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Lucrarea studiază efectele medierii directe şi ciclice asupra unui sistem
neliniar de ecuaţii diferenţiale de tip Van der Pohl, care modelează reacţii
chimice ı̂n procesele metabolice ale celulei. Se pune ı̂n evidenţă natura ci-
clică a sistemelor original şi mediat. Rezultatele obţinute sunt ilustrate prin
simulări realizate cu ajutorul pachetului software Maple 9.5.

The paper studies the effects of cyclic averaging on the Van der Pohl
SODE which models complex chemical reactions in metabolic cell processes.
The obtained results are illustrated by Maple 9.5 computer simulations and
the cyclic nature of both the original and mediated SODE is emphasized.
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Introduction

A classical example of oscillating systems of differential equations with
applications in biology is the Van der Pohl dynamical system ([1], [2], [3])

{
ẋ = y
ẏ = a(1− x2)y − x,

(1)

where a is a small real parameter. This represents a simplified model for
chemical reactions in metabolic systems. In the following we shall describe
the SODE averaging method and apply it to our system in both direct and
trigonometric form. We shall conclude that the resulting systems lead to
identical paths, and emphasize the presence of the limit cycles for both the
original and the averaged systems.
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1. The averaging method - preliminaries

We consider in general a SODE of the form ([4], [5])

Ẋ(t) = A(t) ·X(t) + ε · f(X(t), t), (2)

where X(t) ∈ Mn×1( R), with the initial condition X(0) = X0, time t ∈ R ,
A(t) ∈ Mn×n( R), f(X(t), t) is an n× 1 matrix of smooth functions of t and
X, and ε is a sufficiently small parameter, ε << 1.

We say that the equation (2) is perturbed by the parameter ε. Then for
ε = 0 one obtains the non-perturbed linear SODE

Ẋ(t) = A(t) ·X(t) (3)

whose general solution has the form

X(t) = φ(t) ·X0, (4)

where via a coordinate-change adjustment one can assume that the matrix
function φ(t) ∈ Mn×n( R) satisfies φ(0) = In. In order to find the solution
of the SODE (2), we apply the Lagrange process, by replacing X0 with Y (t),
which will provide the solutions

X(t) = φ(t) · Y (t). (5)

Replacing (5) in (2), it follows that

φ̇(t) · Y (t) + φ(t) · Ẏ (t) = A(t) · φ(t) · Y (t) + ε · f(φ(t) · Y (t), t). (6)

Since the matrix φ(t) satisfies the SODE (3), we have φ̇(t) = A(t) ·φ(t), which
leads to

φ̇(t) · Y (t) = A(t) · φ(t) · Y (t). (7)

From the relations (6) and (7), we obtain the nonlinear SODE

φ(t) · Ẏ (t) = ε · f(φ(t) · Y (t), t),

which rewrites, taking into account the invertibility of the matrix φ(t),

Ẏ (t) = ε · φ−1(t) · f(φ(t) · Y (t), t). (8)

By denoting
F (Y (t), t) = φ−1(t) · f(φ(t) · Y (t), t),
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the system (8) becomes

Ẏ (t) = ε · F (Y, t), (9)

where, as initially stated, ε << 1. This yields that Ẏ (t) is very small (since
it depends on the parameter ε), which implies a very small variation of Y (t)
in a certain amount of time T - which can be taken as the period, in the case
of periodic motions. Then, assuming Y constant for t ∈ [0, T ] and averaging
over the interval [0, T ], from (9), we infer the autonomous SODE

˙̃Y = ε · F̃ (Ỹ ), (10)

where F̃ (Ỹ ) = 1
T
·

∫ T

0
F (Ỹ , t)dt. This new system is autonomous, and is

generally much easier to integrate than (9).

If one determines the solution Y (t) of the SODE (9), then the solution
X(t) results from (5). Still, by using the presented above averaging method,
we get the averaged solution Ỹ (t) of (10).

In this case, a natural question is to what extent the solution Ỹ (t) of the
system (10) approximates the solution Y (t) of the system (9).

The following theorem answers this question.

Theorem. ([4], [5]) If the function F (Y, t) and the functional determinant
DF
DY

are defined, continuous and bounded by a constant M > 0, which is

independent of the parameter ε << 1 in the domain D(Y, Ỹ ) and if F (X, t)
is periodic in t and has the period T , independent of the parameter ε and if
Ỹ takes its values in a subset which is included in the domain D(Y, Ỹ ), then
the solution Y (t) of the SODE (9) and the solution Ỹ of the averaged system
(10) satisfy the relation:

||Y (t)− Ỹ (t)|| = O(ε),

on the time-scale 1
ε
, for t → ±∞.

The method described above is called the averaging method (the
general case) or the method of direct averaging. In the case of two-dimensional
SODE which exhibits periodicity in the non-perturbed case, we often use a
simpler alias of this method, which implies using polar coordinates, called
trigonometric averaging.
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2. The method of direct averaging (I)

In our case, the SODE (1) has the form (2) with A(t) =

(
0 1
−1 0

)

and f((X(t), t) =

(
0
(1− x2)y

)
. Since the complex spectrum of A is {±i},

the non-perturbed system Ẋ = AX exhibits periodicity. Our SODE can be
re-written in the form (2)

(
ẋ
ẏ

)
=

(
0 1
−1 0

)

︸ ︷︷ ︸
A(t)

·
(

x
y

)
+ a ·

(
0
(1− x2)y

)

︸ ︷︷ ︸
f(X(t),t)

, a = ε << 1. (11)

The non-perturbed linear SODE Ẋ(t) = A(t) ·X(t) has the general solution

X(t) =

(
x0 cos t + y0 sin t
−x0 sin t + y0 cos t

)
=

(
cos t sin t
− sin t cos t

)

︸ ︷︷ ︸
φ(t)

(
x0

y0

)

︸ ︷︷ ︸
X0

. (12)

where φ satisfies φ(0) = In. Following the Lagrange process, the particular
solution of (1) should have the form

X(t) =

(
cos t sin t
− sin t cos t

)

︸ ︷︷ ︸
φ(t)

·
(

y1(t)
y2(t)

)

︸ ︷︷ ︸
Y (t)

=

(
y1(t) cos t + y2(t) sin t
−y1(t) sin t + y2(t) cos t

)
, (13)

which should satisfy (1), whence we get

Ẏ (t) = a · F (Y (t), t), (14)

with F (Y (t), t) given by

(
cos t − sin t
sin t cos t

)

︸ ︷︷ ︸
φ−1(t)

·
(

0
(−y1 sin t + y2 cos t) · [1− (y1 cos t + y2 sin t)2]

)

︸ ︷︷ ︸
f(φ(t)·Y (t),t)

or, in detail, {
ẏ1 = a(y1 sin2 t− y2 cos t sin t)h(t)
ẏ2 = a(−y1 sin t cos t + y2 cos2 t)h(t),

(15)
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where h(t) = (1 − y2
1 cos2 t − 2y1y2 sin t cos t − y2 sin2 t). Averaging over the

interval 0 ≤ t ≤ 2π, and considering ỹ1,2 as being t-independent in the
integration process, we infer

{
˙̃y1 = 1

2π
· a ∫ 2π

0 (ỹ1 sin2 t− ỹ2 cos t sin t)θ(t)dt
˙̃y2 = 1

2π
· a ∫ 2π

0 (−ỹ1 sin t cos t + ỹ2 cos2 t)θ(t)dt,
(16)

where we denoted θ(t) = (1 − ỹ2
1 cos2 t − 2ỹ1ỹ2 sin t cos t − ỹ2 sin2 t), i.e., we

get the autonomous averaged system





˙̃y1 = a
2

(
ỹ1 − ỹ3

1

4
− ỹ1ỹ2

2

4

)

˙̃y2 = a
2

(
ỹ2 − ỹ3

2

4
− ỹ2ỹ2

1

4

)
.

(17)

By division, this yields

˙̃y1 =
ỹ1

ỹ2

˙̃y2 ⇒ ỹ2 = ỹ1 · k, k ∈ R , (18)

and from the initial conditions ỹ1(0) = x0 and ỹ2(0) = y0, we infer k = y0

x0
.

Then the first equation in (17) leads to the ODE

dỹ1

ỹ1[ỹ2
1(1 + k2)− 4]

= −a

8
dt, (19)

which integrates to

ln
ỹ2

1(1 + k2)− 4

ỹ2
1

= −at + C, C ∈ R . (20)

For t = 0, we have k = y0

x0
, which leads to C = ln |(x2

0 + y2
0 − 4)x−2

0 |. Then
from (18) and (20) we infer





ỹ1 = 2x0√
x2
0+y2

0−e−at(x2
0+y2

0−4)

ỹ2 = 2y0√
x2
0+y2

0−e−at(x2
0+y2

0−4)
,

(21)

which via (13) leads to the final solution





x̃ = 2√
x2
0+y2

0−e−at(x2
0+y2

0−4)
(x0 cos t + y0 sin t)

ỹ = 2√
x2
0+y2

0−e−at(x2
0+y2

0−4)
(−x0 sin t + y0 cos t).

(22)
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We notice that for arbitrary (x0, y0), the solution is a spyral which approaches
the circle Γ centered at the origin of radius r = 2, which represents in this
case a limit cycle. In other words, we have

x̃2 + ỹ2 =
4(x2

0 + y2
0)

x2
0 + y2

0 − e−at(x2
0 + y2

0 − 4)
(23)

which for t → ∞ approaches Γ : x̃2 + ỹ2 = 4. If the initial position (x0, y0)
is a point on Γ, then the solution of the Cauchy problem is the limit circle
itself, parametrized as:





x̃ = 2√
4−e−at(4−4)

(x0 cos t + y0 sin t) = x0 cos t + y0 sin t

ỹ = 2√
4−e−at(4−4)

(−x0 sin t + y0 cos t) = −x0 sin t + y0 cos t.
(24)

3. Trigonometric averaging (II)

We consider the SODE (1) with the initial conditions x(0) = x0, y(0) = y0,
where t is the time variable and a << 1 is a small parameter. The non-
perturbed system (3) obtained for a = 0 has the general solution (12) while
the initial conditions (x0, y0) are written in polar coordinates

{
x0 = r0 cos ϕ0

y0 = −r0 sin ϕ0,
(25)

where r0 is the amplitude of the movement and ϕ0 is the phase shift. Then
the solution of the homogeneous SODE (3) rewrites as

{
x0 = r0 cos(t + ϕ0)
y0 = −r0 sin(t + ϕ0).

(26)

For a 6= 0, the Lagrange method aims to detect a solution of the form
{

x = r(t) cos(t + ϕ(t))
y = −r(t) sin(t + ϕ(t));

(27)

which, plugged in the perturbed SODE (1) leads to





ṙ cos(t + ϕ)− r(1 + ϕ̇) sin(t + ϕ) = −r sin(t + ϕ)

−ṙ sin(t + ϕ)− r(1 + ϕ̇) cos(t + ϕ) = −r cos(t + ϕ)−
−ar sin(t + ϕ) · [1− r2 cos2(t + ϕ)],
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which rewrites explicitely as




ṙ = ar sin2(t + ϕ) · [1− r2 cos2(t + ϕ)]

ϕ̇ = a sin(t + ϕ) cos(t + ϕ) · [1− r2 cos2(t + ϕ)].
(28)

Averaging on the interval 0 ≤ t ≤ 2π and taking into account the relations




∫ 2π
0 sin2(t + ϕ)dt = π,

∫ 2π
0 sin2(t + ϕ) cos2(t + ϕ)dt = π

4∫ 2π
0 sin(t + ϕ) cos(t + ϕ)dt =

∫ 2π
0 sin(t + ϕ) cos3(t + ϕ)dt = 0,

(29)

the system (28) yields by integration the averaged SODE




˙̃r = 1
2π

∫ 2π
0 ṙdt

˙̃ϕ = 1
2π

∫ 2π
0 ϕ̇dt.

⇔




˙̃r = a
2
r̃ − a

8
r̃3

˙̃ϕ = 0.
⇔

{
ln r̃2−4

r̃2 = −at + K
ϕ̃(t) = C.

(30)

Using ϕ̃(0) = ϕ0 and r̃(0) = r0, we obtain K = ln
r2
0−4

r2
0

and C = ϕ0, and then

the solution rewrites




ln r̃2−4
r2 = −at + ln

r2
0−4

r2
0

ϕ̃(t) = ϕ0,
⇒





r̃(t) = 2r0√
r2
0−e−at(r2

0−4)

ϕ̃(t) = ϕ0.
(31)

Replacing in the relations (27) the averaged polar solutions (31), we get the
general solution of the trigonometric averaged system (30) attached to (1):





x̃ = 2r0√
r2
0−e−at(r2

0−4)
cos(t + ϕ0)

ỹ = − 2r0√
r2
0−e−at(r2

0−4)
sin(t + ϕ0).

(32)

Remark. Using the relations

{
x0 = r0 cos ϕ0

y0 = −r0 sin ϕ0
and





x2
0 + y2

0 = r2
0

ϕ0 = − arctan y0

x0
,

we can easily infer that the solutions (22) and (32) for the SODEs obtained by
the two averaging methods (the direct and the trigonometric one) coincide.

4. Maple 9.5 numerical simulations

The following Maple 9.5 code draws the trajectories of both the initial
and averaged SODES.
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Maple 9.5 - Plotter of SODE and mediated counterpart

> restart: with(DEtools): with(plots): with(plottools):
x01:=0.25: y01:=0.5: x02:=0.25: y02:=1: x03:=0.25: y03:=1.5:
arn:=arrows=none: arm:=arrows=MEDIUM:
colb:=t=111...150,linecolor=[blue,blue,blue]:
colbr:=t=-17..17,linecolor=brown:

pl:=proc(a,arr,tim,col) DEplot({D(x)(t)=y(t),
D(y)(t)=a*(1-x(t)*x(t))*y(t)-x(t)},
[x(t),y(t)],tim,number=2,[[x(0)=x01,y(0)=y01],
[x(0)=x02,y(0)=y02], [x(0)=x03,y(0)=y03]],
stepsize=.1,col, arr, method=rkf45,scaling=constrained);

end proc:
> display(pl(0,arn,colb), pl(0,arm,colbr));
> display(pl(.25,arn,colb), pl(.25,arn,colbr));
> display(pl(1.5,arn,colb), pl(1.5,arm,colbr));
> ang:=proc(x,y) local angle: # Angle procedure
if x=0 and y=0 then angle:=0: print(Origin); end if:
if x<>0 then if x>=0 then
if y>=0 then angle:=arctan(y/x): elif y<0

then angle:=2*Pi+arctan(y/x): end if:
else angle:=Pi+arctan(y/x): end if:

elif y>0 then angle:=Pi/2: else angle:=3*Pi/2: end if: end proc:
> a:=.25: tt:=t=-17..13: # Mediated paths
pla:=proc(x,y,tim) local r,p,xt,yt: r:=sqrt(x*x+y*y): p:=-ang(x,y):
xt:=2*r*cos(t+p)/sqrt(r*r-(r*r-4)*exp(-a*t)):
yt:=-2*r*sin(t+p)/sqrt(r*r-(r*r-4)*exp(-a*t)):
plot([xt,yt,tim],-.5..2,0..2,scaling=constrained,

color=blue,thickness=3): end proc:
> plas:=proc(xs,ys) global d,p,tt: d:=pla(xs,ys,tt):
p:=point([xs,ys],symbol=circle,color=brown): end proc:

> plas(x01,y01): d1:=d: p1:=p: plas(x02,y02): d2:=d: p2:=p:
plas(x03,y03): d3:=d: p3:=p:

> dlimm:=plot([2*cos(t),2*sin(t),t=0..2*Pi],-3..3,-3..3,
scaling=constrained,color=black,thickness=3): # Med.lim.cycle

display({dlimm,d1,d2,d3,p1,p2,p3});
> a:=1.5: tt:=t=-17..2.5:
pla(x01,y01,tt): d1:=d: pla(x02,y02,tt): d2:=d:
pla(x03,y03,tt): d3:=d: display({dlimm,d1,d2,d3,p1,p2,p3});

> both:=proc(aa,tt) local dd: # Both
dd:=DEplot({D(x)(t)=y(t),D(y)(t)=aa*(1-x(t)*x(t))*y(t)-x(t)},
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[x(t),y(t)],tt,number=2,arn,thickness=2, [[x(0)=x01,y(0)=y01],
[x(0)=x02,y(0)=y02],[x(0)=x03,y(0)=y03]],stepsize=.02,
linecolor=[red,red,red],method=rkf45,scaling=constrained):
display({dd,pla(x01,y01,tt),pla(x02,y02,tt),pla(x03,y03,tt),
p1,p2,p3}); end proc:

both(0.25,t=-.4...1.5); both(1.5,t=-.4...1.5);

Below are displayed the trajectories of the field X which provides the
initial SODE: in nonperturbed form (the case a = 0, see Fig. 1) and in
perturbed form - for a ∈ {0.25; 1.5} for t ∈ [−17, 17] (Figs. 2,3).

Fig.1. a = 0 Fig.2. a = 0.25 Fig.3. a = 1.5

We notice that the nonperturbed (the case a = 0) initial and mediated
SODEs coincide. For the perturbed system, the mediated SODE trajecto-
ries approaching the limit cycle can be clearly observed for a ∈ {0.25; 1.5}
(Figs. 4,5).

Fig.4. a = 0.25 Fig.5. a = 1.5

As well, a simultaneous plot of a sheaf of Cauchy problem solutions for the
non-averaged and averaged systems in the cases a ∈ {0.25; 1.5}, are provided
in Figs 6,7.
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Fig.6. a = 0.25 Fig.7. a = 1.5

It can be seen that the deviation of the averaged (thick) trajectories (32)
towards the initial (thin) trajectories of (2) are quite rough, with the degree
of accuracy foreseen by the Theorem in Section 1. As well, it is essential
to note that for increasing values of the parameter a, the mediated SODE
trajectories diverge faster from the initial ones (see Fig. 7).

Conclusions

We have shown that both the direct and the trigonometric averaging
applied to the SODE (1) leads to the same solutions. The initial SODE
and the averaged systems (10) and (28) exhibit limit cycles (a circle for the
averaged case). The dynamics of the systems involved is illustrated by Maple
plots, which describe the behavior of solutions around the limit cycles, for
different values of the parameter a = ε << 1.
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