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UNITARY DUAL OF THE STANDARD SHEARLET GROUP, IN
ARBITRARY SPACE DIMENSIONS
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This paper is devoted to definition standard higher dimension shearlet group
S =Rt x R*~1 x R™ in arbitrary space dimensions and concerned with the application
of the Mackey Machine in order to determine the unitary dual of S, using the theory of
induced unitary representations for locally compact groups, via the action of RT x R*—1
on R™. Also we give a characterisation of irreducible sub-representations of the quasi-
regqular representation of S.
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1. Introduction

Locally compact groups arise in many diverse areas of mathematics, the physical
sciences, and engineering. The presence of the group is usually felt through unitary repre-
sentations of the group. This observation underlines the importance of understanding such
representations and how they may be constructed, combined, or decomposed. Of particular
importance are the irreducible unitary representations. Irreducible unitary representations
of a locally compact group are the basic building blocks of the harmonic analysis associated
with a locally compact groups. In the middle of the last century, G. W. Mackey initiated a
program to develop a systematic method for identifying all the irreducible unitary represen-
tations of a given locally compact group G in the series of papers [10, 11, 12, 13]. The set
of all unitarily equivalence class of irreducible unitary representations of G is denoted by G.
The program Mackey initiated, received contributions from many researchers with some of
the most substantial advances made by Blattner [2] and Fell [5]. Fell’s work is particularly
important in studying G as a topological space. At the core of Mackey’s analysis is the in-
ducing construction, which is a method of building a unitary representation of a group from
a representation of a subgroup. It is worthwhile to know that the induced representations
for finite groups were introduced in 1898 by Frobenius [7], where the idea is by no means
limited to the case of finite groups, but the theory in that case is particularly well-behaved.
For general locally compact groups, the notion of induced unitary representations was to
a large extent developed by Mackey in the 1950s [11, 12, 13]. Mackey confined himself to
second countable groups G and separable Hilbert spaces H and the Imprimitivity Theorem
is the foundation of his method. The objects appearing in this parametrization are easiest
to deal with when G splits as a semi-direct product of the Abelian subgroup N and another
locally compact group H and carefully study the orbit space formed by G = N x H acting
on N. In this paper we describe a Mackey procedure for constructing the unitary dual of the
standard shearlet group in arbitrary space dimensions. The semi-direct product structure
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of the shearlet group in arbitrary space dimensions, is the useful feature to determine the
unitary dual (the class of irreducible representations) of this group. Note that we are inter-
ested in investigating the standard shearlet group S in arbitrary space dimensions, which is
introduced in two dimension space by Kutyniok et .al in [8], and the class of the unitary dual
of S, because of the importance of the irreducible sub-representations of the quasi-regular
representation of S and specially the shearlet transform.

More precisely this article is organized as follows. We collect the necessary background
and tools containing inducing a representation from a subgroup to the full group, the class
of semi-direct product of locally compact group, and also the unitary dual of semi-direct
product group, in section 2. Section 3, is devoted to determine the standard shearlet group
and its semi-direct product structure in arbitrary space dimensions. Finally, in section 4,
we describe the unitary dual of the shearlet group in arbitrary space dimensions, using the
Mackey theory for the semi-direct product groups.

2. Preliminaries and notation

The single most important method for producing representations of a locally compact
group is the procedure of inducing representations from subgroups. If H is a closed subgroup
of a locally compact group G and 7 is a unitary representation of H on the Hilbert space
H,, then indgﬂ is a unitary representation of G that is constructed by combining the
action of m with the algebraic and measure-theoretic inter-relation of G, H and G/H, where
G/H admits a quasi-invariant measure p. The Hilbert space on which indgw acts, can be
precisely identified as the space F, of all H, -valued functions on G that are measurable
and square-integrable and that satisfy the appropriate covariance equation with respect to
Hie.,

F={f:G— Ha; f(gh) = 7(h™")f(g),forg € G,h € Hand [, |f(9)Pdp(gH) < oo}.

To summarize, the Hilbert space associated with the representation indgﬂ' is the completion
of ¥ and

(indGm(x)) f(g) = f(z™"g),
for z,9 € G and f € F. General theoretical results on induced representation can be found
in [6, 10].

We continue this section with a review of the basic definitions and notations of the

case that G is a semi-direct product group. We shall use the following conventions of semi-
direct product groups throughout the paper.
For two locally compact groups H and N, let h — 73, be a homomorphism of H into the group
of automorphisms of N denoted by Aut(N). Also assume that the mapping (h,n) — mn,
from H x N (endowed with the product topology) onto N is continuous. Then the set H x N
with the operations:

(h,n)(W',n') := (R nTH(n)),
and
(hyn)~t = (A1, 71 (n),
is a locally compact group. This group is denoted by H x IV and called the semi-direct prod-
uct of H and N. The left Haar measure of G = H X, N is dug(h,n) = 6(h)dpmg (h)dun(n),

where dpg and duy are the left Haar measures on H and N, respectively and 4 is a positive
continuous homomorphism on H which is given by

dyu (n) = 8(R)dpn (7 (n).
Also the right Haar measure on G = H X, N is
dvg(h,n) = dvg (h)dvy (n),
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where dvy and dvy are the right Haar measure on H and N, respectively. For more details
on semi-direct product groups one can see [1, 9]. Without further comment, we identify N
and H with the obvious closed subgroups of G. Then N is a normal subgroup of G. Let
us return to our situation in which N is Abelian. For each y € N , denoted by G, the
stabilizer group associated with x and defined by G, = {g € G, g.x = x}, which is closed
subgroup of G. In this case, it is reasonable to formulate all of the G-orbit information in
terms of H. Consider the stabilizer subgroups H, = G, N H, for each x € N. Since N
is Abelian subgroup of G, so N C G, and then G, = H, x, N and O, = {h.x;h € H}
also H, = Gy/N. Moreover, for any x € N, G/G, can be identified with H/H, via the
mapping (n, h)Gy — hH, for h € H and n € N. Note that if G is second countable, then G
acts regularly on N if there is a Borel set X in N such that intersects each orbit in exactly
one point (this assertion was proved by Mackey [10]). Actually the existence of the Borel
set implies that the orbit space is countably separated and structure of the orbits is that
of homogeneous space. The Borel set X with this property is called a cross-section of the
G-orbits in N.

By using the following proposition, we introduce a procedure by which the unitary
dual of a semi-direct product group with an appropriate Abelian subgroup, can be completely
constructed. This procedure is often called Mackey theory or more informally, the Mackey
Machine for Abelian subgroups [6].

Proposition 2.1. Suppose G = H x,. N, where N is Abelian and G acts reqularly on N.
Also X be a cross-section of the G-orbits in N, then

é:{mdg (Wxx);weﬁ;,xeX}.

In this proposition, (7 x x) is a representation of G, = H, x N into the unitary
operators on H,, defined by (7 x x)(h,n) = w(h)x(n) for h € H and n € N, also 7 is
an irreducible representation of H, and x € N. This shows that how one can classify the
irreducible representation of a semi-direct product G = H X, N in terms of the irreducible
representation of N (i.e., the characters x € N ) and the irreducible representation of the
stabilizer subgroup H,,.

Note that we are far from knowing the complete unitary dual of @, more precisely
indgx (m x x) and indgx (m x x') are equivalent if and only if x and x’ belong to the same
orbit i.e., we can give a formula for a parametrized set of irreducible representations that
are mutually inequivalent and such that any other irreducible representation is equivalent to
one in this set. So the unitary dual of the groups are the explicit description of the class of
irreducible unitary representations of the groups. The reader is directed to [6] fore general
overview of these preliminaries.

3. Standard shearlet group in arbitrary space dimension

In this section, we introduce the definition and basic properties of standard shearlet
group in arbitrary space dimensions, which is introduced in full version by Dahlke et al.
[3]. For analysing data in R™,n > 3, Dahlke et al. [3], generalized the two dimensional full
shearlet transform which is introduced in [4] , to the arbitrary space dimensions, with the
same technique, as follows.

Let I,, denote the n x n identity matrix, also 0, be the vector with n zero value
entries. For a € R* := R\ {0} and s € R"*~!

a On 1 1 S
A, = d Ss = R
(021 sgn(a)lalw I, ) o (oT 1)

denote the parabolic scaling matrix and the shear matrix, respectively, where sgn(a) denotes
the sign of a. The choice of S; leads shearlet transform to be a square-integrable group
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representation and in order to have directional selectivity, the dilation factors at the diagonal
of A, is chosen in an anisotropic way. The set S = R* x R»~! x R” for n > 2, endowed with
the operation

(a,s,t)o (d',s,t') = (ad’,s + |a|17%5',t+ SsAut")
is a locally compact group, which is called full shearlet group. The left and right Haar
measures on S are given by

1 1
dvi(a,s,t) = Wdadsdt and dvy(a, s, t) = mdadsdt,
respectively. For f € L?(R") the map o : S — U(L?(R")), defined by
1—-2n _ _
o(a,s,t) f(x) = la| =" f(AF'ST H(z — 1)) (1)
is a unitary representation of locally compact group S on the Hilbert space L?(R"), with
respect to the Haar measure dy;.
In this paper, we introduce the standard shearlet group, again denoted by S, as
follows. For a € Rt and s € R* !, let

o a Onfl o 1 S

denote the parabolic scaling matrix and the shear matrix, respectively. The standard shearlet
group S is then defined to be the set RT x R"~! x R™ endowed with the group operation

(a,s,t)o(d’,s',t') = (aa', s+ a'~w s, t + S, Aqt)

and
(a,s,t)"F = (a=t, —ants,—A;1S71t).
It is easy to prove that S is a locally compact group. Actually we can consider S, as the 3-fold
semi-direct product group (R x,R?~1) x y R", where the homomorphism A : RT x R*~1 —
Aut(R"™) is defined by
As.a, (t) = SsAqt,
and the homomorphism 7 : R* — Aut(R"~!) is defined by
Ta(8) = A" s.
In fact the group laws of R* x, R"~1 are given by
(a,s)(a,s') = (ad,s+a'"#s) and (a,s)"" = (a"",—av's).

Lemma 3.1. The left and right Haar measures of S are given by

di(a, s, t) = a”1+1 dadsdt,
and
dpr(a,s,t) = %dadsdt,
respectively.
Proof. For a € R*,s € R*» ! and t € R® we have
du(t) = dx(a,s)dp(A,s)(t))
2n-1

= dx(a,s)a = du(t).
2. On the other hand, we obtain
du(s) = 5T(a)du(7-a(5))
= 3r(a)a" WD dp(s).

This implies dy(a,s) = a
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Thus 6, (a) = a®=) 1= and the left Haar measure of R* x, R"~! is dy(a, s) = —gads

1
Therefore the left Haar measure of S is dy;(a, s,t) = ﬁdadsdt. Similarly, one can show
an
1
that du,.(a,s,t) = —dadsdt is the right Haar measure of S. a
a

The quasi-regular representation of S on the Hilbert space L?(R™) is defined by
1—-2n
pla,s,t)f(x) = a2 f(AT7LSTH(x —1t)), (2)

which is the natural combination of translation on R™ with dilation by members of R* x
R™!, that is not irreducible representation. This is not the case for the Full shearlet
group, in particular the representation (1) is irreducible [3]. In the sequel we will detect the
irreducible sub-representations of the representation which is defined in (2).

4. Unitary dual of the shearlet group

The main goal of this section is to describe the unitary dual of the standard shearlet
group S which is defined in Section 3. As we mentioned that the standard shearlet group S
is a 3-fold semi-direct product group, so the unitary dual of the group RT x, R®~! has an
effective influence on the construction of the unitary dual of S. Therefore we need to clarify
the unitary dual of the group R* x,. R*~1.

Let G = RT x, R"7!. We identify the Abelian subgroup N = {1} x R"™! of G
with R*~! and then N with R"~! via the map y — 7y defined by ~,((t1,...,tn-1)) =
ermilvititFvn—1tn-1) for (t1,...t,_1) € N and (y1,...,yn_1) € R*"1. With this identifi-
cation, the action of G on N is

(a’a 5)7@1 = TyOT(a,s)~1 = ’Yya%—l . (3)
In the next lemma we show that G acts regularly on N , via the action (3).

Lemma 4.1. G acts reqularly on N via the action (3).

Proof. Since RT,R"~! are second countable, so is G. It is enough to show the existence of
a cross section for the G-orbits of the action (3). For each y = (y1,...,yn_1) € R, the
orbit of each point 7, € N is the set

0,, = {(a,s)y: (a,s) € G} = {’yya

Easy calculation show that there are 3"~! disjoint orbits in N , such that the choice of them
depends on the sign of y; to be positive, negative or zero, for i = 1,...,n — 1. Consider the
set

1_;a€eRTL

n

Q={(x1,...,xn_1);2; € {0,1,-1},i=1,...,n— 1} (4)
Therefore 7, meets each orbit once, for any z € Q. So Q = {7,,z € Q} provides a cross-
section of the G-orbits. O

Now we can give an explicit description of the unitary dual of G by investigating
each orbit in N. Consider 0,,_;, the zero vector in €, defined in (4). Then the stabilizer
group G,  1is equal to G, therefore the irreducible representations of G is therefore the
representations w,(a,b) = a'® , a € R, with respect to the orbit O,,, _,- By analysing other
orbits O, associate with every x € Q\0,,_1, easy calculation shows that the stabilizer group
G,, is equal to R™~!. Consider 7, as a base point of each orbit for x € Q\ 0,,_1. Then the
irreducible representation of G obtained by inducing each ~, from R"~! (identified with the
obvious Abelian subgroup) can be realized on L?(R"~!) via

U” = indS. 17, (5)
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for z € Q\ 2°.
However we can conclude that the unitary dual of the semi-direct product group G is

G = {wa;a e R}U{U"; 2 € 2\ 2°}. (6)

Let us turn next to the standard shearlet group S, where the goal of this paper is to find
the unitary dual of it, by applying the construction of unitary dual for semi-direct product
groups.

As we mentioned in section 3, the standard shearlet group S is the semi-direct product
G with R", n > 2. Let N = {(1,0,_1,t),t € R™}, which is isomorphic with R", be the
Abelian subgroup of S . Then N is isomorphic to R™ via y — xy, where x,(t) = e2milyt)
for t € N and y € R™. The action of (a,s,z) € S on R" is denoted by t — SsA,t and the
corresponding action of (a,s,z) € Son x € N and (a,s,z).x € N is given by

(a,8,2).X 1= X0A(q,5)-1- (7)

Since R™ has not any influence in this action, so it is possible to say that G acts on N, via
this action. Indeed

(a,8)-x(t) = XOA@s)-1(t) = x(A7"S7t) = X(S_-=_Ast)
non—1 a
2mix.S _, A1t 2miA1 ST _, Xt
- e Van-1 * — ¢ ¢ /i m—1 :A;ST . X(t)a
a T\"/aﬂ.i—l
where a € R* and s = (s1,--- ,8,_1) € R*"L. Therefore (a,s).x = 4257 _. x.

Lemma 4.2. The standard shearlet group S acts reqularly on R~

Proof. With simplify the action, we have

X1

1

1 0p— 1 0

(@s)x = 487 . x=(q# ) e S
R/ On—l an I Van—1 I )

Xn
X1
B < % 0n—1 > .
v 4 :
; am In 1 ’ ,
Xn
ie.,
% 0 0 A 0 X1
_a 1 g
o a 0 - 0 X1 ﬁaﬁ- )\%
. . . . . _ @ Va
— S 1 .
TQ o ... Va 0 Xn ZEno1X1 4 Xn
| TN | R ‘ v
p YVa

Furthermore, this action has 2+3"! disjoint orbit such that the structure of them deperlc\ls

on the sign of x;, 7 = 1,...,n to be 1, -1 or zero. On the other hand, for x = (x1, ..., xn) € R?,
if sgn(x1) = 1, then the orbit associated with yx is the set O, = {(z1,...,2,); 21 > 0}, if
sgn(x1) = —1, then the orbit associated with x is the set O, = {(z1,...,2,); 21 < 0}, else if
X1 = 0 then the structure of the orbits depend on the sgn(y;), i = 2,...,n. Actually since S
is second countable and also because of the existence of the set

X = {(£1,00-1)} U{(0, 71, s tu1);ms € {0,—1,1},i =1, ...,n — 1}, (8)

which intersects each orbit exactly once , hence S acts regularly on R~ |
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Now by considering the sets 2 and X, which are defined in (4) and (8) respectively
and also the unitary dual of G, defined in (6), we can construct the unitary dual of the
standard shearlet group S as follows.

Theorem 4.1. Let S = Rt x R"~! x R™. Then the unitary dual of S is the set

~

S = {indp.—1(£1,0, 1)} U{r%aeRIU{r%ze€Q\0, 1},
U {indipn-1mny (§ x 0)in € X\ {0, (£1,0,-1)}, € € Rn—1},

such that 7%(a, s,t) = a'® and 7*(a,s,t) = U%(a, s).

Proof. Let every element of X be the representative of each 24 3"~! orbit. Then for 0,,_; €
X, the stabilizer subgroup associated with the orbit Op is equal with G. So the irreducible
representations of S associated to the orbit Oy, , are the irreducible representations of G,
lifted to S, defined by

7o (a, s, t) = {a"*;a € R}, w5 (a, s, t) = U (a,s),

forx € Q= {(z1,....,xn-1);2; € {0,1,-1},i=1,...,n—1}\0,_1. The action (7) follows that
the stabilizer group S,, is equal with R™, whenever « = (1,0,-1) or (—1,0,_1), whereas if
z € X\ {0, (£1,0,_1)}, then G,, =R""! and thus S,, = R"! x R™.

The above mentioning with the Mackey theory for sem-direct product group, which
is explain in section 2, describe a procedure by which g, the unitary dual of the standard
shearlet group S, completely constructed. O

Let us take a close look at the ind3, (+1,0,_1). Realize the irreducible representation
®(10n-1) = ind3,(1,0,_1) on the Hilbert space L*(R*t x R*~!). For (a,s,t) € S and
f e LRt xR* 1), ®1.0n-1)(qg, s,t)f is defined by

s’ a s — S

o0V (a,5,1)f(a', ) = TG T (-

); (9)

Theorem 4.2. With the above notations, ®1:02=1) is unitary equivalent with an irreducible
sub-representation of the representation p, defined in (2).

Proof. First we move ®1:0==1) over to L2(O(1,0, ,))-
Consider L*(O(1,0,, ), #tgn) (pgn is the Leb/e\sgue measure on R™) simply as LQ(O(I,/OLLA))
and identify it with the closed subspace of L?(R"), consisting of all functions in L?(R"),

which are supported on O, _,). For £ € L2(0(1,on,1)), we consider W¢ on Rt x R*~!
defined by

1—-2

Wé((a,s)) = a = &((a,5)-(1,0,-1)).

It is straightforward to show that W is a unitary map of L*(Oq, ,)) onto L?*(R* x
R"1). We define 71, ,) to be the representation ®(1:9-1) transferred by W, which
is, for (a,s,t) €S,

7-‘-(170'”71)(&7 87 t) = Wﬁlq)(l’on_l) (a, 3, t)W

That (1,0, _,) is a unitary representation can be verified by straightforward computations.
By the fact that for a fixed x € Oq, ,), there exist (a’,s’) € RT x R"™! such that
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x = (a,¢).(1,0,—1) = (71, —s'a’!) and also for (a,s,t) €S, £ € L*(O1,0, ,)), we get

77(1,0"71)(0"3’&5()()
= W*1<I>(1’07L*1)(a s, ) Weé(a'™, —s'a ™)
A OUS V(a, s,t)WE(d,s")
= o (a' b=sa T (OWE((a, ) Ha', "))
= & (@ =) (0 T E(((0,5) 7 (@, )1 00))
= a%Tx(t)é“(( 97

ie., 10, (a8 t)Ex) = a T X()€(ASTy). If we define a representation m of S on
L2(R™) by

2n—1
m(a, 5,800 = a” x(E(AaSTX)
for y € R, ¢ € L3(R"), and (a,s,t) € S, then obviously LQ(O(l,on_l)) is a w-invariant
subspace of LQ(H/@). Let F: L*(R") — LQ(@) denote the Plancherel transform. Using this

unitary operator, we can move 7 over to a representation acting on L?(R"). Let p(a, s,t) =
F1n(a,s,t)TF, for (a,s,t) €S. Then

T w0, 071 @) = [ nla s f(ees
= [ oM R AT -a)d(e

— [ @ Qe Sa(e - 0)a () = a5 (A, 15z - 1),
for x € R", f € L?>(R") and (a,s,t) €S. So
pla,s,8)f() = a 2 f(Ag15_y(z — 1))

Let 3{20(1’% 5 = {f € L*(R?); fe L*(O(1,0, 1))} Then 9{0(10
space and po, , ., formed by restricting p to fHO(l o

) is a p-invariant sub-
-1

L is another representation in the
equivalent class of 1rredu01ble representation md]Rnw, for w € R™. O

Also we can conclude that the representation
O(10n-1) — ingS, (=1,0,_1),

is equivalent with another irreducible sub-representation of p, denoted by po (10,130 defined
by
1—2n
PO1o, (@ s, t)f(x) =a 2 f(Ag-1S_s(x — 1)),

on the Hilbert space ZH(O( on_ )" By restricting g7, the Lebesgue measure on 1@7‘, we

nfﬂeg
PO 1o, ) Wherepo, ,  andpo _,,  areirreducible and inequivalent infinite-dimensional

have two non-zero open free (R+ x R)-orbits O1,0,_,) and O(_1,_,)- So p = po,, ,

representations.
In the following example we determine the unitary dual of standard 3 dimensional
shearlet group.

Example 4.1. Let S = Rt x R2 x R3. Then the action of S on RS s given by (a, s, t).y :=
Yo )‘(a,s)_1 fOT ((L, (sla SZ)vt) €S and Y= (717’72,73) € R3. Indeed fOT

a 0 0 1 s1 89
Ao=(0 @wa o), s,=[o 1 o],
0 0 a 0 0 1



Unitary dual of the standard shearlet group 59

*’Yl
we have (a,s,t).y = A1ST_, v =
bV 71 + \ef’Ys
am 7
Therefore | =g+ + %72 = | 2 |, yields (a,(s1,52)) = (1,(0,0)).
a3 3

The above mentioned action has 11 orbits as follows:

Ow,0.00 = {(0,0,0)},

OWsms) = {(0,y,2) €R* 1y <0,2>0},72 <0,73 >0,
O(O,’yz,'yg) = { 0 Y, 2

Clearly we can realize that the set

(
Otpns) = {(#,9,2) €R® 2> 0},m >0,
Otras) = 1lx,y,2) € R®: 2 < 0},v <O,
O(0nars) = 1(0,9,2) €R? 1y >0},79 >0,
O(0rarms) = 1(0,9,2) €R? 1y <0},72 <0,
O02rvs) = {(0,y,2) € R?: 2 > 0},73 > 0,
0(0’“/%73) = {(0,y,2) € R?:z < 0},v3 <0,
OWarms) = {(0,y,2) €R¥:1y>0,2>0},7 > 0,793 >0,
Ow,7) = 100,y,2) € R?:y>0,2<0},7 > 0,73 <0,
(0,y,2)
(0,9,2)

ER?:y<0,2<0},72 <0,73 <0.

A= {(07 0, O)v (15 0, 0)7 (_17 0, O)’ (Oa 1, O)v (0, -1, O)a (07 0, 1)a
(0,0,-1),(0,1,1),(0,1,-1),(0,-1,1),(0,—1,-1)},
meet each orbit in exactly one point. By choosing every element of A as a representative of
each S-orbit, we have the stabilizer groups
S0,0,0) =S, S(z1,0,0 = R?,

and other stability groups associated with the S-orbits are equal with R2x \R3. Thus Theorem
4.1 tells us that

S ={ind3s (+1,0,0)

U{indSeza (€ x 1); € € R, € A\ {(0,0,0), (+1,0,0)}}

U{n§;a € R}
u{mdﬁ 72 € {(1,0), (~1,0), (0,1), (0, —1), (1,1), (1, —1),
(_1a1)’(_ y )}}a

where 7§ (a,s,t) = a'® and v, € R2.
Note that, the non-zero measure orbits are

O(1,00) = {(7,y,2) € R*: 2 > 0}, Oc-1,0,0) = {(z,y,2) € R*: 2 < 0}.

Define Ay := O(1,0,0y and A_ 1= O(_1,0,0)- Then o4 : S — u(ﬂ{iu) and o_ S — UW(HY )
defined by
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and

o—(a,s,)6(x) = aF (4,1 (@ — 1) = a%‘%(( g ) (@ = 1),
% 2

are the irreducible sub-representations of o, the quasi-reqular representation of 3-D standard
shearletb group, for ¢ € 9{124+ and p € H?% . Therefore 0 = o, ® o_. Actually o and o_

are unitary equivalent with the irreducible representations indgs(1,0,0) and indgs(—1,0,0),
respectively.

(1]

(8]

(9]
(10]
(11]
(12]

(13]
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