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WEIGHTING METHOD FOR CONVEX VECTOR
INTERVAL-VALUED OPTIMIZATION PROBLEMS

Tadeusz ANTCZAK'

In this paper, a nonlinear vector optimization problem with the multiple
interval-valued objective function is considered. We use the weighting method for
finding its weakly type-I Pareto and type-1 Pareto solutions. Therefore, for the
considered nonlinear interval-valued multiobjective programming problem, its
associated noninterval scalar optimization problem with weights is defined in the
aforesaid approach. Then, under appropriate convexity hypotheses, the equivalence
between a (weakly) type-1 Pareto of the considered nonlinear interval-valued
multiobjective programming problem and an optimal solution of its associated
noninterval scalar weighting optimization problem is established.
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1. Introduction

One of the most used deterministic optimization models to deal with the
extremum problems with uncertain data is interval-valued optimization because it
does not require the specification or the assumption of probabilistic distributions
(as in stochastic programming) or possibilistic distributions (as in fuzzy
programming). There exist various approaches in the literature for solving interval-
valued optimization problems (see, for example, [1], [2], [4], [7], [9], [10], [11],
[12], [14], [16], and others).

Vector optimization problems, commonly known as multiobjective
programming problems or multicriteria optimization problems, gained importance
because in the real world applications we encounter such extremum problems.
Scalarization techniques for solving a nonlinear multiobjective programming
problem substitute the original vector optimization problem by a suitable scalar
optimization problem, in such a way that minimizers of the constructed scalar
extremum problem are also (weak) Pareto solutions of the original one. The main
advantage of such an approach, from a practical point of view, is that a large number
of fast and reliable methods developed for single-valued optimization in order to
solve vector optimization problems can be used. One of the most widely used
scalarization techniques in multiobjective programming is the weighting method,
which consists of minimizing a weighted sum of the different objectives.
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In the paper, the weighting method is applied for solving nonlinear vector
optimization problems with multiple interval-valued objective functions. This
method is used for identifying weakly type-I Pareto and type-I Pareto solutions of
the considered nonlinear vector optimization problem with the multiple interval-
valued objective function. In this technique, at first, an associated scalar noninterval
optimization problem is constructed for the considered nonlinear interval-valued
multiobjective programming problem. Then the equivalence is established between
a (weakly) type-I Pareto solution of the considered nonlinear vector optimization
problem with multiple interval-valued objective function and a minimizer of its
associated scalar noninterval extremum problem constructed in the weighting
method. This result is established under assumption that the functions constituting
the considered interval-valued multiobjective programming problem are convex.
The example of a nonlinear convex vector optimization problem with the multiple
interval-valued objective function, which is solving by the weighting method, is
presented to illustrate the results established in the paper.

2. Notations and preliminaries

Let R™ be the n-dimensional Euclidean space. For any vectors x =
(x1, ., x)T and y = (yq, ..., )T in R™, we define: (i) x = y if and only if x; =
yiforalli = 1,..,n; (i1) x > y if and only if x; > y; for all i = 1,...,n; (iii)
x 2 yifandonlyifx; 2 y;foralli = 1,..,n;(iv)x = yifandonly ifx = y
and x # y.

Let I(R) be a class of all closed and bounded intervals in R. Throughout this
paper, when we say that A is a closed interval, we mean that A is also bounded in
R. If A is a closed interval, we use the notation A = [a’, aU], where a* and aV
mean the lower and upper bounds of A, respectively. In other words, if A =

[ak;aV]l € I(R), then A = [al,aV] ={x €R:al Ex = aY}.Ifat = a¥ = a,
then A = [a,a] = ais a real number. In interval mathematics, an order relation is
often used to rank interval numbers and it implies that an interval number is better
than another but not that one is larger than another.

ForA = [a%,aY]and B = [b%,bY]], we write A <,y B ifand only if al =
bYand a¥ = bY It is easy to see that <, is a partial ordering on I (R). Also, we can
write A <;y B if and only if A <;;; B and A # B. Equivalently, A <;; B if and
only if (at < bt, aV = bY) or (al = b%, aV < bY)or (a* < bt, a¥ < bY).

Let X be a nonempty subset of R™. A function ¢: X — I(R) is called an
interval-valued function if ¢ (x) = [ (x), 9! (x)] with @, @Y : X - R such that
ol (x) = Y(x) foreach x € X.

Definition 2.1. [16] Let X be a nonempty convex subset of R" and f: X — I(R) be
an interval-valued function defined on X. It is said that fis a convex interval-valued
function on X if the inequality
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flu+alx—w) < af () + (1 —a)f(u) (1)
holds for all x,u € X and a € [0; 1].
The following result follows from (1) immediately (see [15]).

Proposition 2.1. Let X be a nonempty convex subset of R™ and f:X — I(R). f is a
convex interval-valued function on X if and only if the functions f* and fU are
convex on X (in the classical sense).

The following nonlinear theorem of the alternative is a particular case of
more general results established in [3], [5] (see also [6]).

Theorem 2.1. Let C € R™ be a nonempty convex set, and [ = (fl, . ..,fp): R™ >
RP and g = (gl, o) gq): R™ = RY be convex functions. If the system

filx)<0,i=1,...,p,,9j(x) =0,j=1,..,q,xEC

has no solution, there exist € RP, A =0, u € RY, u =2 0, (A, u) # 0, such that
i A i) + X0 15 9;(x) Z20,vx € C.

3. Weighting method for solving convex vector optimization problems
with interval-valued objective functions

In the paper, consider the following vector optimization problem with the
multiple interval-valued objective function defined by

f@) = (A0, @) mmin gy
x €C,

where C is a nonempty convex subset of R", each fi:R™ = I(R), k€K =
{1,...,7} is an interval-valued function, that is, fi, (x) = [fL(x), £ (O], fit(x) =
fU(x), x € R", k € K. We shall assume, moreover, that fi£, f/:R* > R, k € K,
are continuous functions. For the purpose of simplifying our presentation, we will
introduce the following notations f£ = (fL,..., 97, fU = (fY,..., £9T.

Since each of the objective values f} is a closed interval, we need to provide
an ordering relation between any two closed intervals. The most direct way is to
invoke the ordering relation <;;; that was defined above. However, <, is a partial
ordering relation, not a total ordering, on I(R), and we shall follow the similar
concept of a nondominated solution used in a multiobjective programming problem
to investigate the solution concepts. Now, for the considered multiobjective
programming problem (IVP) with multiple interval-valued objective function, we
give the definitions of weakly type-I Pareto and type-I Pareto solutions introduced
by Wu [15].
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Definition 3.1. 4 feasible point X is said to be a weakly type-I Pareto solution of
the considered vector optimization problem (IVP) with multiple interval-valued
objective function if and only if there is no other feasible solution x such that

fr(X) <pp fu(X), k EK.

Definition 3.2. A feasible point X is said to be a type-I Pareto solution of the
considered vector optimization problem (IVP) with multiple interval-valued
objective function if and only if there is no other feasible solution x such that

f(x) < FX).

Remark 3.1. It is known in the optimization literature (see, for example, [13]) that
a weakly type-I Pareto solution and a type-I Pareto solution of (IVP) are also called
a weakly LU-Pareto solution and a LU-Pareto solution, respectively.

In this section, we use the weighting method in order to characterize
(weakly) type-I Pareto optimality of the interval-valued multiobjective
programming problem (IVP). Therefore, for the considered vector optimization
problem (IVP) with interval-valued objective functions, we define in the weighting
method the associated scalar optimization problem as follows:

I'(x) = Xk=1 Aika(x) + Xk=1 Agka(x) — min
x € C,
where AL = (A%, ..., 25) > 0and AV = (1Y, ..., 2Y) > 0.

Now, we give the definition of an optimal solution of the scalar optimization

problem (WOP,) defined in the weighting method.

(WORy)

Theorem 3.1. Let X € C be an optimal solution of the weighting optimization
— L —U —L U
problem (WOP3). If A = (A A ) > 0 with (Ako,lko) > 0 for some ko € K, where

A= A8 and AY = (AY, ..., AY), then X is a weakly type-I Pareto solution
of the considered vector optimization problem (IVP) with multiple interval-valued
objective function.

Proof. Let x € C be an optimal solution of the weighting optimization problem
(WOP3). We proceed by contradiction. Suppose, contrary to the result, that x is not
a weakly type-I Pareto solution of (IVP). Hence, by Definition 3.1, there exists other
feasible solution X such that

fieB) <w fi(X), k €K.
By the definition of the relation <, it follows that, for any k € K,
(fe () < fir ) A fid @) = fi () or (fir () = fie () A
fil @) < fil @) or (fe(X) < fr (®) A il (B) < fi (%)).
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) - =L U ) —L —U
Since 4 = (A A ) > 0 with (/1,(0,/1,(0) > (0 for some kj € K, the system of
inequalities (3) implies that the inequality

k=1 Ak fie (B) + Xheo Aicfid (B) < Xiemy Akfie () + Xiemr Al fid ()
holds. Thus, by Definition 3.3, this is a contradiction to the assumption that x is an
optimal solution of the weighting optimization problem (WOP5). Hence, the proof
of this theorem is completed. u

Theorem 3.2. Let x € C be an optimal solution of the weighting optimization
— =L U —L —U
problem (WOP3). If 1 = (/1 A ) >0withd =20and A =0, then x is a type-1

Pareto solution of the considered vector optimization problem (IVP) with multiple
interval-valued objective function.

Proof. Let x € C be an optimal solution of the weighting optimization problem
(WOP5). We proceed by contradiction. Suppose, contrary to the result, that x is not
a type-I Pareto solution of (IVP). Hence, by Definition 3.2, there exists other
feasible solution X such that

f@ < fG®. 4)
By the definition of the relation <, it follows that,
(fr@) <fre) A fP®) = fU0G) or (FF(X) = fL GO A ®)
fU@E <fUG))or (FF (@) < fL) A fUE) < fUC0).

— —L =U —L U
Since A = (A A ) >0 with with 4 >0and A = 0, the system of inequalities

(5) implies that the inequality

V=1 Akfie (B) + Xhoq A fil (B) < Themn Aifie (B) + Tkmq A fid ()
holds, which contradicts the assumption that x is an optimal solution of (WOP5).
Hence, the proof of this theorem is completed. u

Now, under convexity hypotheses, we prove the converse results to those
ones established in Theorems

Theorem 3.3. Let the objective functions fi, k € K, be convex on C. If x € C is a
type-1 Pareto solution of the vector optimization problem (IVP) with multiple

= —L —U —L
interval-valued objective function, then there exists A = (l A ) >0, whereA =

—L —L U =U —U _
(Al,...,lr) and A = (Al,...,/lr ) such that x is an optimal solution of the
weighting optimization problem (WOP>).

Proof. Let x € D be a type-1 Pareto solution of the vector optimization problem
(IVP) with multiple interval-valued objective function. Hence, by Definition 3.2,
there does not exist other feasible solution x such that

fO) < f(X).
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Then, by the definition of the relation <;, it follows that there does not exist a
feasible point x such that

(fr) <fre) A FPG = FU() or (FF () = 100 A (6)
fUe) <fPG)) or (FFx) < fHG) A fU0) < FU0.
Thus, the system of inequalities (6) and the feasibility of x yield that there is no a
feasible solution x such that

fre) = 1) <0, fPe) = UG <o,
Fre-fr@®so0 O Flm - @S0 @

By assumption, the objective functions fy, k € K, are convex interval-

valued functions on C. Then, by Proposition 2.1, it follows that the functions f*

and fY are convex on C (in the classical sense). Since the system of inequalities (7)
has no a solution x € C, by the theorem of the alternative (Theorem 2.1), there exist

EL € R" and IU € R with (IL,EU) > 0 such that, for all x € C, the inequality
o () = fE®) + T 2 (U0 - fE@) 2 0
holds. This means that there exist 1 = (ZL, ZU) > 0 such that the inequality
k=1 kS (0) + Zioy A fid () 2 Thmt Akfie () + Ty A fid ()

holds for all x € C. This means, by Definition 3.3, that x is an optimal solution of
(WOP3). This completes the proof of this theorem. u

Theorem 3.4. Let the objective functions fi, k € K, be convex on C. If x € C is a
weakly type-1 Pareto solution of the vector optimization problem (IVP) with

- =L U
multiple interval-valued objective function, then there exists A = (l A ) > 0 with

—L —U —L —L —L U  =U —U
(T &) 2 0 for each k € K, where A = (Z4,.... %) and = (Zy,.... 2 )
such that x is an optimal solution of the weighting optimization problem (WOP-).

Proof. Let x € D be a weakly type-I Pareto solution of (IVP). Hence, by Definition
3.1, there does not exist other feasible solution x such that

fr() < i), Vk € K.

Then, by the definition of the relation <;, it follows that there does not exist a
feasible point x such that, for any k € K,

(fie ) < fie @) A fi () = £ () or (fe ) = fi¢ Go) A (®)
fil @) < fil G or (it () < fie () A fil ) < fi (O))-
Thus, the system of inequalities (8) and the feasibility of x yield that there is no a
feasible solution x such that, for any k € K,

fie () = fi (@) <0, fil () = fi' @) <0,

e -fr@®=0 % fl@ - fli@ S0 ©)
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By assumption, the objective functions fy, k € K, are convex on C. Then, by
Proposition 2.1, it follows that the functions f and fY are convex on C (in the
classical sense). Since the system of inequalities (9) has no a solution x € C, by the

theorem of the alternative (Theorem 2.1), for each k € K, there exists ik =
—L =U
(Ak,lk) = 0 such that the inequality

k=1 Ak fie OO0 + Zhas Al il () 2 Bhea Mcfie () + Ehma A fil (0
holds for all x € C. This means, by Definition 3.3, that x is an optimal solution of
(WOP5). This completes the proof of this theorem. u

In order to illustrate the results established in the paper, we consider an
example of a convex vector optimization problem with multiple interval-valued
objective function which we solve by using the weighting method.

Example 3.1. Consider the following convex vector optimization problem with the
multiple interval-valued objective function:

£ =[]t + 2+ [5.1] G -2+ [5.1]
[1,1](x3 + x3) + [—1, —%] (x; —x,) + [—1, —%]) - min (IVP1)

C={(x1,x2)ER2:0§x1§1 A 0§x2§1}

Note that x = (0,0) is a feasible solution of the considered vector optimization
problem (IVP1) with multiple interval-valued objective function. Note that all
objective functions of the considered interval-valued multiobjective programming
problem (IVP1) are convex. By Definition 3.2, it follows that x is a type-I Pareto
solution of (IVP1). It can be shown that the Karush-Kuhn-Tucker necessary
optimality conditions (see, for example, [8], [15] ) are satisfied at x = (0,0) with
Lagrange multipliers associated to the objective functions which are as follows

A= i, Y= %, AL = i, Y= %. Then, we use the weighting method for solving
(IVP1). Therefore, we construct its associated weighting optimization problem
(WOP15) as follows

g(X% + x3) > min

x € C,
where 1= (2,1 )20, 7 =(%) =(3)>07 =) =% >
4’4 4’4

0. Since all hypotheses of Theorem 3.3 are satisfied, therefore, x = (0,0) is a
minimizer of (WOP15). Conversely, let x = (0,0) be a minimizer of the weighting

optimization problem (WOP17). Moreover, all functions constituting (IVP1) are

—L . —U — —
convex. Since 1 = (A},2%) = G,%) >0, 2 =(7,2) = G,%) >0, by
Theorem 3.2, it follows that x = (0,0) is also a type-I Pareto solution of (IVP1).

(WOP15)
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