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∗-FRAMES IN HILBERT C∗-MODULES

A. Alijani1, M. A. Dehghan2

Certain facts about frames are extended for the new frames in Hilbert C∗-

modules where they are called ∗-frames. It is shown that ∗-frames for Hilbert C∗-modules
share several useful properties with frames for Hilbert C∗-modules. The paper studies

also the operators associated to a given ∗-frame, ∗-frames for Hilbert C∗-modules over

commutative unitary C∗-algebras, and the construction of new ∗-frames. The relations
between frames and ∗-frames in Hilbert C∗-modules are considered. Moreover, ∗-frames

in Hilbert C∗-modules over different C∗-algebras are compared, and some characteriza-

tions of ∗-frames in a Hilbert C∗-module with respect to another Hilbert C∗-module are
presented. Finally, dual ∗-frames are characterized.
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Introduction and Basic Definitions

Frames were first introduced in 1952 by Duffin and Schaeffer [7]. They abstracted the
fundamental notion of Gabor [11] to study signal processing. It seems, however, that Duffin-
Schaeffer ideas did not attract much interest outside the realm of nonharmonic Fourier series
until the paper by Daubechies, Grassman and Mayer [6] was published in 1986.

The theory of frames was rapidly generalized and various generalizations consisting
of different vectors in Hilbert spaces were developed [15, 20, 21]. In 2000, Frank-Larson
[9] introduced the notion of frames in Hilbert C∗-modules as a generalization of frames in
Hilbert spaces and Jing [12] continued to consider them. It is well known that Hilbert C∗-
modules are generalizations of Hilbert spaces by allowing the inner product to take values
in a C∗-algebra rather than in the field of complex numbers. Also, the theory of Hilbert
C∗-modules has applications in the study of locally compact quantum groups, complete
maps between C∗-algebras, non-commutative geometry, and KK-theory. There are some
differences between Hilbert C∗-modules and Hilbert spaces. For example, we know that the
Riesz representation theorem for continuous linear functionals on Hilbert spaces dose not
extend to Hilbert C∗-modules [22] and there exist closed subspaces in Hilbert C∗-modules
that have no orthogonal complement [17]. Moreover, we know that every bounded operator
on a Hilbert space has an adjoint, while there are bounded operators on Hilbert C∗-modules
which do not have any [18]. It is expected that problems about frames and ∗-frames for
Hilbert C∗-modules to be more complicated than those for Hilbert spaces. This makes the
study of the frames for Hilbert C∗-modules important and interesting. The main purposes
of the present paper are to introduce the ∗-frames, to consider the relation between frames
and ∗-frames in a given Hilbert C∗-module, to study the properties of them in Hilbert
C∗-modules with different C∗-algebras and to characterize the dual ∗-frames.
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The paper is organized as follows. We continue this introductory section with a
review of the basic definitions and notations of C∗-algebras, Hilbert C∗-modules, frames in
Hilbert spaces and frames in Hilbert C∗-modules. Section 1 introduces ∗-frames and presents
nontrivial examples of such ∗-frames. In what follows, we consider corresponding operators
associated with a given ∗-frame, the relation between frames in Hilbert C∗-modules, and
∗-frames in Hilbert C∗-modules over commutative C∗-algebras. Following that, the new
∗-frames are constructed by a given ∗-frame in Section 2. One of the main results of the
paper is included in Section 3, where ∗-frames in modular spaces with different C∗-algebras
are studied and the final section states the dual ∗-frames as another new result.

Let us recall some definitions and basic properties of C∗-algebras and Hilbert C∗-
modules that we need in the rest of the parer. We also introduce frames in Hilbert space
and Hilbert C∗-modules. For more details, we refer the interested reader to [5, 8, 9, 16, 19,
22].

Let A be a unitary C∗-algebra and a ∈ A. The nonzero element a is called strictly
nonzero if zero doesn’t belong to σ(a), and a is said to be strictly positive if it is strictly
nonzero and positive. If a is positive, then there is a positive element b in A such that b2 = a.
Moreover, b commutes with all the elements that commutes with a [3, Theorem 6.2.10]. We

use the notation
√
a or a

1
2 for b. The absolute value of a is defined by |a| := (a∗a)

1
2 . The

relation ” ≤ ” given by

a ≤ b if and only if b− a is positive

defines a partial ordering on A. Some elementary facts about ”≤” are given in the following
statements for a, b, c ∈ A.

(1) a ≤ ‖a‖.
(2) 0 ≤ a ≤ b implies ‖a‖ ≤ ‖b‖, ab ≥ 0, a+ b ≥ 0, and at ≤ bt for t ∈ (0, 1).
(3) If a ≤ b, then cac∗ ≤ cbc∗. Moreover, if c commutes with a and b, then ca ≤ cb for

c ≥ 0.
(4) If a and b are positive invertible elements and a ≤ b, then 0 ≤ b−1 ≤ a−1.

In this paper, the notation a < b denotes a ≤ b and a 6= b. Now, let B be an another unitary
C∗-algebra. The tensor product of the algebras A and B is the completion of A⊗alg B with
the spatial norm and the following operation and involution,

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′ , (a⊗ b)∗ = a∗ ⊗ b∗ ∀a⊗ b, a′ ⊗ b′ ∈ A⊗ B.
Hence A⊗B is a C∗-algebra such that ‖a⊗ b‖ = ‖a‖.‖b‖ for a⊗ b ∈ A⊗ B. If 0 ≤ a1 ≤ a2
in A and 0 ≤ b1 ≤ b2 in B, then 0 ≤ a1 ⊗ b1 ≤ a2 ⊗ b2, see [16, Lemma 4.3].

The following proposition is a useful tool and will be used frequently in the rest of
the paper.

Proposition 0.1. [8, 13, 19] If ϕ : A −→ B is a ∗-homomorphism between C∗-algebras,
then ϕ has the following properties.

(1) ϕ(1) = 1.
(2) If a is invertible, then so is ϕ(a), and ϕ(a−1) = ϕ(a)−1.
(3) The ∗-homomorphism ϕ is positive and increasing, that is, ϕ(A+) ⊆ B+, and if a1 ≤

a2, then ϕ(a1) ≤ ϕ(a2).
(4) For a ∈ A, we have σ(ϕ(a)) ⊆ σ(a), and if ϕ is injective, then σ(ϕ(a)) = σ(a).
(5) If a is strictly positive, then so is ϕ(a).

Now, we are going to introduce some of the elementary definitions and the basic
properties of Hilbert C∗-modules. Let A be a C∗-algebra. A pre-Hilbert C∗-module is
a linear space and algebraic (left) A-module H together with an A-inner product 〈·, ·〉 :
H×H −→ A that possesses the following properties,

(i) 〈f, f〉 ≥ 0, for any f ∈ H.



∗-Frames in Hilbert C∗-modules 91

(ii) 〈f, f〉 = 0 if and only if f = 0.
(iii) 〈f, g〉 = 〈g, f〉∗, for any f, g ∈ H.
(iv) 〈λf, h〉 = λ〈f, h〉, for any λ ∈ C and f, h ∈ H.
(v) 〈af + bg, h〉 = a〈f, h〉+ b〈g, h〉, for any a, b ∈ A and f, g, h ∈ H.

The action of A on H is C- and A-linear i.e., λ(af) = (λa)f = a(λf) for every λ ∈ C, a ∈ A

and f ∈ H. The map f 7−→ ‖f‖ = ‖〈f, f〉‖
1
2
A, defines a norm on H. If a pre-Hilbert

C∗-module H is complete with respect to this norm, then (H,A, 〈·, ·〉) is called a Hilbert
C∗-module over A or, simply, a Hilbert A-module. We write H or (H, 〈·, ·〉) instead of
(H,A, 〈·, ·〉) when the A-valued inner product and the C∗-algebra are well known. The
Hilbert A-module H is called to be a full Hilbert A-module when the linear span of {〈f, g〉 :
f, g ∈ H} is dense in A.

The C∗-algebra A itself can be recognized as a Hilbert A-module with the inner
product 〈a, b〉 = ab∗. The standard Hilbert A-module l2(A) is defined by

l2(A) := {{aj}j∈N ⊆ A :
∑
j∈N

aja
∗
j converges in A},

with A-inner product 〈{aj}j∈N, {bj}j∈N〉 =
∑
j∈N ajb

∗
j . Let (H, 〈·, ·〉1) and (K, 〈·, ·〉2) be two

Hilbert A-modules. A map T : H → K (not necessarily linear or bounded) is said to be
adjointable (with respect to the A-inner products (H, 〈·, ·〉1) and (K, 〈·, ·〉2)), if there exists
a map T ∗ : K → H satisfying 〈Tf, g〉2 = 〈f, T ∗g〉1 whenever f ∈ H, and g ∈ K. The map
T ∗ is called the adjoint of T [22]. The class of all adjointable maps from H into K is denoted
by B∗(H,K) and the class of all bounded A-module maps from H into K is denoted by
Bb(H,K). It is known that B∗(H,K) ⊆ Bb(H,K). We denote B∗(H,H) and Bb(H,H) with
B∗(H) and Bb(H), respectively. (We avoid the classical notation B(H,K) which is used for
different notions by operator theorists and frame theorists.)
Let (H,A, 〈·, ·〉A) and (K,B, 〈, 〉B) be two Hilbert C∗-modules. Similarly to the tensor prod-
uct of C∗-algebras, the tensor product of Hilbert C∗-modules H and K, that is denoted by
H⊗K, is the completion of H⊗alg K with the following operations,

〈f1 ⊗ g1, f2 ⊗ g2〉 = 〈f1, f2〉A ⊗ 〈g1, g2〉B , (a⊗ b)(f ⊗ g) = af ⊗ bg,

for f, f1, f2 ∈ H, g, g1, g2 ∈ K and a ⊗ b ∈ A ⊗ B. If U and V are two module maps on H
and K, respectively, then the tensor product U ⊗ V is defined by U ⊗ V (f ⊗ g) = Uf ⊗ V g
for f ⊗ g ∈ H ⊗K.

Throughout the paper, we need the following lemma that it will illustrate lower and
upper bounds of operators corresponding to a given operator T with respect to A-valued
inner products.

Lemma 0.1. (see [2].) Let H and K be two Hilbert A-modules and T ∈ B∗(H,K). Then
(i) If T is injective and T has closed range, then the adjointable map T ∗T is invertible

and ‖(T ∗T )−1‖−1 ≤ T ∗T ≤ ‖T‖2.
(ii) If T is surjective, then the adjointable map TT ∗ is invertible and ‖(TT ∗)−1‖−1

≤ TT ∗ ≤ ‖T‖2.

The remainder of the section introduces frames in two spaces, Hilbert spaces and
Hilbert C∗-modules. A frame for the Hilbert space H is a countable family {fj}j∈J in H
satisfying

A‖f‖2 ≤
∑
j∈J
|〈f, fj〉|2 ≤ B‖f‖2,

for all f ∈ H and some positive constants A and B independent of f .
The notion of frames for Hilbert spaces had been extended by Frank-Larson [10] to

the notion of frames in a Hilbert A-modules as a countable family {fj}j∈J in a Hilbert
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A-module H satisfying

A〈f, f〉 ≤
∑
j∈J
〈f, fj〉〈fj , f〉 ≤ B〈f, f〉

for all f ∈ H and some positive constants A and B independent of f .
In the rest of this paper, we fix the notations A and J for a given unitary C∗-algebra

and a finite or countably infinite index set, respectively. Also, the Hilbert A-module H is
assumed to be finitely or countably generated.

1. ∗-Frames and Their Corresponding Operators

In several spaces, frames can be a good candidate instead of basis. In this section, we
extend the concept of Hilbert space frames to ∗-frames in Hilbert C∗-modules with A-valued
bounds. In Subsection 2.1, ∗-frames and frames are compared through some examples. Sim-
ilar to the Hilbert frames case, operators corresponding to a ∗-frame play an important
role in its characterization and investigation, and are given in Subsection 2.2. We illustrate
∗-frames in Hilbert C∗-modules over commutative C∗-algebras in the last subsection.

1.1.∗-Frames

∗-Frames are C∗-algebra version of frames. Actually, we need strictly positive ele-
ments of C∗-algebra A instead of positive real numbers.

Definition 1.1. A sequence {fj ∈ H : j ∈ J} is a ∗-frame for H if there exist two strictly

nonzero elements A and B in A such that

(1.1) A〈f, f〉A∗ ≤
∑
j∈J
〈f, fj〉〈fj , f〉 ≤ B〈f, f〉B∗, ∀f ∈ H.

The elements A and B are called the lower and upper ∗-frame bounds, respectively.

Since A is not a partial ordered set, lower and upper ∗-frame bounds may not have order

and the optimal bounds may not exist.

If λ = A = B, then the ∗-frame {fj}j∈J is said to be a λ-tight ∗-frame. In the special
case A = B = 1A, it is called a Parseval ∗-frame or a normalized ∗-frame. Precisely, in a
Hilbert A-module, the set of all normalized ∗-frames and the set of all normalized frames
are the same but this is not true in the tight case. (See Example 1.1 and Example 1.2.)

If {fj}j∈J possesses an upper ∗-frame bound, but not necessarily a lower ∗-frame
bound, we called it a ∗-Bessel sequence for H with ∗-Bessel bound B.

If the sum in the inequality (1.1) converges in norm, then the (normalized, tight)
∗-frames and ∗-Bessel sequences are called to be standard (normalized, tight) ∗-frames and
standard ∗-Bessel sequences. In what follows, by (normalized, tight) ∗-frames and ∗-Bessel
sequences, we mean standards ones.

We mentioned that the set of all of frames in Hilbert A-modules can be considered
as a subset of ∗-frames. To illustrate this, let {fj}j∈J be a frame for Hilbert A-module H
with frame real bounds A and B. Note that for f ∈ H,

(
√
A)1A〈f, f〉(

√
A)1A ≤

∑
j∈J
〈f, fj〉〈fj , f〉 ≤ (

√
B)1A〈f, f〉(

√
B)1A.

Therefore, every frame for a Hilbert A-module H with real bounds A and B is a ∗-frame for
H with A-valued ∗-frame bounds (

√
A)1A and (

√
B)1A. In the following examples, we are
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going to illustrate some ∗-frames with A-valued bounds. We will show that in some cases,
A-valued bounds are preferred to real-valued bounds.

Example 1.1. Let l∞ be the unitary C∗-algebra of all bounded complex-valued sequences

with the following operations.

uv = {uivi}i∈N, u∗ = {ui}i∈N, ‖u‖ = sup
i∈N
|ui|, ∀u = {ui}i∈N, v = {vi}i∈N ∈ l∞.

Let c0 be the set of all sequences converging to zero. Then c0 is a Hilbert l∞-module with

l∞-valued inner product 〈u, v〉 = {uivi}i∈N, for u, v ∈ c0. Let J = N and define fj ∈ c0 by

fj = {f ji }i∈N such that f ji =


1
2 + 1

i i = j

0 i 6= j
, ∀j ∈ N.

We observe that∑
j∈J
〈u, fj〉〈fj , u〉 = {|ui|2(

1

2
+

1

i
)2}i∈N = {1

2
+

1

i
}i∈N〈{ui}i∈N, {ui}i∈N〉{

1

2
+

1

i
}i∈N,

for u = {uj}j∈N ∈ c0. The sequence {fj}j∈N is a { 12 + 1
i }i∈N-tight ∗-frame but it is not a

tight frame for Hilbert l∞-module c0. Note that, {fj}j∈N is a frame for Hilbert l∞-module

c0 with optimal lower and upper real bounds 1
2 and 3

2 , respectively.

Example 1.2. Let A be the C∗-algebra of the set of all diagonal matrices in M2×2(C)

and suppose A is the Hilbert A−module over itself. (Here, diagonal matrix means a 2 × 2

matrix (aij) such that a11 = a, a22 = b and a12 = a21 = 0, for a, b ∈ C.) Consider,

Ai =

 1
2i 0

0 1
3i

 , for all i ∈ N. For A =

 a 0

0 b

 ∈ A, we have

∑
i∈N
〈A,Ai〉〈Ai, A〉 =

 |a|2
3 0

0 |b|2
8

 =

 1√
3

0

0 1√
8

 〈A,A〉
 1√

3
0

0 1√
8

 .
Then {Ai}i∈N is a

 1√
3

0

0 1√
8

-tight ∗-frame for Hilbert A-module A but this is a frame

for A with optimal lower and upper real bounds 1√
8

and 1√
3

, respectively.

In the special case, that A is the Hilbert C∗-module over itself, the interesting results
are revealed. For example, ∗-frames in A are sequences in l2(A) but some elements of l2(A)
are not ∗-frames for A. The following proposition and example consider these facts.

Proposition 1.1. Let A be a Hilbert C∗-module over itself. Then the set of all ∗-frames

for A is a subset of l2(A).
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Proof. Assume that {fj}j∈J is a ∗-frame for A. For f ∈ A, we have∑
j∈J
〈f, fj〉〈fj , f〉 = f(

∑
j∈J
|fj |2)f∗.

Then
∑
j∈J |fj |2 converges and it implies that {fj}j∈J ∈ l2(A). �

Example 1.3. Let c0 be the Hilbert l∞-module the same as in Example 1.1. For j ∈ J ,

consider fj = {f ji }i∈N such that f ji =


1
i i = j,

0 i 6= j.
. If u = {ui}i∈N is a sequence in c0,

then we have∑
j∈J
〈u, fj〉〈fj , u〉 = { |ui|

2

i
}i∈N = {1

i
}i∈N〈{ui}i∈N, {ui}i∈N〉{

1

i
}i∈N.

Since { 1i }i∈N is not strictly nonzero in l∞, the sequence {fj}j∈J has not lower bound con-

dition in l∞ and then it is not a ∗-frame for c0 but {fj}j∈J ∈ l2(l∞). On the other hand,

{fj}j∈J is a ∗-Bessel sequence with ∗-Bessel bound {1, ε+ 1
i }i≥2 in l∞ for ε > 0 and so this

is a Bessel sequence for c0 with optimal bound 1. It is interesting that {1, ε + 1
i }i≥2 < 1,

means that l∞−valued ∗-Bessel bound is less than real-valued Bessel bound.

1.2. Operators Corresponding to ∗-Frames

Similar to the ordinary frames, we introduce the pre-∗-frame operator and ∗-frame oper-
ator for ∗-frames and state some of the important properties of them as follows.

Theorem 1.1. Let {fj ∈ H : j ∈ J} be a ∗-frame for H with lower and upper ∗-frame bounds

A and B, respectively. The ∗-frame transform or pre-∗-frame operator T : H −→ l2(A)

defined by T (f) = {〈f, fj〉}j∈J is an injective and closed range adjointable A-module map

and ‖T‖ ≤ ‖B‖. The adjoint operator T ∗ is surjective and it is given by T ∗(ej) = fj for

j ∈ J where {ej : j ∈ J} is the standard basis for l2(A).

Proof. By the definition of norm in l2(A),

‖Tf‖2 = ‖
∑
j∈J
〈f, fj〉〈fj , f〉‖ ≤ ‖B‖2‖〈f, f〉‖, ∀f ∈ H.

This inequality implies that T is well defined and ‖T‖ ≤ ‖B‖. Clearly, T is a linear A-

module map. We now show that RT is closed. Let {Tfn}n∈N be a sequence in RT such that

Tfn −→ g as n→∞. By (1.1), we have ‖A〈fn − fm, fn − fm〉A∗‖ ≤ ‖T (fn − fm)‖2. Since

{Tfn}n∈N is a cauchy sequence in l2(A), ‖A〈fn−fm, fn−fm〉A∗‖ −→ 0 as n,m→∞. Note

that for n,m ∈ N,

‖〈fn − fm, fn − fm〉‖ ≤ ‖A−1‖2‖A〈fn − fm, fn − fm〉A∗‖.
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Therefore the sequence {fn}n∈N is a cauchy sequence in H and hence there exists f ∈ H

such that fn −→ f as n→∞. Again by the definition of ∗-frames, we obtain ‖T (fn−f)‖2 ≤

‖B‖2‖〈fn−f, fn−f〉‖. Thus ‖Tfn−Tf‖ −→ 0 as n→∞ implies that Tf = g. It concludes

that RT is closed. In order to show that T is injective, suppose that f ∈ H and Tf = 0. By

(1.1),

‖〈f, f〉‖ = ‖A−1A〈f, f〉A∗(A∗)−1‖ ≤ ‖A−1‖2‖Tf‖2.

Thus f = 0 and T is injective. To determine the adjoint operator T ∗, consider the equalities

〈Tf, ek〉 = 〈{〈f, fj〉}j∈J , ek〉 = 〈f, fk〉, for all k ∈ J and f ∈ H. Now, given f ∈ H and

{aj}j∈J ∈ l2(A),

〈{aj}j∈J , Tf〉 =
∑
j∈J

aj〈f, fj〉∗ = 〈
∑
j∈J

ajfj , f〉.

This implies that
∑
j∈J ajfj converges inH and T ∗({aj}j∈J) =

∑
j∈J ajfj for every {aj}j∈J ∈

l2(A). By injectivity of T ,the operator T ∗ has closed range and H = RT∗ , which completes

the proof. �

Now, we are ready to define ∗-frame operator and compare its properties with ordinary
case.

Definition 1.2. Let {fj ∈ H : j ∈ J} be a ∗-frame for H with pre-∗-frame operator T and

lower and upper ∗-frame bounds A and B, respectively. The ∗-frame operator S : H −→ H

is defined by Sf = T ∗Tf =
∑
j∈J〈f, fj〉fj .

The ∗-frame operator has some similar properties with frame operator in ordinary
frames, but the other properties are different. The main cause of differences is A-valued
bounds. However, the reconstruction formula is given from the ∗-frame operator.

Theorem 1.2. Let {fj ∈ H : j ∈ J} be a ∗-frame for H with ∗-frame operator S and

lower and upper ∗-frame bounds A and B, respectively. Then S is positive, invertible and

adjointable. Also, the following inequality ‖A−1‖−2 ≤ ‖S‖ ≤ ‖B‖2 holds, and the recon-

struction formula f =
∑
j∈J〈f, S−1fj〉fj holds ∀f ∈ H. Moreover, {fj}j∈J is a set of

module generators of H.

Proof. By Lemma 0.1 and Theorem 1.1, S is invertible. Clearly, S is positive adjointable

map. The definition of ∗-frames concludes that 〈f, f〉 ≤ A−1〈Sf, f〉(A∗)−1 and 〈Sf, f〉 ≤

B〈f, f〉B∗, and then

‖A−1‖−2‖〈f, f〉‖ ≤ ‖〈Sf, f〉‖ ≤ ‖B‖2‖〈f, f〉‖, ∀f ∈ H.
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If we take supremum on all f ∈ H, where ‖f‖ ≤ 1, then ‖A−1‖−2 ≤ ‖S‖ ≤ ‖B‖2.

The reconstruction formula concludes by the invertibility of S similar to ordinary frames. �

Finding optimal bounds plays an important role in the study of frames and ∗-frames.
As we saw in the previous examples, A-valued bounds may be more suitable than real valued
bounds for a ∗-frame. In addition, there are tight ∗-frames that are not tight frames. At
the end of the subsection, we introduce lower and upper real bounds for every ∗-frame and
we see that ∗-frames can be studied as frames with different bounds.

Corollary 1.1. Let {fj ∈ H : j ∈ J} be a ∗-frame for H with pre-∗-frame operator T and

lower and upper ∗-frame bounds A and B, respectively. Then {fj}j∈J is a frame for H with

lower and upper frame bounds ‖(T ∗T )−1‖−1 and ‖T‖2, respectively.

Proof. By Theorem 1.1, T is injective and has closed range and by Lemma 0.1,

‖(T ∗T )−1‖−1〈f, f〉 ≤
∑
j∈J
〈f, fj〉〈fj , f〉 ≤ ‖T‖2〈f, f〉, ∀f ∈ H.

Then {fj}j∈J is a frame for H with lower and upper frame bounds ‖(T ∗T )−1‖−1 and ‖T‖2,

respectively. �

The given results in the next sections are valid for frames in Hilbert C∗-modules by
Theorem 1.1.
.
1.3. ∗-Frames on Commutative C∗-Algebras

In ordinary Hilbert spaces, their inner product has complex values and the set of com-
plex numbers is a commutative C∗-algebra. From this point of view, it seems that ∗-frames
in a Hilbert C∗-module over a unitary commutative C∗-algebra have properties closed to or-
dinary frames. Therefore, we are going to study the properties of ∗-frames in these Hilbert
A-modules. Throughout this section, let A be a unitary commutative C∗-algebra. The
∗-frames will appear in the following form.

The sequence {fj ∈ H : j ∈ J} is a ∗-frame for H if there exist two strictly positive
elements A and B in A such that,

A〈f, f〉 ≤
∑
j∈J
〈f, fj〉〈fj , f〉 ≤ B〈f, f〉, ∀f ∈ H.

Then
√
A and

√
B are lower and upper ∗-frame bounds. If there exists an element f ∈ H

such that 〈f, f〉 is invertible in A, then the above inequality implies that A ≤ B.
Let {fj ∈ H : j ∈ J} be a ∗-frame for H with ∗-frame operator S and lower and

upper ∗-frame bounds A and B, respectively. Then {fj}j∈J is uniformly norm bounded by√
‖B‖, {〈fj , fj〉}j∈J is a bounded sequence of positive elements in A with A-valued bound

B, and A ≤ S ≤ B. Moreover, if {fj}j∈J is a
√
A-tight ∗-frame with ∗-frame operator S,

then S = AI and its canonical dual ∗-frame is {A−1fj}j∈J . One of the interesting results
about ∗-frames for Hilbert A-module A is as follows.

Proposition 1.2. Let A be a Hilbert C∗-module over itself. Every ∗-frame {fj}j∈J is a

tight ∗-frame for A.
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Proof. Suppose that {fj}j∈J is a ∗-frame for A with ∗-frame operator S. By the invertibility

of S, we have

1A = SS−11A =
∑
j∈J
〈S−11A, fj〉fj = S−11A

∑
j∈J
|fj |2.

This equality shows that
∑
j∈J |fj |2 is an invertible element in A and then

∑
j∈J |fj |2 is a

strictly positive element in A. So the middle sum in (1.1) is∑
j∈J
〈f, fj〉〈fj , f〉 =

∑
j∈J
|fj |2〈f, f〉, ∀f ∈ A.

Then {fj}j∈J is a
√∑

j∈J |fj |2−tight ∗-frame and this completes the proof. �

Proposition 1.3. Let {fj ∈ H : j ∈ J} be a ∗-frame for H with ∗-frame operator S

and lower and upper ∗-frame bounds
√
A and

√
B, respectively. Suppose that α is a strictly

positive element in A. Then the sequence {αfj}j∈J is a ∗-frame for H with ∗-frame operator

|α|2S and lower and upper ∗-frame bounds α
√
A and α

√
B, respectively.

Proof. For f ∈ H, we have
∑
j∈J〈f, αfj〉〈αfj , f〉 = |α|2

∑
j∈J〈f, fj〉〈fj , f〉. Therefore {αfj}j∈J

is a ∗-frame for H with lower and upper ∗-frame bounds α
√
A and α

√
B, respectively. If Sα

is ∗-frame operator {αfj}j∈J , then

Sαf =
∑
j∈J
〈f, αfj〉αfj = |α|2

∑
j∈J
〈f, fj〉fj = |α|2Sf, ∀f ∈ H.

�

2. Construction of Some New ∗-Frames

In this Section, we are going to construct new ∗-frames for Hilbert A-module A and
for new Hilbert C∗-modules by given ∗-frames. We will also study a family of full Hilbert
C∗-modules by using new ∗-frames. The next theorem presents a collection of ∗-frames for
Hilbert A-module A associated to a given ∗-frame.

Theorem 2.1. Let {fj ∈ H : j ∈ J} be a ∗-frame for H with ∗-frame operator S and lower

and upper ∗-frame bounds A and B in the center of A. Suppose that f is an element in H

such that 〈f, f〉 is an invertible element in the center of A. Then the sequence {〈fj , f〉}j∈J

is a ∗-frame for Hilbert A-module A with lower and upper ∗-frame bounds A
√
〈f, f〉 and

B
√
〈f, f〉 , respectively. And its ∗-frame operator is Sfa = a〈Sf, f〉 for a ∈ A.

Proof. For a ∈ A, by the definition of ∗-frame {fj}j∈J

(2.1) aA〈f, f〉A∗a∗ ≤ a(
∑
j∈J
〈f, fj〉〈fj , f〉)a∗ ≤ aB〈f, f〉B∗a∗,
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and we have

(2.2)
∑
j∈J
〈a, 〈fj , f〉〉〈〈fj , f〉, a〉 = a(

∑
j∈J
〈f, fj〉〈fj , f〉)a∗.

Since A, B and
√
〈f, f〉 are in the center of A ([3, Theorem 6.2.10]) and by (2.1) and (2.2),

the following inequalities are valid for all a ∈ A

A
√
〈f, f〉〈a, a〉(A

√
〈f, f〉)∗ ≤

∑
j∈J
〈a, 〈fj , f〉〉〈〈fj , f〉, a〉

≤ B
√
〈f, f〉〈a, a〉(B

√
〈f, f〉)∗.

The last inequality shows that {〈fj , f〉}j∈J is a ∗-frame for Hilbert A-module A with lower

and upper ∗-frame bounds A
√
〈f, f〉 and B

√
〈f, f〉 , respectively. To see Sf , let a ∈ A.

Then Sfa =
∑
j∈J〈a, 〈fj , f〉〉〈fj , f〉 = a〈Sf, f〉. �

Remark 2.1. When A is commutative, {〈fj , f〉}j∈J is a ∗-frame if {fj}j∈J is a ∗-frame

and 〈f, f〉 is invertible.

In this suitable situation, we find a necessary condition that H is a full Hilbert C∗-
module.

Corollary 2.1. Let f ∈ H and 〈f, f〉 be invertible in the center of A. Then H is a full

Hilbert A-module.

Proof. Applying Theorem 3.2 of [9], then there is a frame {fj}j∈J for H. It follows that

span{〈fj , f〉}j∈J = A by Theorem 2.1. �

The following example shows that the above necessary condition is not sufficient, i.e.,
there is a full Hilbert A-module H such that 〈f, f〉 is not invertible for all f ∈ H.

Example 2.1. Assume that c0 is the same Hilbert l∞-module as in Example 1.1 and let

{ej}j∈N be the standard basis for c0. The Hilbert l∞-module c0 is full because of

span{〈ej , ej〉}j∈N = span{ej}j∈N = l∞

. Assume that a = {aj}j∈N ∈ c0, then 〈a, a〉 ∈ c0 and limj→∞ |aj |2 = 0. If 〈a, a〉−1 exists,

then limj→∞
1
|aj |2 = ∞ and 〈a, a〉−1 doesn’t belong to l∞. It shows that c0 has not any

element {aj}j∈N such that {〈aj , aj〉}j∈N is invertible.

In [14], the authors have shown that a tensor product of frames in Hilbert spaces is
also a frame. We study the subject in Hilbert C∗-modules.
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Theorem 2.2. Let H and K be two Hilbert C∗-modules over unitary C∗-algebras A and B,

respectively. Let F = {fj ∈ H : j ∈ J} and G = {gj ∈ K : j ∈ J} be two ∗-frames for H and

K with ∗-frame operators SF and SG and ∗-frame bounds (A,B) and (C,D), respectively.

Then {fi ⊗ gj}i,j∈J is a ∗-frame for Hilbert A ⊗ B−module H ⊗ K with ∗-frame operator

SF ⊗ SG and lower and upper ∗-frame bounds A⊗ C and B ⊗D, respectively.

Proof. By the definition of ∗-frames {fj}j∈J and {gj}j∈J , one obtains that

A〈f, f〉A∗ ⊗ C〈g, g〉C∗ ≤
∑
i∈J
〈f, fi〉〈fi, f〉 ⊗

∑
j∈J
〈g, gj〉〈gj , g〉

≤ B〈f, f〉B∗ ⊗D〈g, g〉D∗, ∀f ∈ H,∀g ∈ K.
(2.3)

Then for f ⊗ g ∈ H ⊗K, one gets

(A⊗ C)〈f ⊗ g, f ⊗ g〉(A⊗ C)∗ ≤
∑
i∈J

∑
j∈J
〈f ⊗ g, fi ⊗ gj〉〈fi ⊗ gj , f ⊗ g〉

≤ (B ⊗D)〈f ⊗ g, f ⊗ g〉(B ⊗D)∗.

(2.4)

Moreover, the inequality (2.4) is satisfied for every finite sum of elements in H ⊗alg K and

then (2.4) is satisfied for all z ∈ H⊗K. It shows that {fi ⊗ gj}i,j∈J is a ∗-frame for H⊗K

with lower and upper ∗-frame bounds A⊗C and B⊗D, respectively. Now, to see the form

of the ∗-frame operator for F ⊗ G, let SF⊗G be the ∗-frame operator F ⊗ G. We compute

SF⊗G(f ⊗ g) =
∑
i,j∈J
〈f ⊗ g, fi ⊗ gj〉fi ⊗ gj

=
∑
i∈J
〈f, fi〉fi ⊗

∑
j∈J
〈g, gj〉gj = (SF ⊗ SG)(f ⊗ g),

for f ⊗ g ∈ H ⊗K. So SF⊗G = SF ⊗ SG and this completes the proof of the theorem. �

Let θ ∈ B∗(H). We are going to give some necessary and sufficient conditions which
provided the ∗-frame-preserving property of operator θ. The following theorem generalizes
the results in [1] in the case of ∗-frames.

Theorem 2.3. Let {fj ∈ H : j ∈ J} be a ∗-frame for H with ∗-frame operator S and lower

and upper ∗-frame bounds A and B, respectively. Then θ ∈ B∗(H) is surjective if and only

if {θfj ∈ H : j ∈ J} is a ∗-frame for H. In this case, Sθ := θSθ∗, A‖(θθ∗)−1‖− 1
2 , and B‖θ‖

are ∗-frame operator and lower and upper ∗-frame bounds for {θfj}j∈J , respectively.

Proof. First, let θ be surjective. By the definition of ∗-frames, for all f ∈ H, we have

A〈θ∗f, θ∗f〉A∗ ≤
∑
j∈J
〈θ∗f, fj〉〈fj , θ∗f〉 ≤ B〈θ∗f, θ∗f〉B∗,
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and then

(2.5) A〈θθ∗f, f〉A∗ ≤
∑
j∈J
〈f, θfj〉〈θfj , f〉 ≤ B〈θθ∗f, f〉B∗.

Surjectivity of θ and Lemma 0.1 conclude that

‖(θθ∗)−1‖−1〈f, f〉 ≤ 〈θθ∗f, f〉 ≤ ‖θ‖2〈f, f〉, ∀f ∈ H.

Multiplying with A,A∗ and B,B∗ on left and right parts of the last inequality, respectively,

we obtain

A‖(θθ∗)−1‖−1〈f, f〉A∗ ≤ A〈θθ∗f, f〉A∗, and B〈θθ∗f, f〉B∗ ≤ B‖θ‖〈f, f〉B∗‖θ‖.

Using (2.5), it follows that

A‖(θθ∗)−1‖− 1
2 〈f, f〉(A‖(θθ∗)−1‖− 1

2 )∗ ≤
∑
j∈J
〈f, θfj〉〈θfj , f〉 ≤ B‖θ‖〈f, f〉(B‖θ‖)∗,

holds for every f ∈ H. Thus {θfj}j∈J is a ∗-frame for H. The proof of the rest of the

theorem is similar to the Hilbert space case [5, Proposition 5.3.1]. �

Let S be a positive and invertible operator in the C∗-algebra B∗(H). For t ∈ R, the
map f(λ) = λt is continuous on (0,∞). Since S is positive and invertible, σ(S) ⊆ (0,∞).
Using the Spectral Mapping theorem and the fact that f ∈ C(σ(S)), we have f(S) ∈ B∗(H).
Now, f(S) is denoted by St and we are ready to extend Theorem 3.1. [4] to the next corollary.

Corollary 2.2. Let {fj ∈ H : j ∈ J} be a ∗-frame for H with ∗-frame operator S and lower

and upper ∗-frame bounds A and B , respectively. For t ∈ R, the sequence {S t−1
2 fj}j∈J is a

∗-frame for H with lower and upper ∗-frame bounds A‖S1−t‖− 1
2 and B‖S t−1

2 ‖, respectively.

Moreover, St is its ∗-frame operator.

Proof. For the proof we use the functional calculus for the selfadjoint element S of the

C∗-algebra B∗(H) to write S = S(t−1)/2S(3−t)/2, and apply the previous theorem for θ =

S(t−1). �

3. ∗-Frames in Modular Spaces with Different C∗-Algebras

Studying frames in Hilbert C∗-modules with different inner products is interesting
and important. Frank-Larson [10] studied frames in Hilbert A-modules constructed by two
different A-valued inner products. However, we study ∗-frames in two Hilbert C∗-modules
with different C∗-algebras. Throughout this section, assume that A and B are two unitary
C∗-algebras and let (H,A, 〈·, ·〉A) and (H,B, 〈·, ·〉B) be two Hilbert C∗-modules.

First, we are going to modify the proof the result [10] to show that the theorem
remains valid under slightly weaker conditions.
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Proposition 3.1. Suppose that (H,A, 〈·, ·〉1) is a Hilbert A-module and let {fj ∈ H : j ∈ J}

be a ∗-frame for (H,A, 〈·, ·〉1) with ∗-frame operator S1. Then {fj}j∈J is a ∗-frame for

(H,A, 〈·, ·〉2), that has an equivalent norm to the given one, with ∗-frame operator S2 if and

only if there exists an injective and adjointable operator θ with closed range on H such that

〈f, g〉1 = 〈θf, θg〉2 for all f, g ∈ H. Furthermore, the given operator θ is self-adjoint with

respect to both inner products, and the equality 〈f, S−12 g〉2 = 〈f, S−11 g〉1 holds for all f, g ∈ H,

the ∗-frame operator S1 commutes with the operator S−12 , and the ∗-frame operators S1 and

S2 are self-adjoint with respect to both inner products.

Proof. Proof of the ’if’ part follows that [10]. For the converse, let θ ∈ B∗(H) be injective

with closed range on H such that

〈f, g〉1 = 〈θf, θg〉2, ∀f, g ∈ H.

The operator θ∗θ is invertible by Lemma 0.1 and then for f, h ∈ H, we obtain

(3.1) 〈f, (θ∗θ)−1h〉1 = 〈f, h〉2, ∀f, h ∈ H.

Now, we can give the result by Proposition 0.1, Lemma 0.1 and (3.1). �

Now, we consider ∗-frames in two Hilbert C∗-modules with different C∗-algebras and
the same vector spaces.

Theorem 3.1. Let (H,A, 〈·, ·〉A) and (H,B, 〈·, ·〉B) be two Hilbert C∗-modules and let ϕ :

A −→ B be a ∗-homomorphism and θ be a map on H such that 〈θf, θg〉B = ϕ(〈f, g〉A) for all

f, g ∈ H. Also, suppose that {fj ∈ H : j ∈ J} is a ∗-frame for (H,A, 〈·, ·〉A) with ∗-frame

operator SA and lower and upper ∗-frame bounds α1, α2, respectively. If θ is surjective,

then {θfj}j∈J is a ∗-frame for (H,B, 〈·, ·〉B) with ∗-frame operator SB and lower and upper

∗-frame bounds ϕ(α1), ϕ(α2), respectively, and

(3.2) 〈SBθf, θg〉B = ϕ(〈SAf, g〉A), ∀f ∈ H.

Moreover, the map θ is surjective if the following conditions are valid.

(1) ϕ is surjective;

(2) {θfj}j∈J is a ∗-frame for H; and

(3) θ(af) = ϕ(a)θf , for all a ∈ A, f ∈ H.
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Proof. Assume that θ is surjective. Using Proposition 0.1, we have that∑
j∈J
〈θf, θfj〉B〈θfj , θf〉B =

∑
j∈J

ϕ(〈f, fj〉A〈fj , f〉A)

≤ ϕ(α2〈f, f〉Aα∗2) = ϕ(α2)〈θf, θf〉Bϕ(α2)∗, ∀f ∈ H,

and ϕ(α2) is a strictly nonzero element of B. Then the sequence {θfj}j∈J has upper ∗-frame

bound ϕ(α2). Similarly, ϕ(α1) is a lower ∗-frame bound for {θfj}j∈J and then {θfj}j∈J is

a ∗-frame for (H,B, 〈·, ·〉B). The equation (3.2) follows from∑
j∈J
〈θf, θfj〉B〈θfj , θg〉B = ϕ(

∑
j∈J
〈f, fj〉A〈fj , g〉A), ∀f, g ∈ H.

For the rest of the proof, let ϕ be surjective and θ(af) = ϕ(a)θf , for all a ∈ A and f ∈ H. By

applying the reconstruction formula for ∗-frame {θfj}j∈J , we have g =
∑
j∈J〈g, S

−1
B θfj〉Bθfj

for g ∈ H. Since ϕ is surjective, ϕ(aj) = 〈g, S−1B θfj〉B for some aj ∈ A and for all j ∈ J .

Observe that g =
∑
j∈J ϕ(aj)θfj =

∑
j∈J θ(ajfj) = θ(

∑
j∈J ajfj). This shows that θ is

surjective and the proof is complete. �

Corollary 3.1. Let (H,A, 〈·, ·〉1) and (H,A, 〈·, ·〉2) be two Hilbert A-modules which have

equivalent norms and let ϕ : A −→ A be a ∗-homomorphism such that ϕ(〈f, g〉1) = 〈f, g〉2

for all f, g ∈ H. Then 〈f, g〉1 = 〈f, g〉2 for all f, g ∈ H. Therefore, if (H,A, 〈·, ·〉1) is full,

then ϕ is the identity map on A.

Proof. By [9], (H,A, 〈·, ·〉1) contains a ∗-frame with ∗-frame operator S1. In Theorem 3.1,

set θ = IH. Then {fj}j∈J is also a ∗-frame for (H,A, 〈·, ·〉2) with ∗-frame operator S2. By

Theorem 3.1 and Proposition 3.1, we conclude that 〈S2f, g〉2 = ϕ(〈S1f, g〉1) = 〈S1f, g〉2, for

all f, g ∈ H. Then S1 = S2 and the two A-valued inner products 〈·, ·〉1 and 〈·, ·〉2 are the

same by Proposition 3.1. Now, assume that (H,A, 〈·, ·〉1) is full. Thus span{〈f, g〉1 : f, g ∈

H} = A and by the properties of ϕ, ϕ is the identity. �

Corollary 3.2. Let A, B, H, {fj}j∈J and ϕ be as in Theorem 3.1. Also, let θ be a B-module

map on H such that ϕ(〈f, g〉A) = 〈θf, θg〉B . Then θ is surjective if and only if {θfj}j∈J is

a ∗-frame for (H,B, 〈·, ·〉B).

Proof. Proof of the ’if part’ is similar to the proof of Theorem 3.1. For the converse, since

θ is B-module map, g =
∑
j∈J〈g, S

−1
B θfj〉Bθfj = θ(

∑
j∈J〈g, S

−1
B θfj〉Bfj), for g ∈ H, and it

completes the proof. �
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We are ready to characterize the set of ∗-frames for (H,B, 〈·, ·〉B) with respect to
∗-frames in (H,A, 〈·, ·〉A). The following propositions illustrate this fact.

Proposition 3.2. Let A, B and H be the same in Theorem 3.1. If ϕ is a ∗-isomorphism

and θ is surjective map on H such that ϕ(〈f, g〉A) = 〈θf, θg〉B, then the set of all ∗-frames

for (H,B, 〈·, ·〉B) is precisely {θfj}j∈J where {fj}j∈J is a ∗-frame for (H,A, 〈·, ·〉A).

Proof. Theorem 3.1 concludes that the sequence {θfj}j∈J is a ∗-frame for (H,B , 〈·, ·〉B)

if {fj}j∈J is a ∗-frame for (H,A, 〈·, ·〉A). Now, assume that {gj}j∈J is a ∗-frame for

(H,B, 〈·, ·〉B) with lower and upper ∗-frame bounds β1 and β2. By the properties of θ,

and Proposition 0.1, there exist the sequence {fj}j∈J in H and two elements α1, α2 in A

such that gj = θfj for j ∈ J , ϕ(α1) = β1, and ϕ(α2) = β2. The elements α1 and α2 are

strictly nonzero by Proposition 0.1. Using the definition of the ∗-frame {gj}j∈J , we have

ϕ(
∑
j∈J
〈f, fj〉A〈fj , f〉A) =

∑
j∈J
〈θf, θfj〉B〈θfj , θf〉B

≤ β2〈θf, θf〉Bβ∗2 = ϕ(α2〈f, f〉Aα∗2), ∀f ∈ H.

We apply Proposition 0.1 again,
∑
j∈J〈f, fj〉A〈fj , f〉A ≤ α2〈f, f〉Aα∗2, for f ∈ H. Similarly,

α1 is a lower ∗-frame bound for {fj}j∈J . This shows that every ∗-frame in (H,B, 〈·, ·〉B) is

obtained by the action of θ on a ∗-frame in (H,A, 〈·, ·〉A). �

Also, we can characterize all ∗-frames in the Hilbert B-module B with respect to all
∗-frames in the Hilbert A-module A and obtain some relations between their operators.

Proposition 3.3. Let ϕ : A −→ B be a ∗-isomorphism. The set of all of ∗-frames for

the Hilbert B-module B is precisely {ϕ(aj)}j∈J , where {aj}j∈J is a ∗-frame for the Hilbert

A-module A. Moreover, if SA and SB are ∗-frame operators for {aj}j∈J and {ϕ(aj)}j∈J ,

respectively, then ϕoSA = SBoϕ.

Proof. For a sequence {aj}j∈J in A, we have

(3.3)
∑
j∈J
〈ϕ(a), ϕ(aj)〉B〈ϕ(aj), ϕ(a)〉B = ϕ(

∑
j∈J
〈a, aj〉A〈aj , a〉A), ∀a ∈ A.

Proposition 0.1 and the above equalities imply that {ϕ(aj)}j∈J is a ∗-frame for B if {aj}j∈J

is a ∗-frame for A. Now, suppose {bj}j∈J is a ∗-frame for B. Since ϕ is surjective, there

exists a sequence {aj}j∈J in A such that bj = ϕ(aj) for j ∈ J . Also, applying Proposition

0.1 and (3.3), we obtain that {aj}j∈J is a ∗-frame for A. For the rest of the proof, let SA
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and SB be ∗-frame operators for {aj}j∈J and {ϕ(aj)}j∈J , respectively. Then ϕSA(a) =

ϕ(
∑
j∈J aa

∗
jaj) = SBϕ(a), for all a ∈ A, and ϕoSA = SBoϕ. �

4. The dual ∗-frames

The dual frames play an important role to study of frames. In this section, we
introduce dual ∗-frames and extend the characterization of dual frames [5] to dual ∗-frames
associated to a given ∗-frame.

Definition 4.1. Let {fj ∈ H : j ∈ J} be a ∗-frame for H with ∗-frame operator S. If there

exists a ∗-frame {gj ∈ H : j ∈ J} for H such that f =
∑
j∈J〈f, gj〉fj for f ∈ H, then the

∗-frame {gj}j∈J is called the dual ∗-frame of {fj}j∈J . The spacial dual ∗-frame {S−1fj}j∈J

is said to be the canonical dual ∗-frame of {fj}j∈J .

It is well known, that if T and V are pre-∗-frame operators of two ∗-Bessel sequences
{fj}j∈J and {gj}j∈J , respectively, then f =

∑
j∈J〈f, gj〉fj for f ∈ H if and only if T ∗V =

idH. The following lemma shows that the roles of two ∗-Bessel sequences can be changed
and obtains a relation between bounds of {fj}j∈J and {gj}j∈J .

Lemma 4.1. Let {fj}j∈J and {gj}j∈J be ∗-Bessel sequences for H with pre-∗-frame oper-

ators T and V , respectively. Then for f ∈ H the following statements are equivalent.

i. f =
∑
j∈J〈f, gj〉fj .

ii. f =
∑
j∈J〈f, fj〉gj .

In the case that one of the above equalities is satisfied, {fj}j∈J and {gj}j∈J are dual ∗-frames.

Moreover, if B is an upper ∗-frame bound for {fj}j∈J and S is its ∗-frame operator, then

B‖S−1‖− 1
2 ‖T‖−1 is a lower ∗-frame bound for {gj}j∈J .

Proof. The proof of the equivalency of the two conditions is similar to the proof of [5, Lemma

5.6.2]. Now, suppose that the conditions i and ii are valid. By i, we have T ∗V = idH and

T ∗ is surjective. Then it follows that the sequence {fj}j∈J is a ∗-frame [12]. Similarly, the

∗-Bessel sequence {gj}j∈J is a ∗-frame.

Finally, let B be an upper ∗-frame bound for {fj}j∈J . By the definition of ∗-

frames {fj}j∈J and T ∗V = idH, we can write 〈Tf, Tf〉 ≤ B〈T ∗V f, T ∗V f〉B∗, for f ∈

H. Using Lemma 0.1, we have ‖(T ∗T )−1‖−1〈f, f〉 ≤ 〈Tf, Tf〉, for f ∈ H. It follows

that B−1‖S−1‖− 1
2 ‖T‖−1〈f, f〉(B−1‖S−1‖− 1

2 ‖T‖−1)∗ ≤ 〈V f, V f〉, for f ∈ H. Therefore,

B‖S−1‖− 1
2 ‖T‖−1 is a lower ∗-frame bound for {gj}j∈J and the proposition follows. �
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Proposition 4.1. Let {fj ∈ H : j ∈ J} be a ∗-frame for H with pre-∗-frame operator T .

The set of all of dual ∗-frames for {fj}j∈J is precisely the set of the families {gj}j∈J =

{V ∗(ej)}j∈J , where V : H −→ l2(A) is an adjointable right-inverse of T ∗ and the sequence

{ej}j∈J is the standard basis for l2(A).

Proof. By Lemma 4.1 and [12, Proposition 3.11], the proof is clear. �

Now, we can characterize all dual ∗-frames for a given ∗-frame {fj ∈ H : j ∈ J} with
respect to ∗-Bessel sequences, similar to [5]. First, it follows from Proposition 4.1 that every
right- inverse of pre-∗-frame operator T of {fj}j∈J has the form TS−1 + (I − TS−1T ∗)U ,
where S is the ∗-frame operator and U is an adjointable operator from H into l2(A). In the
end, all of dual ∗-frames of {fj}j∈J are precisely the families

{gj}j∈J = {S−1fj + hj −
∑
i∈J
〈S−1fj , fi〉hi}j∈J

where {hj}j∈J is a ∗-Bessel sequence for H.
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