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THE PRIME ORDER CAYLEY GRAPH

Behnaz TOLUE!

Let S be the set of prime order elements of the group G. In this paper we introduce
the prime order Cayley graph of the group G relative to S. The structure of the
prime order Cayley graph associated to the certain cyclic groups and a dihedral
group is discussed under special conditions. Moreover, it is proved that the prime
order Cayley graph of an abelian group G is planar if and only if

G270,700,2, %2y, 26, Zyn 1, 7

>3
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1. Introduction

The algebraic graph theory involving the use of group theory and the study of
graph. Recently mathematician try to assign a graph to an algebraic structure.
They hope to use the advantage of graph properties for the algebraic structures
and vice versa.

Study of Cayley graphs that their properties related to the structure of the
group is one of the interesting topics in this area. Cayley graph was considered for
finite groups by Cayley in 1878 to explain the concept of abstract groups which
are generated by a set of generators in Cayley's time. Later, many similar
researches about the Cayley graph have been done by some authors for instance
see [1, 2].

Let G be a finite group and S < G be a subset. The corresponding Cayley
graph Cayley(G, S) has the vertex set equal to G. Two vertices g,h € G are joined
by a directed edge from g to h if and only if there exists S€ S such that g =sh.
Each edge is labeled to denote that it corresponds to s€S. A Cayley graph
Cayley (G, S) is connected if and only if G =(S), so that Cayley (<S>,S) is a

component of Cayley(G, S).

The importance of the order of the elements of the groups is the subject which is
clear for every group theorist. We introduce the prime order Cayley graph which
is related to the elements of prime order in a group. It is a Cayley graph associated
to a group G, such that S is the set of prime order elements of G. We denote this
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graph by Cayley(G, S). Under this assumption we may treat Cayley (G, S) as an
undirected graph because S =S~'. Moreover as S does not contain the identity, so
that Cayley (G, S) does not contain any loops. We present the general properties
of Cayley(G, S), where G is an elementary abelian p-group, non-nilpotent group
of order pq, it is isomorphic to the simple group As,

G=Z,..Z,,Zy. ’ZPQr’ZHL o and D,,, where n is a non-negative integer and p, q,

pi are prime numbers. The diameter, girth and clique, chromatic and independent
numbers of some them are found. The planarity of the prime order Cayley graph
associated to the groups of order less than 16 is verified. We observe that the
prime order Cayley graph associated to an abelian group is planar if and only if

G=27,0,250,2,%x2y, 25 2y0 2y 5.

2. Preliminary notions

In fact this paper is combination of two fields of graph theory and group
theory. Therefore, in this section we present some notions which are useful in
sequel from these two sights.

We consider simple graphs which are undirected, with no loops or multiple
edges. The degree of a vertex v in I' is the number of edges incident to v. We
denote it simply by deg(v). A simple graph of order n for which every two
vertices are adjacent is called a complete graph and is denoted by K,. A subset X
of the vertices of I is called a clique if the induced subgraph on X is a complete
graph. The maximum size of a clique in a graph I" is called the clique number of I
and denoted by o(I'). A k-vertex coloring of a graph I' is an assignment of k
colors to the vertices of I' such that no two adjacent vertices have the same color.
The vertex chromatic number y(I") of a graph T, is the minimum k for which I" has
a k-vertex coloring. A subset S is called an independent set of the graph I' if no
two vertices of S are adjacent in I'. The number of vertices in a maximum
independent set is called independence number of I' and is denoted by « (I'). A
Hamilton cycle of T" is a cycle that contains every vertex of I'. A graph which
contains a Hamilton cycle is called Hamiltonian. If I is a graph such that each
vertex has equal number of neighbors, then it is a regular graph. A graph is said to
be embeddable in a plane or planar, if it can be drawn in the plane so that its edges
intersect only at their ends. Throughout the paper, all the notations and
terminologies about the graphs are found in [3, 4] and for more details one can
refer to these references.

Let p be a prime number. A group G is called a p-group if every element g of

G has order p" , n>0. Moreover, a finite group G is a p-group if and only if G
has order p™ for some non-negative integer m. An abelian group of exponent p is
called an elementary abelian p-group. An elementary abelian p-group can be
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considered as a direct sum of cyclic groups of prime order p. We denote a cyclic
group of order k by Z.

3. Main results

Let G be a group and S be the set of prime order elements of G. Consider the
Cayley graph Cayley (G, S) associated to the group G relative to S. We call it
prime order Cayley graph.

Example 3.1. In this example we present some groups such that its prime order
Cayley graphs are complete.

(i) Itis clear that if |G| = p , then Cayley (G, S)=K, .where p is a prime number.

(if) If G is an elementary abelian p-group of order P“, then Cayley (G,S)
:Kpa .Thus prime order Cayley graph of an elementary abelian p-group is

connected.

(iii) Suppose G is a group such that order of its elements are not composite, then
Cayley (G, S) is a complete graph. A finite group having all (nontrivial) elements
of prime order if it is a p-group of exponent p or a non-nilpotent group of order
p"qg or it is isomorphic to the simple group As , where n is a non-negative integer

and p, q are prime numbers (see[5]). Consequently prime order Cayley graph of
the dihedral group of order 2p is an example, where p is an odd prime number.
If x is an element of order p, then deg (X) > p—1, where p is a prime number.

Suppose y is an element of composite order. Then deg (y)>m, where m is the
number of primes which are appear in [y|.

Proposition 3.2. Let G be a group.

@) If there are k distinct prime numbers greater than 2 which divides the order of
the group, then at least k distinct cycles exist in the graph Cayley(G, S).

(i) If p divides the order of G, then Cayley(G, S) is not planar, where p>5is a

prime number.

Proof. (i) For each prime that divides the order of G, there is an element of that

order. Since all the powers of such an element are adjacent, we have a cycle by

these powers.

(i) There is an element of order p and all its power are adjacent. Thus Ks is

induced subgraph of Cayley(G, S). i
Nathanson [6] open the way to a new class of graphs, namely, arithmetic

graphs. An arithmetic graph is the graph whose vertex set is the set of first n

positive integers 1, 2, 3,...,n and two vertices X and Yy are adjacent if and only if
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X+ Yy =5, (mod n) where seS. The prime order element Cayley graph of cyclic
groups are kind of arithmetic graphs.

Proposition 3.3. Let G be a cyclic group of order p", p is a prime number , n>1.
Then for Cayley(G, S) we have,

() Cayley(G, S) is (p—1) -regular.

(i) Cayley(G,S) is not connected. Cayley(G,S) has p™* complete components
each of them contains p vertices. In particular, <S> Is one of its component.

(iii) Cayley(G, S) is not planar exceptfor G=Z , and G=Z,, .

(iv) Cayley (Z ,.S) = U(p"HK,.

() w (Cayley(G, S)) = y (Cayley(G, S))=p and « (Cayley(G, S))=p™*, where
w, y and « are clique, chromatic, independent numbers of the graph.
Proof. (i) It is obvious that S = {FQF, o (p=Dp"! }

(ii) Since Z:lmi (ip"'l);_'—/T (mod p"), we observe that I e Z, is not
generated by S, where m; are integers. Thus Cayley(G, S) is not connected. The

rest is clear.

(iii) It is clear by part (ii), if p>35 then Ks is induced subgraph of Cayley
(G,9).

(iv) and (v) follows by (ii). m

In the following proposition we present some properties of Cayley (Zpq, S).

Proposition 3.4. Let G be a cyclic group of order pg, where p and q are distinct
prime numbers. Then for Cayley(G, S) we have,

(i) Cayley (G, S) is(p +q—2)-regular.

(i) The elements of order r are adjacent, where r is a prime number.

(iii) The elements of orders p and q are not adjacent.

dv) If x is a generator, then it joins to k, where k=tp+1 or sq+1land
I<t<g-1, I<s<p-1, t, seN.

(v) Cayley (G, S) is connected. Moreover, diam (Cayley(G, S))=2 and girth
(Cayley(G, S))< 4. In particular, G =(S).

(vi) Cayley(G, S) is not planar except Cayley (Z,,S).
Proof. (i) If G=Z, ,then S= {ﬁ,2§,...,(q -1p,q,2q,...,(p —l)q_}. Therefore

|S| = p+(g-2,and Cayley(G, S) is (p+q—2)-regular.
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(i1) It is clear.

(iii) If a,b € Z , of orders p and q respectively, then |a - b| = pg and so a and
b are not adjacent.

(iv) Let y be an element which is adjacent to X. As X is a generator, we
have y =kx and their adjacency implies that (pg,k —1) = por q. Hence the result
is clear.

(v) Suppose a,b eV (Cayley(G, S)) are not adjacent. If |a| and |b| are distinct

prime numbers, then both join 0 so d(a,b)=2. Assume a and b are two non-

adjacent generators. Then by (iv) there is a vertex that joins both. That means
d(a,b) =2. Hence diam (Cayley(G, S)) = 2. If there exist two elements of prime
order which are adjacent, then it is clear that both join 0. Thus we have a triangle.
But if S contains just two elements of two different prime orders, then these two
prime order elements are not adjacent. This means there is no prime order
elements which join. These two prime order elements join to zero and a generator.
Thus we have a square. This happens for Z¢ (see Figure (1)).

2 0

5 3
Fig. 1. Cayley(Zs, S)

(vi) Easily one can see Cayley (Zg, S) is planar (see Figure (1)). Therefore we
consider Cayley (Zpq, S), where p or q are greater or equal than 5. By (i) we
deduce the number of elements of order p or q are more than 4. Thus these
elements and 0 form Ks as induced subgraph of Cayley (Z,, S). Hence Cayley
(Zpq, S) is not planar whenever p or q are greater or equal than 5 . i

Proposition 3.5. Let G be the cyclic group of order pg", n>1. Then

() Cayley(G, S) is (p + g-2)-regular.

(i) Cayley(G, S) is not connected and union of g"* isomorphic components of
size pq.

(iii) The components of Cayley(Z, .., S) and Cayley(Z,, ,,S) are isomorphic

to the graph in Figure (2), the first and second Cayley graphs have 3" and 2"*
components, respectively.
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(iv) Cayley(G, S) is not planar except Cayley(Z,3", S) and Cayley(Z,"3,5).
Proof. (i) There are p-1 elements of order p and g-1 elements of order q,
S ={a".20",.(p~1a", pa""2pa™",....(a - pa"'}

(i1) Since G is not generated by S, Cayley(G, S) is not connected. The identity
element, elements of order p, q and elements of order pq form a component.
The other components are isomorphic to this component.
(iii) and (iv) follows by the second part and Proposition 3.2 . o

Fig. 2.

Proposition 3.6. Let G be a cyclic group of order pgr such that p<g<r. Then

@) Cayley(G, S) is (p+q+r—3)-regular.

di) If there are k,k',k" such that k'qg =k —k"p, then the elements of order pq
and p are adjacent, where k,k’.k" are integers satisfies (k,pq)=1, (k’,p)=1
and (k",q)=1. For instance, the elements of order pq and p are adjacent,
whenever p=2 and q=3.

dii) If k'q =k —k'p, then the elements of order pq and q are adjacent, where
k,k',k"are integers such that (k,pq)=1, (k’.,q)=1 and (k",p)=1. Suppose
p=2 and q=3. Then there are x,x, and y,,y, elements of order 3 and 6,
respectively. Moreover x; and y, are adjacent but x; does not join vy, , i, j=1, 2,
i .

(iv) The elements of order pg and r are not adjacent.

(V) The elements of order pr and p are adjacent whenever there are integers
k,k" and k" such that k —k"p =k'r, where (k, pr)=1,(k’,p)=1 and(k",r)=1.

(vi) The elements of order pr and g are not adjacent.

(vii) The elements of order pr and r are adjacent whenever there are integers
k,k" and k" such that k —k'p =k’r, where (k, pr)=1, (k’,r)=1and (k",p)=1.

(viii) The elements of order qr and p are not adjacent.

(ix) Suppose there are integers k,k" and k", such that k —k"q =k'r, where
(k,qr)=1, (k’,q)=1 and (k”,r)=1. Then the elements of order gr and q are
adjacent.
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(X) The elements of order gr and r are adjacent whenever there are integers
k,k" and k" such that k —k'q =k"r, where (k,qr)=1, (k’,r)=1and (k",q)=1.

(xi) The elements of prime order are not adjacent to the generators.

ii) If x,yare the generators and x=kpq+ y,k'pr+y,or k'qgr+y, then
they are adjacent, where (k,r)=1,(k',q)=1 and (k", p)=1.
Proof. (i) We can observe that X =kqr,y =k'pr and t=k"pq is of orders p, q
and r respectively, where (k,p)=1, (k',q)=1 and (k",r)=1. It is enough to
count such elements. For instance the possible cases for X are
qr,2qr,...,(p—1)qr. Therefore we have p—1, q—1 and r—1 elements of order
p,q and r. Hence the assertion is clear.

(i) kr and k'qr are elements of order pgand p respectively, where
(k, pq)zland (k’, p)=1. Clearly the order of kr—k' gr is not p and r. It is
possible that |kl‘ - k'qr| =( this means kr —k’qr =k’gr. For instance, if q=p+1,
then it is possible that the order of r —gr become q and consequently these two
vertices are adjacent.

(ii1) Similar to the (ii) the first part follows. Let G=Z¢, where r is a prime
number greater than 3. Clearly there are two elements of order 3, X, =2rand
X, =4r. Moreover there are just two elements y, =5r and Yy, =r of order 6.

Hence the assertion follows.
(iv) Follows immediately.
(v), (vi), (vii), (viii), (ix) and (x) are deduced similar to the previous parts.
(xi) Let xbe a generator. Then |X|= pqr on the other hand |X|=

| TIACT],X).
Therefore (pgr,X) =1. Consider an element of order p, say kqr, where (k, p) =1.
Thus |qu — X| is not p, q or r as x does not have factors rq, rp or pq, respectively.
(xii) It is clear that if x=kpgq+ y,k'pr+y or k"pg+y, then order of x—y
is 1, q or p, respectively. m
Similar result can be proved for a cyclic group G of order IT;_ p, ,where p,'s
are distinct prime numbers 1<i<n. For instance, S =(P,UP,U..UP,) - {e} and

Cayley(G, S) is @L(pi —1))—regular, where P, are Sylow pi-subgroups of G.

The adjacency in Cayley(G, S) is similar to the graph which is clarify in
Proposition 3.6.
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Example 3.7. In this example we present some groups and associated prime order
Cayley graphs.

(i) Cayley(Ss, S) is complete 5-regular graph Ks ,where S; is symmetric
group of order 6 and S = {(1 2), (1 3), (2 3), (12 3), (13 2)}.

(i) Let Dg=( a,b:a* =b°=1,a" =a™ )be dihedral group of order 8. Clearly
Cayley (Ds, S) is union of complete 2-partite graph (with 4 vertices in each part)
and the edges La’} | fa aﬁ . b.a’b} , fab.a’} where
S={ a’,b,ab,a’h,a’b } (see Figure (3)). Moreover, Cayley(Ds, S).

is a Hamiltonian graph. The cycle which pass through vertices
1,a*,a’,a’,ab,a,a’b,b,1 is a Hamiltonian cycle.

Proposition 3.8. Let D,, :<a,b:a” =b’=1a" :a’1> be dihedral group of
order 2n, where n >4,
(i) If n=TI,p, , then Cayley (D2, S) is (n+zik_l(pi —l)) -regular, where

P are distinct prime numbers 1 <i<k.

(i) Cayley (D2n, S) is a connected graph. Moreover diam (Cayley(Dzn, S))=2
and girth (Cayley(Day, S))=3.
dii) Let n=IIp“, where p; are distinct prime numbers. Then

{ajb :0<j<n —I}U {as :s=P% . P% p& P P }g S. Moreover |[S|>n+k

s—1 s+1

and also we have S is the set of all elements as follows
{alb:0<j<n-1jU{a*:s=(RP"..R5 PP .Y |, where 1<s<n-1.

S+l
(v) Cayley(D2n, S) is union of complete 2-partite graph and edges {a‘b,ajb},
le.a'} and {a',a’} such that a',a'’ e S. Furthermore, there are n vertices in
each part fab:0<i<n-1}and fa’:0< j<n-1j.
(V) Cayley(D2n, S) is not planar.
(vi) As mentioned in (iv) consider two parts in the graph Cayley(Dan, S). If
we use ¢ colors for coloring of one part, then we require ¢ different colors for the

second part. Moreover, the chromatic number of Cayley(D2,, S) is an even
number.
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(vii) Cayley(Day, S) is Hamiltonian graph.
Proof. (i) It is enough to count the prime order elements in the cyclic subgroup
<a>. The elements of prime order in the group <a> belongs to Sylow pi-subgroups

and since it is abelian they are normal and unique for each prime pi. As |P,| =P

the assertion is clear.
(ii) Since b, abeS we deduce that bab=a"' e (S). Hence b, ac (S) and so

G=<S> which implies Cayley(D2n, S) is a connected graph. Suppose X and Y are

two vertices which are not adjacent. If both belong to S, then both join to the
identity element and d( X,y )=2. If order of x and y are not of prime number, then

they are powers of a. Let x=a' and y=a’ It is clear that a'ba” =a*b and

a'ba'=ab so a'and a’join a'b. Thus diam(Cayley(D,,,S))=2. Further
{l,an/z,b} is a cycle, where n is an even number. If n is an odd number, then
{1,a',b} is a cycle, where t is such that the ratio n/(n, t) is a prime number.

(iii) It is clear that a’b, 0< j<n—1 are of order 2 and a° is of order p, where

S=P“. . P%P"' P% P* The other elements of D,, are not of prime order.

The rest follows clearly.

(iv) It is obvious.

(v) Since n>4 by the previous part Cayley(D2,, S) has Kj3 as its induced
subgraph.

(vi) Clearly follows by presentation of D, and finiding the adjacent vertices
in each part.

(vii) Since degree of each vertices is more than n+k, Cayley(D;,, S) is
Hamiltonian by Dirac theorem. o

Proposition 3.9. Let D,, be a dihedral group of order 2n, where n >4 is an even
integer. Then

(i) For Cayley(Day, S), |S|>n+1. Moreover, |S|=n+1 where D, is dihedral
group such that n=2"",

(i) @ (Cayley(D,. , S)) = x (Cayley(D,,, S)) = 4.

Proof. (i) Suppose D,, = <a,b a"=b*=1,a"= a’1>. It is clear that
{ajb 0<j<n- I}U {a”/z}g S . Hence the first part is clear. Since (2",i)=2""
whenever i=2""we conclude that | aX" |=2 and S is

o< j<om —1juR™ ),
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(ii) We use two different colors for identity element and a>" . The other
powers of a can be colored by these 2 colors. Some of them join to 1 and some of
them not so we use the suitable color out of these two colors. Thus here we use 2
colors. Moreover for b,ab,aZb,...,azmb we use two other different colors.
Therefore y (Cayley( D,., S))=4. As @(Cayley(D,,, S))< y (Cayley(D,,,

2m—2

S))=4 and vertices 1, a ,b,aszzb form K, .,the assertion follows .
O

Cayley(G, S) is @:ﬁlnpi(pi —1)) -regular, for a non-abelian group of order
1*, p, ,where p,(1<i<k) are distinct prime numbers and N, is the number of
Sylow p;-subgroups.

Let G be a nilpotent group of order IT' p, ,where p, (1 <i< k) are distinct

prime numbers. Then Cayley(G, S) is connected. Since G is generated by its
prime order elements the assertion follows.

Proposition 3.10. Let G be a simple group which contains an element of order p.
Then Cayley(G, S) is connected.
Proof. By the graph definition S contains all the elements of prime order. Since it
contains an element of prime order p, G is generated by all the elements of order
p (see[7, Proposition 2.5]) and consequently by S . Hence the assertion is clear.o
Every non-abelian finite simple group has even order, hence contains an
involution. Thus its prime order Cayley graph is connected.
The alternating groups A, for n>35 are generated by involutions. Therefore
Cayley(G, S) is connected.

Theorem 3.11. Let G be a group. Then
(i) Suppose G is a group of order less or equal than 15. Then Cayley(G, S) is a

planar graph ifand only if G = 2,2, ,2,x2,),Z¢,Z,:,Z,,Q.

(i) If G is an abelian group. Then Cayley(G, S) is a planar graph if and only if
G=Z2,,24.,2,x2,,24,Z,.,,Z
Proof. Suppose Cayley(G, S) is a planar graph. By the second part of

Proposition 3.2 we deduce that the order of G is 2“3, where «,f are

Z,, by third part of

2M 32230

non-negative integers. If =0 or f=0, then G=Z,,

Proposition 23 or G=Z,xZ,.
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Now let ¢ or [ be greater than one. If G is a non-nilpotent group of order
2.3” or 2%3 then all its elements are of prime order by [5]. Therefore all its
elements are join and since |G| >6 we have Ks as induced subgraph of
Cayley(G,S) so they are not planar.

Assume G is of order 2.3/ or 2“.3 and nilpotent. Initially suppose |G|=2.3".
There are one Sylow 3-subgroup and 3” Sylow 2-subgroup. Thus we have 3’
elements of order 2 which are adjacent. As Cayley(G, S) is planar f=1 and
|G| =6. G is not symmetric group of order 6 because its prime order Cayley graph
is not planar or we can say S; is not nilpotent. If G =Z,, then Cayley(G,S) is
planar. If |G| =2%3, then the number of Sylow 2-subgroups of G, n,, are 1 or 3

and the number of Sylow 3-subgroups, ns , are 2“ or 1, respectively. If n, =1 and
n, =2“ then we have 2°*' elements of order 3 which are adjacent. As Cayley(G,

S) is planar we conclude that 2°*' <4 and so a=1. Thus |G|=6 which we
discuss about it before. Suppose n, =3 and n, =1. With out loss of generality we
can assume| G |> 6. If G contains 4 elements of order 2, then Cayley(G, S) is not
planar. Therefore, G is a group which has at most 3 elements of order 2. The
group of order |G |=7,11,13,14,15 or G=D,, are not acceptable by the second
part of Proposition. 2.2. if G = Dy, then Cayley(G, S) is not planar by Proposition
3.8. Clearly Cayley (Z3 X ZS,S); K, is not planar. By these conditions we must
cheque  the  planarity of prime order Cayley graph  of
G =2,G,=2,xZ,xZ,,A.D, and T=(ab:a’=1b’=a’a"=a").
Immediately, we omit D, and T, because they are not nilpotent. Cayley(Gj, S) is
3-regular graph which is planar by Proposition 3.5. G; has 5 elements of prime
order. Thus the number of edges of the Cayley (G ,S) is 30. Now by [3, Corollary

9.5.2] Cayley(Ga, S) is not planar. Similarly Cayley (A4, S) is 11-regular which is
not planar.

Let G be a group of order 2°3”, where a,f >1 Thus |G [>36 Hence the
assertion is clear. O
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