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WEIGHTING METHOD FOR CONVEX VECTOR  
INTERVAL-VALUED OPTIMIZATION PROBLEMS 

Tadeusz ANTCZAK1 

 In this paper, a nonlinear vector optimization problem with the multiple 
interval-valued objective function is considered. We use the weighting method for 
finding its weakly type-I Pareto and type-I Pareto solutions. Therefore, for the 
considered nonlinear interval-valued multiobjective programming problem, its 
associated noninterval scalar optimization problem with weights is defined in the 
aforesaid approach. Then, under appropriate convexity hypotheses, the equivalence 
between a (weakly) type-I Pareto of the considered nonlinear interval-valued 
multiobjective programming problem and an optimal solution of its associated 
noninterval scalar weighting optimization problem is established. 
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1. Introduction 
One of the most used deterministic optimization models to deal with the 

extremum problems with uncertain data is interval-valued optimization because it 
does not require the specification or the assumption of probabilistic distributions 
(as in stochastic programming) or possibilistic distributions (as in fuzzy 
programming). There exist various approaches in the literature for solving interval-
valued optimization problems (see, for example, [1], [2], [4], [7], [9], [10], [11], 
[12], [14], [16], and others). 

Vector optimization problems, commonly known as multiobjective 
programming problems or multicriteria optimization problems, gained importance 
because in the real world applications we encounter such extremum problems. 
Scalarization techniques for solving a nonlinear multiobjective programming 
problem substitute the original vector optimization problem by a suitable scalar 
optimization problem, in such a way that minimizers of the constructed scalar 
extremum problem are also (weak) Pareto solutions of the original one. The main 
advantage of such an approach, from a practical point of view, is that a large number 
of fast and reliable methods developed for single-valued optimization in order to 
solve vector optimization problems can be used. One of the most widely used 
scalarization techniques in multiobjective programming is the weighting method, 
which consists of minimizing a weighted sum of the different objectives. 
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In the paper, the weighting method is applied for solving nonlinear vector 
optimization problems with multiple interval-valued objective functions. This 
method is used for identifying weakly type-I Pareto and type-I Pareto solutions of 
the considered nonlinear vector optimization problem with the multiple interval-
valued objective function. In this technique, at first, an associated scalar noninterval 
optimization problem is constructed for the considered nonlinear interval-valued 
multiobjective programming problem. Then the equivalence is established between 
a (weakly) type-I Pareto solution of the considered nonlinear vector optimization 
problem with multiple interval-valued objective function and a minimizer of its 
associated scalar noninterval extremum problem constructed in the weighting 
method. This result is established under assumption that the functions constituting 
the considered interval-valued multiobjective programming problem are convex. 
The example of a nonlinear convex vector optimization problem with the multiple 
interval-valued objective function, which is solving by the weighting method, is 
presented to illustrate the results established in the paper. 

2. Notations and preliminaries 

Let 𝑅𝑅𝑛𝑛 be the n-dimensional Euclidean space. For any vectors 𝑥𝑥 =
(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝑇𝑇 and 𝑦𝑦 = (𝑦𝑦1, … , 𝑦𝑦𝑛𝑛)𝑇𝑇  in 𝑅𝑅𝑛𝑛, we define: (i) 𝑥𝑥 =  𝑦𝑦 if and only if 𝑥𝑥𝑖𝑖 =
 𝑦𝑦𝑖𝑖  for all 𝑖𝑖 =  1, … ,𝑛𝑛; (ii) 𝑥𝑥 > 𝑦𝑦 if and only if 𝑥𝑥𝑖𝑖 >  𝑦𝑦𝑖𝑖  for all 𝑖𝑖 =  1, … , 𝑛𝑛; (iii) 
𝑥𝑥 ≧  𝑦𝑦 if and only if 𝑥𝑥𝑖𝑖 ≧  𝑦𝑦𝑖𝑖  for all 𝑖𝑖 =  1, … ,𝑛𝑛; (iv) 𝑥𝑥 ≥ 𝑦𝑦 if and only if 𝑥𝑥 =  𝑦𝑦 
and 𝑥𝑥 ≠  𝑦𝑦. 

Let 𝐼𝐼(𝑅𝑅) be a class of all closed and bounded intervals in 𝑅𝑅. Throughout this 
paper, when we say that 𝐴𝐴 is a closed interval, we mean that 𝐴𝐴 is also bounded in 
𝑅𝑅. If A is a closed interval, we use the notation 𝐴𝐴 =  [𝑎𝑎𝐿𝐿 ,𝑎𝑎𝑈𝑈], where 𝑎𝑎𝐿𝐿  and 𝑎𝑎𝑈𝑈  

mean the lower and upper bounds of A, respectively. In other words, if 𝐴𝐴 =
 [𝑎𝑎𝐿𝐿;𝑎𝑎𝑈𝑈] ∈ 𝐼𝐼(𝑅𝑅), then 𝐴𝐴 =  [𝑎𝑎𝐿𝐿 ,𝑎𝑎𝑈𝑈] = {𝑥𝑥 ∈ 𝑅𝑅:𝑎𝑎𝐿𝐿 ≦ 𝑥𝑥 ≦ 𝑎𝑎𝑈𝑈} . If 𝑎𝑎𝐿𝐿  =  𝑎𝑎𝑈𝑈 =  𝑎𝑎, 
then 𝐴𝐴 =  [𝑎𝑎,𝑎𝑎] = 𝑎𝑎 is a real number. In interval mathematics, an order relation is 
often used to rank interval numbers and it implies that an interval number is better 
than another but not that one is larger than another.  

For 𝐴𝐴 =  [𝑎𝑎𝐿𝐿 ,𝑎𝑎𝑈𝑈] and 𝐵𝐵 =  [𝑏𝑏𝐿𝐿 , 𝑏𝑏𝑈𝑈]], we write 𝐴𝐴 ≼𝐿𝐿𝐿𝐿 𝐵𝐵 if and only if 𝑎𝑎𝐿𝐿 ≦
𝑏𝑏𝐿𝐿  and 𝑎𝑎𝑈𝑈 ≦ 𝑏𝑏𝑈𝑈 It is easy to see that ≼𝐿𝐿𝐿𝐿  is a partial ordering on 𝐼𝐼(𝑅𝑅). Also, we can 
write 𝐴𝐴 ≺𝐿𝐿𝐿𝐿 𝐵𝐵 if and only if 𝐴𝐴 ≼𝐿𝐿𝐿𝐿 𝐵𝐵 and 𝐴𝐴 ≠ 𝐵𝐵. Equivalently, 𝐴𝐴 ≺𝐿𝐿𝐿𝐿 𝐵𝐵 if and 
only if (𝑎𝑎𝐿𝐿 < 𝑏𝑏𝐿𝐿 , 𝑎𝑎𝑈𝑈 ≦ 𝑏𝑏𝑈𝑈) or (𝑎𝑎𝐿𝐿 ≦ 𝑏𝑏𝐿𝐿 , 𝑎𝑎𝑈𝑈 < 𝑏𝑏𝑈𝑈) or (𝑎𝑎𝐿𝐿 < 𝑏𝑏𝐿𝐿 , 𝑎𝑎𝑈𝑈 < 𝑏𝑏𝑈𝑈). 

Let X be a nonempty subset of 𝑅𝑅𝑛𝑛. A function 𝜑𝜑:𝑋𝑋 → 𝐼𝐼(𝑅𝑅) is called an 
interval-valued function if 𝜑𝜑(𝑥𝑥) = [𝜑𝜑𝐿𝐿(𝑥𝑥),𝜑𝜑𝑈𝑈(𝑥𝑥)] with 𝜑𝜑𝐿𝐿 ,𝜑𝜑𝑈𝑈 ∶ 𝑋𝑋 → 𝑅𝑅 such that 
𝜑𝜑𝐿𝐿(𝑥𝑥) ≦ 𝜑𝜑𝑈𝑈(𝑥𝑥) for each 𝑥𝑥 ∈ 𝑋𝑋. 

Definition 2.1. [16] Let X be a nonempty convex subset of 𝑅𝑅𝑛𝑛 and 𝑓𝑓:𝑋𝑋 → 𝐼𝐼(𝑅𝑅) be 
an interval-valued function defined on X. It is said that f is a convex interval-valued 
function on X if the inequality 
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 𝑓𝑓�𝑢𝑢 + 𝛼𝛼(𝑥𝑥 − 𝑢𝑢)� ≼𝐿𝐿𝐿𝐿 𝛼𝛼𝛼𝛼(𝑥𝑥) + (1 − 𝛼𝛼)𝑓𝑓(𝑢𝑢)  (1) 

holds for all 𝑥𝑥,𝑢𝑢 ∈ 𝑋𝑋 and 𝛼𝛼 ∈  [0; 1]. 
The following result follows from (1) immediately (see [15]). 

Proposition 2.1. Let 𝑋𝑋 be a nonempty convex subset of 𝑅𝑅𝑛𝑛 and 𝑓𝑓:𝑋𝑋 → 𝐼𝐼(𝑅𝑅). 𝑓𝑓 is a 
convex interval-valued function on 𝑋𝑋 if and only if the functions 𝑓𝑓𝐿𝐿 and 𝑓𝑓𝑈𝑈 are 
convex on 𝑋𝑋 (in the classical sense). 

The following nonlinear theorem of the alternative is a particular case of 
more general results established in [3], [5] (see also [6]). 

Theorem 2.1. Let 𝐶𝐶 ⊂ 𝑅𝑅𝑛𝑛 be a nonempty convex set, and 𝑓𝑓 = �𝑓𝑓1, . . . ,𝑓𝑓𝑝𝑝�:𝑅𝑅𝑛𝑛 →
𝑅𝑅𝑝𝑝 and 𝑔𝑔 = �𝑔𝑔1, . . . ,𝑔𝑔𝑞𝑞�:𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑞𝑞 be convex functions. If the system 

𝑓𝑓𝑖𝑖(𝑥𝑥) < 0, 𝑖𝑖 = 1, . . . , 𝑝𝑝, ,𝑔𝑔𝑗𝑗(𝑥𝑥) ≦ 0, 𝑗𝑗 = 1, . . , 𝑞𝑞, 𝑥𝑥 ∈ 𝐶𝐶 

has no solution, there exist 𝜆𝜆 ∈ 𝑅𝑅𝑝𝑝, 𝜆𝜆 ≧ 0, 𝜇𝜇 ∈ 𝑅𝑅𝑞𝑞, 𝜇𝜇 ≧ 0, (𝜆𝜆, 𝜇𝜇) ≠ 0, such that 

∑ 𝜆𝜆𝑖𝑖
𝑝𝑝
𝑖𝑖=1 𝑓𝑓𝑖𝑖(𝑥𝑥) + ∑ 𝜇𝜇𝑗𝑗

𝑞𝑞
𝑗𝑗=1 𝑔𝑔𝑗𝑗(𝑥𝑥) ≧ 0,∀𝑥𝑥 ∈ 𝐶𝐶.  

3. Weighting method for solving convex vector optimization problems 
with interval-valued objective functions 
In the paper, consider the following vector optimization problem with the 

multiple interval-valued objective function defined by 
𝑓𝑓(𝑥𝑥) = �𝑓𝑓1(𝑥𝑥), … ,𝑓𝑓𝑟𝑟(𝑥𝑥)� → 𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥 ∈ 𝐶𝐶,
     (IVP) 

where 𝐶𝐶 is a nonempty convex subset of 𝑅𝑅𝑛𝑛, each 𝑓𝑓𝑘𝑘:𝑅𝑅𝑛𝑛 → 𝐼𝐼(𝑅𝑅), 𝑘𝑘 ∈ 𝐾𝐾 =
{1, . . . , 𝑟𝑟} is an interval-valued function, that is, 𝑓𝑓𝑘𝑘(𝑥𝑥) = [𝑓𝑓𝑘𝑘𝐿𝐿(𝑥𝑥),𝑓𝑓𝑘𝑘𝑈𝑈(𝑥𝑥)], 𝑓𝑓𝑘𝑘𝐿𝐿(𝑥𝑥) ≦
𝑓𝑓𝑘𝑘𝑈𝑈(𝑥𝑥), 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛, 𝑘𝑘 ∈ 𝐾𝐾. We shall assume, moreover, that 𝑓𝑓𝑘𝑘𝐿𝐿, 𝑓𝑓𝑘𝑘𝑈𝑈:𝑅𝑅𝑛𝑛 → 𝑅𝑅, 𝑘𝑘 ∈ 𝐾𝐾, 
are continuous functions. For the purpose of simplifying our presentation, we will 
introduce the following notations 𝑓𝑓𝐿𝐿 = (𝑓𝑓1𝐿𝐿 , . . . ,𝑓𝑓𝑟𝑟𝐿𝐿)𝑇𝑇, 𝑓𝑓𝑈𝑈 = (𝑓𝑓1𝑈𝑈, . . . ,𝑓𝑓𝑟𝑟𝑈𝑈)𝑇𝑇. 

Since each of the objective values 𝑓𝑓𝑘𝑘 is a closed interval, we need to provide 
an ordering relation between any two closed intervals. The most direct way is to 
invoke the ordering relation ≼𝐿𝐿𝐿𝐿 that was defined above. However, ≼𝐿𝐿𝐿𝐿 is a partial 
ordering relation, not a total ordering, on 𝐼𝐼(𝑅𝑅), and we shall follow the similar 
concept of a nondominated solution used in a multiobjective programming problem 
to investigate the solution concepts. Now, for the considered multiobjective 
programming problem (IVP) with multiple interval-valued objective function, we 
give the definitions of weakly type-I Pareto and type-I Pareto solutions introduced 
by Wu [15]. 
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Definition 3.1. A feasible point 𝑥̅𝑥 is said to be a weakly type-I Pareto solution of 
the considered vector optimization problem (IVP) with multiple interval-valued 
objective function if and only if there is no other feasible solution 𝑥𝑥 such that 
𝑓𝑓𝑘𝑘(𝑥𝑥) ≺𝐿𝐿𝐿𝐿 𝑓𝑓𝑘𝑘(𝑥̅𝑥), 𝑘𝑘 ∈ 𝐾𝐾. 

Definition 3.2. A feasible point 𝑥̅𝑥 is said to be a type-I Pareto solution of the 
considered vector optimization problem (IVP) with multiple interval-valued 
objective function if and only if there is no other feasible solution 𝑥𝑥 such that 
𝑓𝑓(𝑥𝑥) ≺𝐿𝐿𝐿𝐿 𝑓𝑓(𝑥̅𝑥). 

Remark 3.1. It is known in the optimization literature (see, for example, [13]) that 
a weakly type-I Pareto solution and a type-I Pareto solution of (IVP) are also called 
a weakly 𝐿𝐿𝐿𝐿-Pareto solution and a 𝐿𝐿𝐿𝐿-Pareto solution, respectively. 

In this section, we use the weighting method in order to characterize 
(weakly) type-I Pareto optimality of the interval-valued multiobjective 
programming problem (IVP). Therefore, for the considered vector optimization 
problem (IVP) with interval-valued objective functions, we define in the weighting 
method the associated scalar optimization problem as follows: 

Γ(x) = ∑ 𝜆𝜆𝑘𝑘𝐿𝐿𝑓𝑓𝑘𝑘𝐿𝐿(𝑥𝑥)𝑟𝑟
𝑘𝑘=1 + ∑ 𝜆𝜆𝑘𝑘𝑈𝑈𝑓𝑓𝑘𝑘𝑈𝑈(𝑥𝑥)𝑟𝑟

𝑘𝑘=1 → min
x ∈ C,

     (WOP𝜆𝜆)  

where 𝜆𝜆𝐿𝐿 = (𝜆𝜆1𝐿𝐿 , … , 𝜆𝜆𝑟𝑟𝐿𝐿) ≥ 0 and 𝜆𝜆𝑈𝑈 = (𝜆𝜆1𝑈𝑈, … , 𝜆𝜆𝑟𝑟𝑈𝑈) ≥ 0. 
Now, we give the definition of an optimal solution of the scalar optimization 

problem (WOP𝜆𝜆) defined in the weighting method. 

Theorem 3.1. Let 𝑥̅𝑥 ∈ 𝐶𝐶 be an optimal solution of the weighting optimization 
problem (𝑊𝑊𝑊𝑊𝑊𝑊𝜆𝜆). If 𝜆𝜆 = �𝜆𝜆

𝐿𝐿
,𝜆𝜆

𝑈𝑈
� ≥ 0 with �𝜆𝜆𝑘𝑘0

𝐿𝐿
, 𝜆𝜆𝑘𝑘0

𝑈𝑈
� > 0 for some 𝑘𝑘0 ∈ 𝐾𝐾, where 

𝜆𝜆𝐿𝐿 = (𝜆𝜆1𝐿𝐿 , … , 𝜆𝜆𝑟𝑟𝐿𝐿) and 𝜆𝜆𝑈𝑈 = (𝜆𝜆1𝑈𝑈, … , 𝜆𝜆𝑟𝑟𝑈𝑈), then 𝑥𝑥 is a weakly type-I Pareto solution 
of the considered vector optimization problem (IVP) with multiple interval-valued 
objective function. 

Proof. Let 𝑥̅𝑥 ∈ 𝐶𝐶 be an optimal solution of the weighting optimization problem 
(𝑊𝑊𝑊𝑊𝑊𝑊𝜆𝜆). We proceed by contradiction. Suppose, contrary to the result, that 𝑥̅𝑥 is not 
a weakly type-I Pareto solution of (IVP). Hence, by Definition 3.1, there exists other 
feasible solution 𝑥̃𝑥 such that 

𝑓𝑓𝑘𝑘(𝑥̃𝑥) ≺𝐿𝐿𝐿𝐿 𝑓𝑓𝑘𝑘(𝑥̅𝑥),   𝑘𝑘 ∈ 𝐾𝐾. 
By the definition of the relation ≺𝐿𝐿𝐿𝐿, it follows that, for any 𝑘𝑘 ∈ 𝐾𝐾, 
 (𝑓𝑓𝑘𝑘𝐿𝐿(𝑥̃𝑥) < 𝑓𝑓𝑘𝑘𝐿𝐿(𝑥𝑥)  ∧  𝑓𝑓𝑘𝑘𝑈𝑈(𝑥̃𝑥) ≦ 𝑓𝑓𝑘𝑘𝑈𝑈(𝑥̅𝑥))  or  (𝑓𝑓𝑘𝑘𝐿𝐿(𝑥̃𝑥) ≦ 𝑓𝑓𝑘𝑘𝐿𝐿(𝑥̅𝑥) ∧
                         𝑓𝑓𝑘𝑘𝑈𝑈(𝑥̃𝑥) < 𝑓𝑓𝑘𝑘𝑈𝑈(𝑥̅𝑥)) or  (𝑓𝑓𝑘𝑘𝐿𝐿(𝑥̃𝑥) < 𝑓𝑓𝑘𝑘𝐿𝐿(𝑥̅𝑥)  ∧  𝑓𝑓𝑘𝑘𝑈𝑈(𝑥̃𝑥) < 𝑓𝑓𝑘𝑘𝑈𝑈(𝑥̅𝑥)). 



 Weighting method for convex vector interval-valued optimization problems  159 
 

Since 𝜆𝜆 = �𝜆𝜆
𝐿𝐿

,𝜆𝜆
𝑈𝑈
� ≥ 0 with �𝜆𝜆𝑘𝑘0

𝐿𝐿
, 𝜆𝜆𝑘𝑘0

𝑈𝑈
� > 0 for some 𝑘𝑘0 ∈ 𝐾𝐾, the system of 

inequalities (3) implies that the inequality 
∑ 𝜆𝜆𝑘𝑘𝐿𝐿𝑓𝑓𝑘𝑘𝐿𝐿(𝑥𝑥�)𝑟𝑟
𝑘𝑘=1 + ∑ 𝜆𝜆𝑘𝑘𝑈𝑈𝑓𝑓𝑘𝑘𝑈𝑈(𝑥𝑥�)𝑟𝑟

𝑘𝑘=1 < ∑ 𝜆𝜆𝑘𝑘𝐿𝐿𝑓𝑓𝑘𝑘𝐿𝐿(𝑥̅𝑥)𝑟𝑟
𝑘𝑘=1 + ∑ 𝜆𝜆𝑘𝑘𝑈𝑈𝑓𝑓𝑘𝑘𝑈𝑈(𝑥̅𝑥)𝑟𝑟

𝑘𝑘=1   
holds. Thus, by Definition 3.3, this is a contradiction to the assumption that 𝑥𝑥 is an 
optimal solution of the weighting optimization problem (WOP𝜆𝜆). Hence, the proof 
of this theorem is completed.    

Theorem 3.2. Let 𝑥𝑥 ∈ 𝐶𝐶 be an optimal solution of the weighting optimization 
problem (𝑊𝑊𝑊𝑊𝑊𝑊𝜆𝜆). If 𝜆𝜆 = �𝜆𝜆

𝐿𝐿
,𝜆𝜆

𝑈𝑈
� ≥ 0 with 𝜆𝜆

𝐿𝐿
≥ 0 and 𝜆𝜆

𝑈𝑈
≥ 0, then 𝑥𝑥 is a type-I 

Pareto solution of the considered vector optimization problem (IVP) with multiple 
interval-valued objective function. 

Proof. Let 𝑥𝑥 ∈ 𝐶𝐶 be an optimal solution of the weighting optimization problem 
(𝑊𝑊𝑊𝑊𝑊𝑊𝜆𝜆). We proceed by contradiction. Suppose, contrary to the result, that 𝑥𝑥 is not 
a type-I Pareto solution of (IVP). Hence, by Definition 3.2, there exists other 
feasible solution 𝑥̃𝑥 such that 
 𝑓𝑓(𝑥̃𝑥) ≺

𝐿𝐿𝐿𝐿
𝑓𝑓(𝑥𝑥). (4) 

By the definition of the relation ≺𝐿𝐿𝐿𝐿, it follows that, 
 (𝑓𝑓𝐿𝐿(𝑥̃𝑥) < 𝑓𝑓𝐿𝐿(𝑥𝑥)  ∧  𝑓𝑓𝑈𝑈(𝑥̃𝑥) ≦ 𝑓𝑓𝑈𝑈(𝑥𝑥))  or (𝑓𝑓𝐿𝐿(𝑥̃𝑥) ≦ 𝑓𝑓𝐿𝐿(𝑥𝑥) ∧   (5) 

 𝑓𝑓𝑈𝑈(𝑥̃𝑥) < 𝑓𝑓𝑈𝑈(𝑥𝑥)) or  (𝑓𝑓𝐿𝐿(𝑥̃𝑥) < 𝑓𝑓𝐿𝐿(𝑥𝑥)  ∧  𝑓𝑓𝑈𝑈(𝑥̃𝑥) < 𝑓𝑓𝑈𝑈(𝑥𝑥)). 
Since 𝜆𝜆 = �𝜆𝜆

𝐿𝐿
,𝜆𝜆

𝑈𝑈
� ≥ 0 with with 𝜆𝜆

𝐿𝐿
≥ 0 and 𝜆𝜆

U
≥ 0, the system of inequalities 

(5) implies that the inequality 
∑ 𝜆𝜆𝑘𝑘𝐿𝐿𝑓𝑓𝑘𝑘𝐿𝐿(𝑥𝑥�)𝑟𝑟
𝑘𝑘=1 + ∑ 𝜆𝜆𝑘𝑘𝑈𝑈𝑓𝑓𝑘𝑘𝑈𝑈(𝑥𝑥�)𝑟𝑟

𝑘𝑘=1 < ∑ 𝜆𝜆𝑘𝑘𝐿𝐿𝑓𝑓𝑘𝑘𝐿𝐿(𝑥̅𝑥)𝑟𝑟
𝑘𝑘=1 + ∑ 𝜆𝜆𝑘𝑘𝑈𝑈𝑓𝑓𝑘𝑘𝑈𝑈(𝑥̅𝑥)𝑟𝑟

𝑘𝑘=1   
holds, which contradicts the assumption that 𝑥𝑥 is an optimal solution of (WOP𝜆𝜆). 
Hence, the proof of this theorem is completed.    

Now, under convexity hypotheses, we prove the converse results to those 
ones established in Theorems 

Theorem 3.3. Let the objective functions 𝑓𝑓𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾, be convex on 𝐶𝐶. If 𝑥𝑥 ∈ 𝐶𝐶 is a 
type-I Pareto solution of the vector optimization problem (IVP) with multiple 
interval-valued objective function, then there exists 𝜆𝜆 = �𝜆𝜆

𝐿𝐿
,𝜆𝜆

𝑈𝑈
� ≥ 0, where 𝜆𝜆

𝐿𝐿
=

�𝜆𝜆1
𝐿𝐿

, . . . , 𝜆𝜆𝑟𝑟
𝐿𝐿
� and 𝜆𝜆

𝑈𝑈
= �𝜆𝜆1

𝑈𝑈
, . . . , 𝜆𝜆𝑟𝑟

𝑈𝑈
�, such that 𝑥𝑥 is an optimal solution of the 

weighting optimization problem (𝑊𝑊𝑊𝑊𝑊𝑊𝜆𝜆). 
Proof. Let 𝑥𝑥 ∈ 𝐷𝐷 be a type-I Pareto solution of the vector optimization problem 
(IVP) with multiple interval-valued objective function. Hence, by Definition 3.2, 
there does not exist other feasible solution 𝑥𝑥 such that 

𝑓𝑓(𝑥𝑥) ≺𝑳𝑳𝑳𝑳 𝑓𝑓(𝑥𝑥). 
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Then, by the definition of the relation ≺𝐿𝐿𝐿𝐿, it follows that there does not exist a 
feasible point 𝑥𝑥 such that 
 (𝑓𝑓𝐿𝐿(𝑥𝑥) < 𝑓𝑓𝐿𝐿(𝑥𝑥)  ∧  𝑓𝑓𝑈𝑈(x) ≦ 𝑓𝑓𝑈𝑈(𝑥𝑥))  or (𝑓𝑓𝐿𝐿(x) ≦ 𝑓𝑓𝐿𝐿(𝑥𝑥) ∧   (6) 

 𝑓𝑓𝑈𝑈(𝑥𝑥) < 𝑓𝑓𝑈𝑈(𝑥𝑥)) or  (𝑓𝑓𝐿𝐿(x) < 𝑓𝑓𝐿𝐿(𝑥𝑥)  ∧  𝑓𝑓𝑈𝑈(x) < 𝑓𝑓𝑈𝑈(𝑥𝑥)). 
Thus, the system of inequalities (6) and the feasibility of 𝑥𝑥 yield that there is no a 
feasible solution 𝑥𝑥 such that 

 𝑓𝑓𝐿𝐿(𝑥𝑥) − 𝑓𝑓𝐿𝐿(𝑥𝑥) < 0,
 𝑓𝑓𝑈𝑈(𝑥𝑥) − 𝑓𝑓𝑈𝑈(𝑥𝑥) ≦ 0   

  or     
𝑓𝑓𝑈𝑈(𝑥𝑥) − 𝑓𝑓𝑈𝑈(𝑥𝑥) < 0,
𝑓𝑓𝐿𝐿(𝑥𝑥) − 𝑓𝑓𝐿𝐿(𝑥𝑥) ≦ 0.

 (7) 

By assumption, the objective functions fk,𝑘𝑘 ∈ 𝐾𝐾, are convex interval-
valued functions on 𝐶𝐶. Then, by Proposition 2.1, it follows that the functions 𝑓𝑓𝐿𝐿 
and 𝑓𝑓𝑈𝑈 are convex on 𝐶𝐶 (in the classical sense). Since the system of inequalities (7) 
has no a solution 𝑥𝑥 ∈ 𝐶𝐶, by the theorem of the alternative (Theorem 2.1), there exist 
𝜆𝜆
𝐿𝐿
∈ 𝑅𝑅𝑟𝑟 and 𝜆𝜆

𝑈𝑈
∈ 𝑅𝑅𝑟𝑟 with �𝜆𝜆

𝐿𝐿
,𝜆𝜆

𝑈𝑈
� ≥ 0 such that, for all 𝑥𝑥 ∈ 𝐶𝐶, the inequality 

∑ 𝜆𝜆𝑘𝑘𝐿𝐿�𝑓𝑓𝑘𝑘𝐿𝐿(𝑥𝑥) − 𝑓𝑓𝑘𝑘𝐿𝐿(𝑥̅𝑥)�𝑟𝑟
𝑘𝑘=1 + ∑ 𝜆𝜆𝑘𝑘𝑈𝑈 �𝑓𝑓𝑘𝑘𝑈𝑈(𝑥𝑥) − 𝑓𝑓𝑘𝑘𝑈𝑈(𝑥̅𝑥)�𝑟𝑟

𝑘𝑘=1 ≧ 0  

holds. This means that there exist 𝜆𝜆 = �𝜆𝜆
𝐿𝐿

, 𝜆𝜆
𝑈𝑈
� ≥ 0 such that the inequality 

∑ 𝜆𝜆𝑘𝑘𝐿𝐿𝑓𝑓𝑘𝑘𝐿𝐿(𝑥𝑥)𝑟𝑟
𝑘𝑘=1 + ∑ 𝜆𝜆𝑘𝑘𝑈𝑈𝑓𝑓𝑘𝑘𝑈𝑈(𝑥𝑥)𝑟𝑟

𝑘𝑘=1 ≧ ∑ 𝜆𝜆𝑘𝑘𝐿𝐿𝑓𝑓𝑘𝑘𝐿𝐿(𝑥̅𝑥)𝑟𝑟
𝑘𝑘=1 + ∑ 𝜆𝜆𝑘𝑘𝑈𝑈𝑓𝑓𝑘𝑘𝑈𝑈(𝑥̅𝑥)𝑟𝑟

𝑘𝑘=1   
holds for all 𝑥𝑥 ∈ 𝐶𝐶. This means, by Definition 3.3, that 𝑥𝑥 is an optimal solution of 
(WOPλ). This completes the proof of this theorem.  

Theorem 3.4. Let the objective functions 𝑓𝑓𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾, be convex on 𝐶𝐶. If 𝑥𝑥 ∈ 𝐶𝐶 is a 
weakly type-I Pareto solution of the vector optimization problem (IVP) with 
multiple interval-valued objective function, then there exists 𝜆𝜆 = �𝜆𝜆

𝐿𝐿
,𝜆𝜆

𝑈𝑈
� ≥ 0 with 

�𝜆𝜆𝑘𝑘
𝐿𝐿

, 𝜆𝜆𝑘𝑘
𝑈𝑈
� ≥ 0 for each 𝑘𝑘 ∈ 𝐾𝐾, where 𝜆𝜆

𝐿𝐿
= �𝜆𝜆1

𝐿𝐿
, . . . , 𝜆𝜆𝑟𝑟

𝐿𝐿
� and 𝜆𝜆

𝑈𝑈
= �𝜆𝜆1

𝑈𝑈
, . . . , 𝜆𝜆𝑟𝑟

𝑈𝑈
�, 

such that 𝑥𝑥 is an optimal solution of the weighting optimization problem (𝑊𝑊𝑊𝑊𝑊𝑊𝜆𝜆). 
Proof. Let 𝑥𝑥 ∈ 𝐷𝐷 be a weakly type-I Pareto solution of (IVP). Hence, by Definition 
3.1, there does not exist other feasible solution 𝑥𝑥 such that 

𝑓𝑓𝑘𝑘(𝑥𝑥) ≺𝑳𝑳𝑳𝑳 𝑓𝑓𝑘𝑘(𝑥𝑥),   ∀𝑘𝑘 ∈ 𝐾𝐾. 
Then, by the definition of the relation ≺𝐿𝐿𝐿𝐿, it follows that there does not exist a 
feasible point 𝑥𝑥 such that, for any 𝑘𝑘 ∈ 𝐾𝐾, 
 (𝑓𝑓𝑘𝑘𝐿𝐿(𝑥𝑥) < 𝑓𝑓𝑘𝑘𝐿𝐿(𝑥𝑥)  ∧  𝑓𝑓𝑘𝑘𝑈𝑈(x) ≦ 𝑓𝑓𝑘𝑘𝑈𝑈(𝑥𝑥))  or (𝑓𝑓𝑘𝑘𝐿𝐿(x) ≦ 𝑓𝑓𝑘𝑘𝐿𝐿(𝑥𝑥) ∧   (8) 

 𝑓𝑓𝑘𝑘𝑈𝑈(𝑥𝑥) < 𝑓𝑓𝑘𝑘𝑈𝑈(𝑥𝑥)) or  (𝑓𝑓𝑘𝑘𝐿𝐿(x) < 𝑓𝑓𝑘𝑘𝐿𝐿(𝑥𝑥)  ∧  𝑓𝑓𝑘𝑘𝑈𝑈(x) < 𝑓𝑓𝑘𝑘𝑈𝑈(𝑥𝑥)). 
Thus, the system of inequalities (8) and the feasibility of 𝑥𝑥 yield that there is no a 
feasible solution 𝑥𝑥 such that, for any 𝑘𝑘 ∈ 𝐾𝐾, 

 
𝑓𝑓𝑘𝑘𝐿𝐿(𝑥𝑥) − 𝑓𝑓𝑘𝑘𝐿𝐿(𝑥𝑥) < 0,

 𝑓𝑓𝑘𝑘𝑈𝑈(𝑥𝑥) − 𝑓𝑓𝑘𝑘𝑈𝑈(𝑥𝑥) ≦ 0   
  or     

𝑓𝑓𝑘𝑘𝑈𝑈(𝑥𝑥) − 𝑓𝑓𝑘𝑘𝑈𝑈(𝑥𝑥) < 0,
𝑓𝑓𝑘𝑘𝐿𝐿(𝑥𝑥) − 𝑓𝑓𝑘𝑘𝐿𝐿(𝑥𝑥) ≦ 0.

 (9) 
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By assumption, the objective functions fk,𝑘𝑘 ∈ 𝐾𝐾, are convex on 𝐶𝐶. Then, by 
Proposition 2.1, it follows that the functions 𝑓𝑓𝐿𝐿 and 𝑓𝑓𝑈𝑈 are convex on 𝐶𝐶 (in the 
classical sense). Since the system of inequalities (9) has no a solution 𝑥𝑥 ∈ 𝐶𝐶, by the 
theorem of the alternative (Theorem 2.1), for each 𝑘𝑘 ∈ 𝐾𝐾, there exists 𝜆𝜆𝑘𝑘 =
�𝜆𝜆𝑘𝑘

𝐿𝐿
, 𝜆𝜆𝑘𝑘

𝑈𝑈
� ≥ 0 such that the inequality 

∑ 𝜆̅𝜆𝑘𝑘𝐿𝐿𝑓𝑓𝑘𝑘𝐿𝐿(𝑥𝑥)𝑟𝑟
𝑘𝑘=1 + ∑ 𝜆̅𝜆𝑘𝑘𝑈𝑈𝑓𝑓𝑘𝑘𝑈𝑈(𝑥𝑥)𝑟𝑟

𝑘𝑘=1 ≧ ∑ 𝜆̅𝜆𝑘𝑘𝐿𝐿𝑓𝑓𝑘𝑘𝐿𝐿(𝑥̅𝑥)𝑟𝑟
𝑘𝑘=1 + ∑ 𝜆̅𝜆𝑘𝑘𝑈𝑈𝑓𝑓𝑘𝑘𝑈𝑈(𝑥̅𝑥)𝑟𝑟

𝑘𝑘=1   
holds for all 𝑥𝑥 ∈ 𝐶𝐶. This means, by Definition 3.3, that 𝑥𝑥 is an optimal solution of 
(WOPλ). This completes the proof of this theorem.  

In order to illustrate the results established in the paper, we consider an 
example of a convex vector optimization problem with multiple interval-valued 
objective function which we solve by using the weighting method. 
Example 3.1. Consider the following convex vector optimization problem with the 
multiple interval-valued objective function: 

𝑓𝑓(𝑥𝑥) = ��
1
2

, 1� (𝑥𝑥21 + 𝑥𝑥22) + �
1
2

, 1� (𝑥𝑥1 − 𝑥𝑥2) + �
1
2

, 1�  ,

     [1,1](𝑥𝑥21 + 𝑥𝑥22) + �−1,−
1
2
� (𝑥𝑥1 − 𝑥𝑥2) + �−1,−

1
2
�� → 𝑚𝑚𝑚𝑚𝑚𝑚    (𝐼𝐼𝐼𝐼𝐼𝐼1)

𝐶𝐶 = {(𝑥𝑥1, 𝑥𝑥2) ∈ 𝑅𝑅2: 0 ≦ 𝑥𝑥1 ≦ 1  ∧    0 ≦ 𝑥𝑥2 ≦ 1}.

 

Note that 𝑥𝑥 = (0,0) is a feasible solution of the considered vector optimization 
problem (IVP1) with multiple interval-valued objective function. Note that all 
objective functions of the considered interval-valued multiobjective programming 
problem (IVP1) are convex. By Definition 3.2, it follows that 𝑥𝑥 is a type-I Pareto 
solution of (IVP1). It can be shown that the Karush-Kuhn-Tucker necessary 
optimality conditions (see, for example, [8], [15] ) are satisfied at 𝑥𝑥 = (0,0) with 
Lagrange multipliers associated to the objective functions which are as follows 
𝜆̅𝜆1𝐿𝐿 = 1

4
, 𝜆̅𝜆1𝑈𝑈 = 1

4
, 𝜆̅𝜆2𝐿𝐿 = 1

4
, 𝜆̅𝜆2𝑈𝑈 = 1

4
. Then, we use the weighting method for solving 

(IVP1). Therefore, we construct its associated weighting optimization problem 
(WOP1𝜆𝜆) as follows 

7
8

(x21 + x22) → 𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥 ∈ 𝐶𝐶,

      (WOP1𝜆𝜆) 

where 𝜆𝜆 = �𝜆𝜆
𝐿𝐿

,𝜆𝜆
𝑈𝑈
� ≥ 0, 𝜆𝜆

𝐿𝐿
= �𝜆̅𝜆1𝐿𝐿 , 𝜆̅𝜆2𝐿𝐿� = �1

4
, 1
4
� > 0, 𝜆𝜆

𝑈𝑈
= �𝜆̅𝜆1𝑈𝑈, 𝜆̅𝜆2𝑈𝑈� = �1

4
, 1
4
� >

0. Since all hypotheses of Theorem 3.3 are satisfied, therefore, 𝑥𝑥 = (0,0) is a 
minimizer of (WOP1𝜆𝜆). Conversely, let 𝑥𝑥 = (0,0) be a minimizer of the weighting 
optimization problem (WOP1𝜆𝜆). Moreover, all functions constituting (IVP1) are 

convex. Since 𝜆𝜆
𝐿𝐿

= �𝜆̅𝜆1𝐿𝐿 , 𝜆̅𝜆2𝐿𝐿� = �1
4

, 1
4
� > 0, 𝜆𝜆

𝑈𝑈
= �𝜆̅𝜆1𝑈𝑈, 𝜆̅𝜆2𝑈𝑈� = �1

4
, 1
4
� > 0, by 

Theorem 3.2, it follows that 𝑥𝑥 = (0,0) is also a type-I Pareto solution of (IVP1). 
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