f; (z) € &. Applying Claim 2, we
obtain that f; (z) € x + Z. Thus, there exists ¢, € Z such that Az +a; = +ty. So,

(A= ) 2+ =t (4)
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AsY+Z=R" and YNZ = {Ogn}, there exist y € Y and z € Z such that x = {ﬂ

Therefore, relation (4) is equivalent with

oA R b

As x € R™ was arbitrary chosen, we obtain
Ciy+(Bi—1Iz)z+b;=t,
for every y € Y and z € Z. Taking y = 0y and z = 0z in the first equation of the system, it

results ¢; = Oy for all ¢ € I. Taking y = Oy and z # 0z in first equation, we have E; = Oz y
for all ¢ € I. In the same equation, for 2 = 0z and y # Oy, it results that D; = I, for all

i € I. Thus,
f; Yy Iy Ogzy| |y n Oy | Yy

foralyeY,ze€ Z and i€ I.
Using the mathematical induction, one can prove that

~ Oy| | Oy
o P )
forallm e N*, a € A(I) and z € Z.
Let us consider the system 87 = ((Z,||]), (¢i);c;) With gi: Z — Z given by g; (z) =
Bz forall z € Z and i € I. As g;(0z) = 0z for every i € I, we deduce that Fg ({0z}) =
{0z}
X Using the fact that £ = = + Z for all x € R”, by taking * = 0z, we obtain that
0z =Z.
Let us consider B € P, (Z) and z € BU {0z} C Z. As z € Oz, we infer that
aq (2) = aq (0z).
For a € A (I), we have that

Biay,z @ Ao,z = A, (= 02) 2 fiag, (2) = fi, (02) (6)
for every p € N*. Thus,
Bla),? = fiol, (2) = fla), (02)
for every p € N*. Moreover,

(6)
sup HB[a]pZH - sw Hf[a]p (2) = fla, (OZ)H
a|=p

|a|=p
= 5 [, (2 = e, (02) = 0 () + a0 (02)|
< sup | fia), (2) = aa (2)]| + sup | fia), (02) = a0 (02)|
la|=p lal=p

< 2 sup sup ‘f[a] (z) — an (m)H < 24P (diam (O (BU{0z})))
lal=p z€BU{0z} !

for every p € N*. Hence,

sup sup B[a]pr < 2¢P (diam (O (BU{0z})))

z€B |a|=p

for every p € N*. We have

n(F2, (B) 002) =1 (|1 0 ). 102))

la|=p
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< sup h(ga (B),{0z}) < sup sup [|ga (2)||

|a|=p z€B |a|=p
= sup sup ||Baz| < 2¢” (diam (0 (BU{0z})))
z€B |a|=p

for every p € N*.
By taking into consideration the above relation, we obtain that lim A (ng (B),{0 Z}) =
p—00 z

0 for every B € P, (Z). As Fy_ ({0z}) = {0z}, we infer that {0z} is an attractor of 8.
Using Theorem 2.2, we deduce that there exists a norm ||-|| , on Z such that max |Bill , < 1.
1€

Hence, ((Z,]]‘l ;) , (9i);c;) is a C-contractive IFS.
(]

Theorem 3.2. Let S = ((R", ||||), (fi);c;) be an 0AIFS. LetY and Z be the linear subspaces
of R™ which result from Theorem 3.1 and let ||-|ly be a norm defined on Y. Let p =
maIXHBZ-HZ, 8= maIxHC’iHYZ and 0 € (0, 1;“). We consider the norm ||-||, : R™ — [0, 00)
S 1€ ’

= max {|lylly . 01zl 2}

deﬁned by
%

forally €Y and z € Z and the norm ||| - |||: Z — [0,00) given by |||z]|| = 0]|z]|z for all
€ Z. Then, |4 <1 and |[IBilll = |Bil, <1 for alli e I.

Proof. Letie 1,0 ¢ (0,177#), yeY and z € Z.
Case 1.
Ollzllz < llylly - (7)

We have
ilY _ Yy _ ) )
TV =N e sie || = ottty e+ Bty
<max{llyly . 8 (ICly. lylly +I1Billl12112) }
<max {|lylly . 65 lylly +nllzll )}
Applying (7), we have
0B llly +rllzll) < 80 ylly + plylly = (86 + ) Iyl -

Using the fact that 6 < 177“, we deduce that 06 + u < 1, so

0 (Blylly +rlzlz) <lylly -

Thus,
ro Y
[ )], < =[],
and we obtain the conclusion.
Case 2.
lylly < @ll=l - (8)

Similarly with the first case, we have

|y _ y
[l 2], =l ot 5

Applying (8), we have

17| V][ < max et o011, + a1y
6

< max{llylly, 0 (Bllylly +rllzllz)}-
0
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= fmax {[[z]|,, (B0 +p)ll2]l}-

As 0 < 12 it results
(BO+ ) Izl < llzll 7 »

B
A lY _1lY
[ 2], <ova <[ 2]

Again, we obtained the conclusion. |

Remark 3.2. Let 8 be an 0AIFS as in Theorem 3.2. Then, for any norm on R™, it doesn’t
exist, in general, a constant v < 1 such that H;lz

<~ for all i € I. For example, we
consider 8§ = ((R,|-1]), f) with f:R — R given by f (x) = x for all x € R. It can be seen

that 8 is an 0AIFS with A=1 and @ = 0. In this case, |A| = 1.

4. Remarks and examples

Let 8 = ((R™, [|-l), (fi);e;) be an 0AIFS. Applying Theorem 3.1, we obtain that there
exist two linear subspaces Y, Z C R" such that

DY+ Z=R"and Y NZ = {Ogn};

2) for every i € I, there exist B; € L(Z,Z), C; € L(Y,Z) and b; € Z such that

T _ |y Ozy ~ |0y,
Az—[ci B, and a; = b |’
3) there exist ¢ € (0,1) and a norm |||, on Z such that ||B;||, < c for all i € I.
By mathematical induction, one can prove
T _ | Iy Ozy
where
Ci1...’im — Cil 4 Zle’kalclk
k=2
for all m € N, m > 2 and i; € I, with j € {1,--- ,m}.
Let m € N* and « € A(I). Let y € Y and z € Z such that z = [ z } It results
Y _ Y
Ale),, @ = [C"“'”amy + Bal...amz}
and

i s Iy Ozy Oy | _ Oy
el B = | gan-an— Boy - an_1] |bay N Ba, a1 bay,

forall o e A(I), k € {2,--- ,m} and m € N, m > 2. Using Proposition 3.1, we have

fia,, () = Afa), @+ Ga, + > Ala),_, Gay
k=2

for all x € R™.
As ||B;||; < ¢ <1 forall i € I, we deduce

o (z) = lim fioy (2)

Y m

- [ 2] 5
m— o0 <Ci1 + Z B[a]k_lCak> Y+ B[a]mz Eial = B[a]k_lbak
k=2
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Y

Cil + ZB[‘X]IC71CO"9 Y +a°‘1 + Z B[a]k71bo‘k
E>2 k>2

for all @ € A (I). Therefore,

Y
Y _ |~
o (|: < :|> ~ |G Cil + ZB[a]k—l (Caky+bo‘k) (9)
k>2 _
forallao e A(I),y€Y and z € Z.
Example A. Let us consider the normed space (R*, |-||), where [-|| is the Euclidean

norm. Let (€;);c73 be the canonical basis in R3. We consider I = {1,2,3} and the family
of functions (f;),;c; where f;: R* — R* is given by

10 0 0
L1 9 ¢ 0

w180 o] ()
i 2 c
3 00 3

for all z € R* and i € I. Thus, we obtained the system 8 = ((R*,[|-||), (fi);c;)- One can
easily prove that 8 is an oAIFS. From the proof of the Theorem 3.1, one can easily see that

0 Yo
7 = Z | a,b,c € R 3. We consider Y = 8 | yo € R p. Let x € R%. Then,
c 0
there exist y € Y and z € Z such that z = g . Since y € Y, there exists yo € Y such
Yo
that y = 8 . Using relation (9), we deduce that
0

S
e
7 N
1
N <
—_
N———
|
—~
=
SN—
Bl
L
wls
)

()
+
Cop
forally € R, 2 € R and a € A (]).
If yo = 0, we obtain that A, is the Sierpinski triangle (denoted by T') with ver-

tices in ( 60 ), (2) and (f) For yo # 0, we obtain that A, is T translated by
1 2 3

Y

>(3) u

k>1

2yo

e =)
<
—_ == O
N
<
(=}

For a set K € P,, (X), if we want to find A, we use the fact that Ax = UKA‘T'
S

Example B. Let us consider the normed space (R?,]|-||), where [|-|| is the Euclidean
norm. Let (e;);c15 be the canonical basis in R%. We consider I = {1,2} and the family of
functions (g;);c; where g;:R® — R3 is given by g; (#) = Bz +b; for all z € R® and i € I,
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N X !
where B= [ —-14 —-10 -7 |, b = 9 and by = —5 |. Thus, we obtained the

3
system 8 = ((R®,||'|) , (9s);c;)- One can easily prove that 8 is an 0AIFS. In order to find
the spaces Y and Z from the Theorem 3.1, we change the basis in R?, by considering the

2 1 1 3 -2 1
matrix D= | 1 2 3. Itsinverseis D™' = [ —=12 9 —5 |. In this case, we obtain
-3 1 3 7T -5 3

the functions

1 0 O 0
file)={3 5 0 33+( )
1 o 1L €
1 3
for all z € R? and i € I. If we apply Theorem 3.1 for the system ((RS, ||||) v(fi)z'el)v we
3
have that Y is the space generated by the vector | —12 | and Z is the space generated by
7
-2 1
the vectors | 9 | and [ —5
-5 3

5. Conclusions

In this paper we introduce the notion of p-contractive orbital affine iterated function
system (0AIFS), which represents a type of IFS for which the component functions are affine
and they are endowed with weaker contractivity conditions. We present two results which
give a description of the functions of an oAIFS and establish sufficient conditions to exist a
norm with specific properties on the linear spaces where the functions are defined. Also, we
provide two examples for such type of systems.
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