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ON HYPERACTIONS OF HYPERGROUPS

Jianming Zhan', S.Sh. Mousavi?, M. Jafarpour®

In this paper, we define the notion of hyperaction of a hyper-
group on a nmonempty set and also the notion of index of a subhypergroup
in a hypergroup, as a generalization of the concept of action of a group
on a nonempty set and the notion of index of a subgroup in a group, re-
spectively. Some properties such as the generalized orbit-stabilizer theorem,
are investigated. In particular, introduce a construction of a hypergroup
from a hyperaction. Finally, we assign a generalized state hypergroup to a
nondeterministic automata which can associated from a hyperaction.

Keywords: (semi)hypergroup, index, hyperaction, nondeterministic au-
tomata
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1. Introduction

Hyperstructure theory was born in 1934 at the 8th congress of Scandina-
vian Mathematicians, where Marty [16] introduced the hypergroup notion as
a generalization of groups and proved its utility in solving some problems of
groups, algebraic functions and rational fractions. Surveys of the theory can
be found in the books of Corsini [3], Vougiouklis [17], Corsini and Leoreanu [7].
Hypergroups are studied from the theoretical point of view and for their appli-
cations to many subjects of pure and applied mathematics: geometry, topology,
cryptography and code theory, graphs and hypergraphs, probability theory,
binary and n-ary relations, theory of fuzzy and rough sets, automata theory,
artificial intelligence, etc. See, for example [2, 5, 11, 13, 15, 19, 20]. Some
related recent work which some of them overlap the topic of this paper can be
found in [1, 4, 6, 10, 12, 18]. We recall here some basic notions of hypergroup
theory.
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Let H be a nonempty set and P*(H) the set of all nonempty subsets of H.
Let - be a hyperoperation (or join operation) on H, that is, - is a function from
H x H into P*(H). If (a,b) € H x H, its image under - in P*(H) is denoted by
a-bor ab. The join operation is extended to subsets of H in a natural way, that
is A-B=U{ab | a € A;b € B}. The notation aA is used for {a}A and Aa
for A{a} . Generally, the singleton {a} is identified with its member a. The
structure (H,-) is called a semihypergroup if a(bc) = (ab)c for all a,b,c € H
and is called a hypergroup if it is a semihypergroup and aH = Ha = H for all
a € H. A hypergroup (H,-) is called regular if it has at least an identity, that
is an element e of H, such that for all x € H, x € e-xNx-e and moreover each
element has at least one inverse, that is if x € H, then there exists 2’ € H
such that e € - 2’ N’ - x. The set of all identities of H is denoted by E(H),
if v € H,i(z) = {2’ : e € 2’ - x} is the set of all left inverses of = in H (resp.
ir(x)) and i(x) = 4;(a) Ni-(z). A regular hypergroup (H,-) is called reversible
if for all (z,y,a) € H*:

(i) y € a - x, then there exists a’ € i(a) such that x € a’ - y;

(ii) y € x - a, then there exists a” € i(a) such that x € y - a”.
A hypergroup (H,-) is called feebly quasi canonical if it is regular, reversible
and satisfies the condition

Va,a € H V{u,v} Ci(z),{w,z} Ci(z),u-a=v-a,a-w=a-z.

Let (H,x*) is a hypergroup and K C H, K # (. We say that (K, x*) is a
subhypergroup of H if, for any x € K we have K xx = K = x % K.

2. Hyperaction

In this section we consider the notion of hyperaction of a hypergroup on
a nonempty set, extending the definition given by Davvaz [9] in the particular
case of polygroups. Some properties such as the generalized orbit-stabilizer
theorem, are found.

Definition 2.1. Let (H, ) be a hypergroup, K a nonempty subset of H. We
say that K is invertible to the left if the implication y € K xx = x € K xy
valid. We say K s invertible if K is invertible to the right and to the left.

Proposition 2.1. If (H,*) is a hypergroup such that E(H) # () and K is an
invertible subhypergroup of it, then E(H) C K.

Proof. Suppose that e € E(H). Since K C ex K, we have e € K x K C K,
because K is an invertible subhypergroup. O

Suppose that H is a hypergroup contain at least one identity element and

K is an invertible subhypergroup of H. For all x,y € H define the relation gl



On hyperactions of hypergroups 119

on H as follows: p
r=ys=rx K =yx K.

Proposition 2.2. The relation gl 18 an equivalence relation and for allx € H

the equivalence class of x which is denoted by [x|,, is x * K and is called the

17
left generalized generalized coset of K.

Proof. 1t is easy to see that gl is an equivalence relation. Suppose that y € [z],
is given, so x* K =y K. Since ) # F(H) C K,y*E(H) Cyx K =xx K.
Therefore y € = % K and hence [z], C z * K. Now suppose that y € z * K is
given, so x € y*x K because of invertibility of K. Thus xxK C yxKxK C yxK.
By y € x x K we have y x K C x *x K. Therefore x *x K = y * K and hence

xgl y. Soy € [z],. O

Remark 2.1. If K s an wnvertible subhypergroup of H as the above we can

define the equivalence relation gT on H as follows:
xéry@K*x:K*y.

In this way for all x € H the equivalence class off x that denoted by [z], is
K xx and it is called the right generalized coset of K. From now on we will
consider the hypergroups which have at least one identity element.

Notation 2.1. Suppose that K 1is an invertible subhypergroup of H. The
number of all left generalized cosets of K in H is denoted by [H : K|, and the
number of all right generalized cosets of K in H is denoted by [H : K],.. If
[H : K|, =[H : K], =n, then we say n is the index of K in H and denoted
by [H : K].

Theorem 2.2. Suppose that H is a feebly quasi canonical hypergroup and K
is an invertible subhypergroup of H, then

[H: K|, =[H: K],.

Proof. Define p: {xx K |z € H} —={Kxz |z € H} by p(zxK) = Kxza'
for some 2" € i(x). We show that ¢ is well define. Suppose that z* K = y* K,
so y € x x K and therefore there exists a € K such that y € = *a. By
reversibility of H we have a € 2/ % y for some 2’ € i(x) and hence 2’ € a * ¢/
for some ¢ € i(y) thus K x 2’ = K % y'. Therefore ¢ is a well-defined.

As the above we can prove the following implication:

Vo' €i(z) and Vi € i(y), Kx2' = Kxy = 2x K =y K.
So ¢ is one-to-one. It is easy to see that ¢ is onto and hence ¢ is an invertible

map. Thus [H : K|, = [H : K] O

e
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Definition 2.2. Let X be a nonempty set and (H, *) be a hypergroup such that
E(H) # @. A left hyperaction of H on X is a map .: H x X — P*(X)
such that:

(HA1) for all (a,b) € H? and for allx € X, a+(b+2z) = (a*b). z

such that A.Y % U a.y for all nonempty subsets A and Y of H and X

a€A,yey
respectively.

(HA2) for allx € X ande € E(H), x € e. x.

We say X is a hyper H-set and the left hyperaction of H on X s denoted
by (H | X). Similarly the right hyperaction H on X is defined and is denoted
by (X | H).

Example 2.1. Suppose that (G,-) is a group and H is the subgroup of G.
Consider G || H as the set of all left generalized cosets of H in G. Define the

hyperoperation ¢ on G | H by xt HoyH 4 {zH |z € xHy} for allxH and yH in
G ) H. The mapping .: G || Hx G — P*(G) defined by «(gH, x) :d:engm
is a left hyperaction G | H on G.

Proof. For all aH,bH € G J/ H and = € G we have:
(aH,.(bH,z)) = .(aH,bHz) = | ) aHy=aHbHux;

yebHz

on the other side,

(aHobH,z) = | .(cH,z) =aHbHz.
c€aHb

Consequently the condition (HA1) holds.

For proving the condition (HA2), first we need to find the identities of
G /) H. IfeH € E(GJ H), then «H € eH ¢ xHNxH ¢ eH, which means
xH = zH = Z'H, for some z,2 in eHx and xHe, respectively. Thus we
conclude that e € H and therefore E(G ) H) = {H}. Thus = € .(H,x) = Hz,
forallz € G. O O

Example 2.2. Suppose that G is a graph and H the set of all vertices of G.
For all hy and hy in H, consider path(hy, hy) the set of all paths contain hy
and hy and (hq, hs) the set of all vertices of G lie in the paths contain hy and

hy. Define the hyperoperation x on H by hy * hs def {h1, ho} for all hy,hy € H.
Thus (H,*) is a hypergroup. The mapping .: H x H — P*(H) defined by:

hov: {(h,v> if path(h,v) # @,

{v} otherwise,

is a left hyperaction of H on H.
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Proof. We can easily see that F(H) = {H} and .(a, (b, z)) = «(a,z) U.(b,x) =
J(a * b,x), for all (a,b,x) € H? and thus the conditions (HA1) and (HA2)
hold. O

Example 2.3. Suppose (H,*) is a hypergroup such that E(H) # @. The
mapping .: H x H— P*(H) defined by h.x :d:efC(h x x), where C(h * x)
is the complete closure of h * x is a left hyperaction of H on H.

Proof. Tt is well known that C(h * ) = h * z * wy, for all (h,x) € H?, where
wpy is the core of the canonical projection ¢, , and therefore .(a,.(b,z)) =
(a,bxrxwy) =axbxrrxwgrwy = axbxrxwy = (axb)*rxwy = .(axb,x),
for all (a,b,x) € H?.

Now let e € E(H). Since x € e * x, it follows that = € C(z) C C(exz) =

(e, x). O
Definition 2.3. Suppose that (H | X) and v € X. A generalized orbit of x is
denoted by Hx and defined Hx 4 U h.z.

heH

Definition 2.4. Suppose that X is a nonempty set, (H,x) is a reversible hy-
pergroup and .: H x X — P*(X) s a left hyperaction of H on X.

(1) We say « is a quasi strong left hyperaction and denoted by (H |7° X)
whenever, for all (a,b) € H? and (z,y) € X? if axxNbuy # &, then x € (a’xb).y
and y € (V' xa).x for all o’ € i(a) and V' € i(b).

(i1) We say « is a strong left hyperaction and denoted by (H |° X) when-
ever, « is a quasi strong left hyperaction and for all a € H,e € E(H) and
re X ifre(axe).x, then (axe)vx C eax.

Proposition 2.3. Suppose that (H |7 X) and there exist x,y € H such that
HxNHy # @. Then Hx = Hy.

Proof. Since HxN Hy # &, then there exist a,b € H such that a.xNb.y # &.
Thus we have x € (¢’ xb).y and y € (V' xa) .z for all @’ € i(a) and b € i(b).
Let . be the left hyperaction of H on X so for all h € H, we have the map
., ' X —— P*(X) defined by ., (z) 4 jy .z, Therefore for all h € H we have
hex C (hxa' *b)wy and hay C (hxb' xa).x and hence Hx C Hy and Hy C Hx
and the proof is complete. 0

Corollary 2.1. Suppose that (H | X). The relation — on X defined by:
x ~y if and only if x and y lie at the same generalized orbit
1s an equivalence relation on X.

Proof. 1t is clear from the Proposition 2.3. U
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Definition 2.5. Suppose that (H |%* X) and x € X. The generalized stabilizer
of x is denoted by H, and defined:

o, Y {h € H|(hxe).xU(h'xe)sx C e.x for alle € E(H) andh' € i(h)}

Remark 2.2. Suppose that X is nonempty set and (H | X). It is easy to see
that for all (hy, ho, hs) € H® we have (hy * hy * hg*) e x = hy « [(ha * h3) « 2],

Theorem 2.3. Suppose that H is a feebly quasi canonical hypergroup and
(H|* X) and v € X. Then we have:

(i) for all hy,hy € H,, hy x hy C H,;

(i1) for all h € H, and I/ € i(h), b € H,;

(111) if H, is a nonempty set, then H, is invertible and reversible subhy-
pergroup of H.

Proof. (i) Suppose that hi,hs € H, and h € hy x hy. So hxe C hy % hy x e and
hence by Remark 2.2, we have (hxe).x C hy.[(haxe).x] C (hy*xe).x Ce.x.
So (h*e)ux Ce.x.

By h € hy * hy and H is a feebly quasi canonical we have b’ € hl, * hl,
where b’ € i(h),h} € i(hy) and R, € i(hg). Thus b/ x e C k), * h} x e. Therefor
(W xe)ex Chyx|[(h] *e).x] and hence (h*xe).x Ce.z. So hy*xhy C H,.

(ii) The proof is obvious because h” x e = h x e for all K", h' € i(h').

(iii) Suppose that a,b € H such that a € H, * b. So there exists h € H,
such that a € h xb. Since H is reversible, there exists A’ € i(h) such that
b€ h'*a. By (ii) we have b’ € H,, so b € H, *x a and hence H, is invertible
to right. Similarly H, is invertible to left. Reversibility of H, follows from (ii)
and the fact that H is reversible. For the proof H, is a subhypergroup of H,
by (i) it is enough to show that for all h € H,, H, C hx H, and H, C H, *h.
Suppose that h; € H, is given, thus there exists hy € H such that hy € hx hs.
Since H, is invertible, we have H, is close and hence hy € H,. Therefore
H, C hx H, and the proof is complete. U

Remark 2.3. If H is a feebly quasi canonical hypergroup and H, # 0, then
by Theorems 2.2 and 2.3, we have [H : H,|, = [H : H,]

Theorem 2.4. (generalized orbit-stabilizer theorem) Suppose that H is a feebly
quasi canonical hypergroup and (H |* X) and © € X. We have:

(i) card{h «x | h € H}) > [H : H,] where card(A) is the cardinal
number of the set A;

(i1) if H has scalar identity e and for all z € X, e « x = {x}, then

card{h «x|he H})=[H : H,].

Proof. Define ¢ :{h.x|he€ H} —={axH,|a€ H} by »(h.z) = h*
H,. First we show that v is a well define map. For this reason suppose
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that hy « & = hg « . Since (H |* X), we have x € (kY % hy) « x where h, €
i(hy) . Therefore there exists | € hi * hy such that « € [ .z and hence
(lxe).x Cewxbecause l .z C (Ixe) .z and (H |* X). Also fromz €l .z
we have e . 2Nl . x # @ and so x € (I'xe) . x for all I’ € i(I) and hence

(I'xe)exz Cenr. (1)

Suppose that a € hy x H, , so there exists k € H, such that a € hy x k. Since
[ € hiyxhy, there exists hi € i(h}) such that h € hi*l and so hy € hyx*l, because
H is a feebly quasi canonical and hy € i(h}). Therefore hy * k C hy * [ % k and
hence a € hy * (I x k). Now we show that [ « k£ C H, and so a € hy x H, as
desired. Suppose that s € [ % k is given. By Remark 2.2, and k£ € H, we have
(sxe)vx C(lxe)vx Cenx. Let s €i(s)since s € [k and H is a feebly
quasi canonical, we have s’ € k' x " where s’ € i(s), k" € i(k) and I' € i(l).
Thus we have

(s'*xe)vx C[(K*l)xe].x
CK . [(I'xe).x] by Remark 2.2.
C (K xe)ux by equation (1)
Ce.uz. by Theorem 2.3(ii) and k € H,

Thus hyxH, C hoxH,. Similarly we can show that hoxH, C hy*H,. Therefore
hy* H, = hy *x H, and hence 1 is a well define map. It is easy to see that 1 is
onto and so card({h .x | h € H}) > [H : H,].

(ii) By part (i) it is enough to show that ¢ is one-to-one. Suppose that
hy * H, = hy x H, since e is an scalar identity, we have e € H, and hence
ho € hy x H,. Thus there exists k € H, such that hy, € h; * k£ and hence
e € (hyxhy)*k, where b, € i(hs). By Remark 2.2, we have e « & C (hhy*hy) .«
and so x € (hY* hy) « x. Therefore there exists r € hl, x hy such that = € r . x.
Since (H | X), r «x C e .2z = {x} and hence

r.x={zr} (2)

From r € hLhy we have hy € hj xr where hi € i(h}) and since hy € i(h})
and H is feebly quasi canonical, then hl % r = hy * r and so hy € hg * r, thus
by Remark 2.2 and (2) we have hy « x C hy » 2. From the equation (2) we
have 7’ v x = (7' xr) « x for all ¥’ € i(r). So x € ' . x and similarly we have
r"«x = {x} for all v’ € i(r). Since r € h}, *x hy and H is feebly quasi canonical
we have hy € hy x 1’ and as above hy « £ C hy . . Therefore hy « 2 = hy « @
and hence 1 is a one-to-one map. ([l
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3. A construction of hypergroups from hyperactions

In this section, we give a hyperstructure on the nonempty set X derived
from the strongly hyperaction of some hypergroups H on X.

Let (H | X) and Orb(X) :% {Hz | # € X} is the set of all orbits
in X and C be a choice function on Orb(X), that is, C': Orb(X) — X

such that ¢, :%& C(Hz) € Hz. Then we denote the image of C' by Cx and

call it a class mark of X. For all € X the subset s_(x) of H is defined by

s.(z) :d:ef{hEH | evxNhoc, # Dforalle e E(H)}.

Theorem 3.1. Suppose that (H,*) is a feebly quasi canonical hypergroup with

scalar identity e . If (H | X), then for allx € X and h € H, s, (h.x) =
hxs.(x) where s, (h.x) = U s,(t).

tEh.ax
Proof. let a € s (h.x) so there exists t € h .z such that a € s.(t) and hence
evtNa.e # 2. (3)

also we have:

teh.x=e.tC(exh).x

=a.c;N(exh).x# S , by (3)
=a.c;Nh.c# 0 (3.1.1)
= Hcy = Hx , by Proposition 2.3
= =Cy (3.1.2)
=a.c;Nhox#2 , by (3.1.1) & (3.1.2))
=z e (h*a).c, where h' € i(h)
=2 E€hy.c, forsome hy €h xa

=e.xNhy.c, # O , because r € e.x
= hy € s.(x). (3.1.3)

Since hy € h' *x a and H is a feebly quasi canonical, a € h * h; and by (3.1.3)
we have a € h * s.(z) and hence s.(h.x) C h*s.(z). Now suppose that
a € hxs.(x) so there exists b € s (x) such that a € h*b. Thus b € b’ xa and
hence,

bec, C (W xa).c,. (4)
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also we have:

bes,(r)=ecxNbic, # O

=ec.xN(h*xa).c, # , by (4)
=e.xNhv(ave,) #9

=e.xNh.s# @ forsome s€a.c, (3.1.4)
= Hx = Hs , by Proposition 2.3
= Cp = Cs.

From (3.1.4) we have:
e.xNhvs#£T=>s€e€ (h"*xe).x h" € i(h')
because h € i(h')

e
=s€(hxe).x
).z

=sec(exh because hxe =ex h = {h}
=s€e.(h.2)

= s€ce.t forsome teh.z (3.1.5)
=e.sNet#Q , because s €e.s
= Hs=Hx , by Proposition 2.3
= 5 = .

Thus ¢, = ¢ and by (3.1.4) and (3.1.5) we have e.tNa.c; # @ and hence
a € s, (t) where t € h.x. Therefore h * s, (x) C s,(h.z) and the proof is
complete. 0

Theorem 3.2. Suppose that (H,*) is a feebly quasi canonical hypergroup with
scalar identity e(i.e., exx =x =z xe for allz € H). If (H |* X), then the
mapping o.: X x X —— P*(X) defined by xo.y 4 So(x)vezUsy(y) ey s
a hyperoperation on X and (X, 0.) is a hypergroup.

Proof. First we show that for all x € X, x € s_(x).c,. For this reason suppose
that x € X is given. Since ¢, € Hx, then by Proposition 2.3, Hx = Hc, and
hence there exists h € H such that x € h.c,. Thuse.zNh.c, # @ and so
h € s, (x). Therefore we have z € s_(z).c,. Thus {z,y} C zo.y. It is easy to

Y 2

see that 7o, is associative. Suppose

that 2 , y and z in X are given so (xo.y) o,z = U (s.(t)«cr)Us.(2).c,

is a well define map now we prove "o,

Exocy
and xo. (yo.2) =s.(x)vce U U (s.(8)+¢s). Let w € (x o, y) o, z be given
SEYOc2
ifwe U s,(t).c, then there exists ¢ € x o,y such that
tewocy

w € s, (t) et (5)
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Bytexzo.ywehavet € s (x).c, ort € 5.(y)cy Lette s, (x).cy, s0
t€s.(x)ecy = s.(t) Cs.(x)*s.(cs) , by Theorem 3.1

Yot Cs.(x)xs,(cy) e, because by (5) ,¢ = ¢,

e C 50(2) - (50(ca) - )

Yot Cs.(z).(eacy)

Yot C (sa() *€)ucy

Ject Cs.(z) ey

Thus by (5), w € s,(z) «c, and hence w € z o, (y o, 2). Let t € s.(y).cy

similarly we have s,(t) « ¢ € s,(y) . ¢, and hence by (5), w € s.(y) . ¢,.

Since w € s.(w)«cy, then w € U s.(s)ecs € U s.(s)«cs and so
5€84 (y)scy S5E€EYOcz
weEzo.(yoez). fwe s, (z)uc,, thenw e U s.(8)ecs © U s.(8)acs
s€s(2)scz S5€EYOcz

and hence w € x o, (yo. z). Therefore (xo.y)o.z C xo.(yo.z) and similarly
by above we can prove z o, (yo.z) C (xo.y)o.z. Thus”o.” is associative and
since for all x € X, X o, x =z 0, X = X, then (X, %) is a hypergroup. O

Example 3.1. Let the hyperaction Zs = {[0], [1]} (the cyclic group of order 2)
on X ={a,b,c,d, f} be as follows:

0]ca=[1].b={a},[0].b=[1].a={b}

0]ec=[0]ad=[1]sf={c,d},[0]. f=[1]sc=[1].d={f}.
Now let Cx = {b,d} be a classes mark of X, then we have:
S(a) = S(f) = {[1]},5(b) = S(c) = S(d) = {[0]} and the commutative
hypergroup (X, o.) associated from the hyperaction is as the following figure:

o. | a b c d f

a | {a} {a, b} {a,c,d} {a,c.d} {a, f}
b {0y A{b.c,d}t {bc.d}  {b, f}
¢ {e.,d}  {edy A{ced, f}
d {c.,d}  {c.d, f}
f {f}

F1GURE 1. The hyperoperation of X

4. Generalized state hypergroups

In the papers [15], [8] there are described construction of some hyperstructure
on sets of words formed the given input alphabets and on the state sets of
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corresponding automata. In this section, we assign a commutative hypergroup
to any nondeterministic automaton with out inputs. In accordance with [14]
and other publications, by an nondeterministic automata we mean a third
A = (S, A,0), where S, A are arbitrary sets (A # (), which are called set
of states (or a state set), a set of input symbols ( or input alphabet) and
d: SxA* — P(S)is a mapping which satisfies these two conditions: 0(s,e) = s
for any state s € S and d(s, ab) = 6(d(s,a),b) for any state s € S and any pair
of words a,b € A*.

Proposition 4.1. Suppose that S is a nonempty set, (H,*) is a hypergroup
with the scalar identity e and .: S x H—— P*(S) is a right hyperaction of
H on S such that s.e = s for all s € S. Then the third H = (S, H,0) is a
nondeterministic automata, where 6(s, hiha...hy) = s+ (hy % ho % ... x hy) for all

(hl,hg, 7hk) S Hk and k Z 1.

Theorem 4.1. Let H = (S, H, ) be a nondeterministic automata. For any
(z,y) € S%, we define

rey=ar, H)Ualy, H"),

where oz, H*) = U{a(z, h)|h € H*}. Then (S,e) is a commutative hyper-
group, called the generalized state hypergroup of H.

Proof. 1t is obvious that x e y = y e z, for any x,y € X. Now we prove the
associativity: (zey)ez==xe (yez) forany z,y,z2 € X. Let u € (x o y) e z;
there exists t € a(x, H*) U a(y, H*) such that u € o(t, H*) U oz, H*). If
u € a(z,H*), then v € U{a(v,H*) | v € a(y, H*) Ua(z, H )} Cx e (yez).
If w € at, H*), with t € a(z, H*) for example, then there exist hy, h, € H
such that t € a(x,hy) and u € a(t, h,). It follows that u € a(a(z, hy), hy) =
alx, hihy,) C oz, H*) C x o (y ® z). Thus we obtain the first inclusion and
similarly we obtain also the second inclusion.

It remains to prove the reproducibility: xS =5 = Sex, for any x € S.
Indeed, for any z,y € S, there exists z = y € S such that y € z e z and
therefore we can conclude that (S, e) is a commutative hypergroup. U

Remark 4.1. If H = (S, H,«) is a nondeterministic automata such that
la(s, h)| = 1, then the hypergroup (S, ) is called the state hypergroup of H.

Proposition 4.2. Every generalized state hypergroup (S, ®) is a quasi-ordering
hypergroup (i.e., t € rex =z exex for anyx € S).
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