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KINEMATIC ANALYSIS OF A STEWART PLATFORM 
BASED ON AFSA 

Yuanhui TANG1,3,*, Yiqi ZHUANG2, Leping SHI3, Yongguo JIA4 

The direct kinematic problems (DKP) are of great importance for the design, 
use and control of Stewart platforms. It is proved that finding the solutions to DKP 
is still a basic and challenging problem. In this paper, the kinematics of a 6-6 
Stewart platform has been investigated. The inverse and direct kinematic models 
have been developed. By employing the artificial fish swarm algorithm (AFSA), the 
solutions to the DKP are found. The results indicate that AFSA is an effective tool 
for solving DKPs of Stewart platforms. AFSA can be extended to solve other parallel 
mechanisms’ DKPs. 

Keywords: Stewart platform; Artificial fish swarm algorithm; Direct kinematic  
problems 

List of symbols 
Oai: Coordinates of nodes Ai in the fixed reference frame O(X, Y, Z) 
Obi: Coordinates of nodes Bi in the fixed reference frame O(X, Y, Z) 
O'bi: Coordinates of nodes Bi in the fixed reference frame O'(X', Y', Z') 
R: The radius of the circumcircle of the base hexagon of the Stewart platform 
r: The radius of the circumcircle of the mobile hexagon of the Stewart platform 
T: The rotation matrix 
St: Step length of AFSA. 
N: The number of artificial fishes. 
V: Visual distance of AFSA. 
Li: Length of AiBi 

1. Introduction 

The Stewart platform has the advantages of high load carrying capacity, 
good dynamic performance, better accuracy, higher rigidity, higher load to weight 
ratio and precise positioning capability. Due to these attractive characteristics, the 
Stewart platform has been used in many disciplines, such as flight simulators [1], 
vibration isolation system [2], mounting of telescopic equipment [3], etc. 
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In the past decades, Stewart platforms have received great attention from 
many researchers. Considerable research works have been carried out on 
dynamics and motion control of Stewart platforms. Wang et al. [4] investigated 
the active vibration isolation of a Stewart platform manipulator with piezoelectric 
actuators. Geng [5] proposed an active vibration isolation system with Stewart 
form and adopted robust adaptive filter algorithms for active vibration control. 
Based on the principle of virtual work, Staicu [6] studied the dynamics of a 6-6 
Stewart parallel manipulator. Huang and Fu [7] researched motion control of 
Stewart platforms based on a sliding-mode control technique. Although the 
control of the Stewart platform has been investigated by many researchers, the 
control problem calls for the solution of the direct kinematics, which is still a 
basic and challenging problem as well.  

The direct kinematic problems, which is to determine the positions and 
orientations of the moving platform given the lengths of the six legs, lead 
naturally to system of nonlinear algebraic and transcendental equations. Many 
scholars research the closed-form solutions for different types and geometry. 
Griffis [8] and Inocenti [9] obtained a 16th degree univariate polynomial on the 
general 3-6 Stewart platform. Innocenti [10] obtained all 32 solutions to the 
forward kinematics of the type 4-6. However, devising a common algorithm to 
find the solutions to the direct kinematic problem of any types of Stewart has 
proved to be a challenging undertaking. Moreover, finding the solutions to the 
direct kinematic problems by numerical techniques is quite practical in real time 
controlling process. McAree [12] implemented impressive Newton-Raphson 
scheme to obtain fast and reliable direct kinematic solution. Geng and Haynes 
[13] and Yee and Lim [14] implemented the network on the direct kinematic 
problem. By using Newton iterative method, a solution to any type of Stewart 
platform can be found. However, the Newton iterative method has a shortcoming 
that it is sensitive to the initial values. Recently, immune genetic algorithm is 
employed to solve the direct kinematics of the Stewart platform [11], which can 
be considered as an effective tool in solving the direct kinematic problems. In this 
paper, artificial fish swarm algorithm (AFSA) is used to find the solutions to the 
direct kinematic problem of a 6-6 Stewart platform, which has the potential to 
obtain near-global minimum. AFSA has been successfully applied to many 
complicated optimization problems. 

This paper is organized as follows. First, the architecture of the 6-6 
Stewart platform is presented in section 2. Secondly, the kinematics of the Stewart 
platform is discussed in detail in section 3. Third, AFSA is described in section 4. 
The numerical example is simulated in section 5. Finally, conclusion and the 
future work are reported in section 6. 
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2. Mechanism description 

A diagram of the Stewart platform is shown in Fig. 1. It consists of two 
platforms and six legs. The base platform denoted by nodes A1, A2, A3, A4, A5 and 
A6 is fixed to the ground. The mobile platform denoted by nodes B1, B2, B3, B4, B5 
and B6 can generate translational and rotational movements. Moreover, the legs 
AiBi (i = 1, 2, 3, 4, 5, 6) are prismatic actuators that are used to vary the distances 
between nodes Ai and Bi. From Figure 1, it can be shown that the mobile and base 
platforms are both regular hexagons. The radius of the circumcircle of the base 
hexagon is R while the radius of the circumcircle of the mobile hexagon is r. 
Furthermore, the legs AiBi of length Li are jointing to the mobile and base 
platforms by spherical joints. 
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YZ
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Z' Y' 

 
Figure 1 Stewart platform 

As illustrated in Figure 1, a fixed reference frame O (X, Y, Z) is located at 
the center of the base hexagon while a moving reference frame O' (X ', Y ', Z ') is 
located at the center of the mobile hexagon. The X axis of the fixed reference 
frame is parallel to the line joining nodes O and A1 while its Z axis is 
perpendicular to the base hexagon. In the meantime, the X' axis of the moving 
reference frame is parallel to the line joining nodes O' and B1 while the Z' axis is 
perpendicular to the mobile hexagon. Since the legs are connecting to the fixed 
and mobile platforms by spherical joints, the mobile platform can generate 
translations along X, Y and Z axis respectively and rotations around X, Y and Z 
axis respectively. For this reason, it is appropriate to say that the mechanism has 
six degrees of freedom. The coordinates of the point O' are defined as x, y and z. 
The position and orientation of the mobile platform can be described by the 
position vector P = [x, y, z]T and the rotation matrix T with respect to the fixed 
reference frame. Here the rotation matrix T is defined by rotating the moving 
reference frame α about Z' axis and followed β about Y' axis, γ about Z' axis. As a 
consequence, T takes the following form 
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From Fig. 1, it can be seen that the shape of the Stewart platform can be 
controlled by varying the legs’ lengths Li. Therefore, the lengths Li are chosen as 
the Stewart platform’s input variables while the movements of the mobile 
hexagon expressed by variables x, y, z, α, β and γ are chosen as the Stewart 
platform’s output. The relations between the input and output variables are of 
great importance when such a mechanism is put to use. In the following sections, 
the kinematic analysis of the Stewart platform will be discussed. 

3. Kinematic analysis 

3.1 Inverse kinematic problem 

The inverse kinematic problem of the Stewart platform corresponding to 
the computation of the legs’ lengths for given the position and orientation of the 
mobile hexagon. For the Stewart platform studied here, the vectors specifying the 
positions of nodes Ai and Bi in the fixed reference frame are defined as Oai and Obi , 
respectively. Also, the vectors specifying the positions of nodes Bi in the moving 
reference frame are defined as O'bi. From Figure 1, the vectors specifying the 
positions of nodes Ai in the fixed reference frame can be easily derived. 
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(2) 
Similarly, the vectors specifying the positions of nodes Bi in the moving 

reference frame can be easily computed. 
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Considering the position vector P = [x, y, z]T and the rotation matrix T, the 
position vectors of points Bi (i = 1, 2, 3, 4) with respect to the fixed reference 
frame can be obtained: 

' ,  1,  2,  3,  4,  5,  6O O
i i i= ⋅ =b P + T b                                      (4) 

With the position vectors of points Ai and Bi now known, the vector of the 
ith leg can be written as 

,  1,  2,  3,  4,  5,  6O O
i i i i= − =L b a                                 (5) 

Therefore, the length of the ith leg can be given as 

,  1,  2,  3,  4,  5,  6O O
i i iL i= − =b a                                 (6) 

By substituting Eqs. (2) and (4) into Eq. (6), the solutions to the inverse 
kinematic problem can be obtained. 
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With the given input variables x, y, z, α, β and γ, the legs’ lengths Li (i = 1, 
2, 3, 4, 5, 6) can be easily computed by using Eqs. (7)-(12). 

3.2 Direct kinematic problem 

Direct kinematic problem consists in computing the position and rotation 
variables for the legs’ lengths. 

When the input variables Li are given, the solutions to the direct 
kinematic problem can be obtained by combining Eqs. (7)-(12). Generally, the 
analytical solutions to Eqs. (7)-(12) do not exist. During the past half-century, 
considerable research has been performed on finding numerical solutions to the 
direct kinematic problem. However, less well-validated methods are found to 
solve the direct kinematic problems of all kinds of Stewart platforms. With the 
development of intelligent optimization algorithm, artificial fish swarm 
algorithm are employed in this work to solve the direct kinematic problem to the 
Stewart platform. 

4. Artificial fish swarm algorithm 

The Artificial fish swarm algorithm (AFSA) is an intelligent optimization 
algorithm proposed by Li [15] inspired by the social behaviors of fish swarm in 
search of food. The fish swarm behaviors include praying behavior, leaping 
behavior, swarming behavior and swallowing behavior. The AFSA is mainly used 
to solve optimization problems. It works with a group of artificial fishes referred 
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to as a swarm. Each individual called an artificial fish (AF) denotes a feasible 
solution to the optimization problem. By evaluating AF’s behaviors, each AF 
moves a step in the search space towards the better AF. After a number of 
iteration times, AFs will be around the better solutions to the optimization 
problem. The AFSA can search the global optimum effectively and adaptively. 

4.1 Optimization model 

In order to solve the direct kinematic problem of the Stewart platform, an 
optimization model will be developed firstly. Eqs. (7)-(12) can be rewritten as 

2 0,  ( 1,  2,  3,  4,  5,  6)k kEq L k− = =                                 (13) 
The equivalence model is constructed of Eq. (13) as 

( )
6 22

1

min max min max min max

min max min max min max

minimize                 ( , , , , , )

subject to           ,   ,  
                         ,  ,  

k k
k

f x y z Eq L

x x x y y y z z z

α β γ

α α α β β β γ γ γ

=

= −

≤ ≤ ≤ ≤ ≤ ≤
≤ ≤ ≤ ≤ ≤ ≤

∑
        (14) 

From Eq. (14), it can be seen that the minimum of f (x, y, z, α, β, γ) is zero. 
According to the AFSA, each AF denotes a feasible solution to the optimization 
problem expressed by Eq. (14). The best AF will satisfy f (x, y, z, α, β, γ) = 0. 
Moreover, when the best AF is found, the corresponding values of x, y, z, α, β and 
γ will be the solutions to the direct kinematic problem described by Eqs. (7)-(12). 

4.2 Behaviors of Artificial fish 

Let N be the number of AFs. The AFi (i∈{1, 2, …, N}) is associated with a 
vector Xi = [xi, yi, zi, αi, βi, γi]T while the food consistence of the AFi is associated 
with Yi = f (Xi). The realization of the behaviors in AFSA is as follows. 

1) Praying behavior 
It is assumed that the current position of an AF is denoted by t

iX . Before 
the praying behavior occurs, the AF will select a state Xj randomly within its 
visual distance firstly. 

()t
j i V Rand= + ⋅X X                                            (15) 

Where Rand() is a random number within the interval [0, 1] and V is the visual 
distance of the AF. For the minimum problem expressed by Eq. (14), if Yj < Yi, the 
AF will go a step towards Yj. Let 1t

i
+X  be the AF’s next position, it takes the 

following form 
1 ()

t
j it t

i i tt
j i

S Rand+ −
= + ⋅ ⋅

−

X X
X X

X X
                              (16) 
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Where St is the AF’s moving step length. However, it Yj > Yi, the AF will select 
another state Xj randomly again and judge whether it satisfies the forward 
requirement. Moreover, if the forward requirement cannot be satisfied after 
several times denoted by Tr, the AF will move step randomly. 

1 ()t t
i i V Rand+ = + ⋅X X                                         (17) 

2) Swarming behavior 
Let nf be the numbers of the AF’s companions within its visual range. The 

center position of the AFs including the AF itself and its companions is denoted 
by Xc. If Yc/nf < δYi, which means that more fitness values exist around the center 
Xc and the surrounding environment is not very crowded, the AF will go a step 
towards the center Xc from its current position Xi. 

1 ()
t

t t c i
i i tt

c i

S Rand+ −
= + ⋅ ⋅

−
X XX X
X X                                 (18) 

Otherwise, the AF will choose the preying behavior. 
3) Following behavior 
Let Xi be the AF’s current state. It explores its neighborhood area to find 

the companion Xj which has the best food consistence. If Yj/nf < δYi, which means 
that the AF Xj has lower fitness value and the surrounding environment is not very 
crowed, the AF Xi will go a step towards Xj. 

1 ()
t

t t c i
i i tt

c i

S Rand+ −
= + ⋅ ⋅

−
X XX X
X X                                  (19) 

4) Moving behavior 
The Moving behavior of an AF corresponds to the situation that the AF 

moves randomly within its visual range, which is given by 
1 ()t t

i i V Rand+ = + ⋅X X                                              (20) 

4.3 The procedure of AFSA 
The procedure of AFSA is given as follows 
Step1. Initialize the parameters of the AFSA including the number of AFs 

N, the current state of each AF Xi, AF’s step length St, AF’s visual distance V, try 
numbers Tr and crowding factor δ. 

Step2. Compute the food consistence of each AF and record the state of 
the best AF. 

Step3. Evaluate the states of each AF and choose the behaviors of each AF 
to be executed. 

Step4. Execute each AF’s behavior and update its location information. 
Step5. Update the state of the best AF. 
Step6. Stop and display the result if the stop condition is satisfied, 

otherwise, return to step 2. 
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5 Numerical simulations 

For the Stewart platform shown in Fig. 1, the given input variables are 
selected as L1 = 2.0 m, L2 = 1.8 m, L3 = 2.3 m, L4 = 2.8 m, L5 = 2.8 m and              
L6 = 2.5m. Moreover, the parameters of the fixed and mobile hexagons are set to 
be R = 2 m and r = 1 m. Solving the optimization model described by Eq. (14), the 
output variables x, y, z, α, β and γ can be obtained. The coefficients of Eq. (14) 
and the parameters of AFSA are listed in Table 1. 

Table 1 
Coefficients of the optimization and parameters of AFSA 

Coefficient Value Unit 
xmin -4 m 
xmax 4 m 
ymin -4 m 
ymax 4 m 
zmin 0 m 
zmax 4 m 
αmin -π/2 -- 
αmax π/2 -- 
βmin -π/2 -- 
βmax π/2 -- 
γmin -π/2 -- 
γmax π/2 -- 
Tr 5 -- 
St 0.2 -- 
V 6 -- 
N 20 -- 

Let Xbest be the best AF for each iteration. Solving Eq. (14) by AFSA, the 
obtained food consistence of Xbest is shown in Figure 2. 
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Fig. 2 Food consistence of Xbest 
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In Fig. 2, Tr denotes the iterate times. From Fig. 2, it can be seen that after 
50 iterations, the consistence of Xbest approximates to zero. This means that the 
obtained Xbest by AFSA approaches the true solution to Eq. (14). Then, Xbest can 
be considered as the solution to the direct kinematic problem. After 300 iterations, 
the obtained Xbest is Xbest = [xbest, ybest, zbest, αbest, βbest, γbest]T = [0.5, 0.5, 1.5, 0.52, 
0.53, 0.52]T.  

Since the minimum of f(X) is zero, the error of AFSA is defined as the 
difference between f(Xbest) and zero, which is given by 

min best best( ) ( ) ( )f f fε = − =X X X                                      (21) 
Keeping the number of AFs N and the visual distance V constant (N = 20 

and V = 6), the variation of the error ɛ with the step length St is shown in Figure 3. 
Keeping St and N constant (St = 0.1 and N = 20), the variation of the error ɛ with 
the visual distance V is shown in Fig. 4. Moreover, Fig. 5 shows variation of the 
error ɛ with number of AFs with St = 0.1 and V = 6. 
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From Fig. 3, it can be seen that AFSA has better precision when the step 
length is 0.1. When this is the case, the difference between f(Xbest) and f(X)min is 
0.0177. From Fig. 4, it can be seen that AFSA has better precision when V = 6. In 
order to obtain a better solution to the direct kinematic problem, appropriate step 
length and visual distance should be chosen. Moreover, from Figure 5, it can be 
seen that the error ɛ decreases with an increase in the number of AFs. This means 
that the precision increases with N. However, if the number of AFs increases, the 
time needed for computation will be increased. When solving the direct kinematic 
problem by AFSA, less AFs should be chosen under meeting the condition of 
precision.  

Furthermore, AFSA can also be used to detect the singularities of the 
Stewart platform. By differentiating Eqs. (7)-(12), the Jacobian, J, relating a set of 
infinitesimal changes of the Stewart platform’s input variables (δL) to the 
infinitesimal changes of its output variables (δX) can be obtained. 
 δ δ= ⋅L J X   (22) 
where  

 
[ ]3 5 61 2 4

T

T

yx z

L L LL L L L

β γα  =  
 =

X
  (23) 

In Eq. (22), the elements J can be expressed by the output variables. The singular 
configurations of the Stewart platform correspond to situations where the 
determinant of J is zero, goes to infinity or is indeterminate. Since the output 
variables is obtained by AFSA for the given input variables. Afterwards, by 
substituting the output variables into Eq. (22) and computing the determinant of J, 
the singular configurations of the Stewart platform can be detected. 

6 Conclusion 

A numerical approach for finding the solutions of a 6-6 Stewart platform 
has been researched based on AFSA. Firstly, the architecture of the Stewart 
platform is introduced. Then, the direct and inverse kinematic equations have 
been developed. Afterwards, by converting the direct kinematic problem into an 
optimization model, AFSA is employed to find the solutions to the direct 
kinematic problems. Finally, the numerical simulations have been completed. The 
results indicate that AFSA is an effective tool for solving the direct kinematics of 
a Stewart platform. Moreover, the appropriate coefficients of AFSA have been 
determined for the given geometric parameters of the Stewart platform. Generally, 
precision of AFSA increases with the number of AFs. Furthermore, the results 
confirmed that AFSA can be considered an alternative approach for the direct 
kinematic problems of the Stewart platform. 
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