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DISTRIBUTED LEARNING METHODOLOGIES FOR
AGRICULTURAL APPLICATIONS: CHALLENGES AND
STRATEGIES FOR ENSURING PRIVACY AND RESILIENCE

Rudolf ERDEI ", Daniela DELINSCHI 2, Emil PASCA 3, Laura ANDREICA *,
Oliviu MATEI®

Distributed Learning methods are becoming popular in agriculture as they
minimise device expenses. However, they raise concerns about privacy, security and
resource limits in various settings. In this paper, we study distributed learning
systems' communication overhead, heterogeneity, and fault tolerance concerns and
solutions, to find solutions for implementation in privacy-centric setups. Federated
Learning helps with privacy, security, and heterogeneity. In agricultural applications,
it can prove to be a good candidate to maximise their efficacy and efficiency.

Keywords: Distributed Systems, Distributed Learning, Machine Learning, Data
Privacy, Low-Communications, Data Resilience

1. Introduction

Data is a fundamental element in today's digital world, with a rapidly
growing volume and variety of it being generated every day. However, with the rise
of Big Data comes the challenge of processing and analyzing it efficiently and
effectively. This has led to the emergence of new data processing paradigms, such
as Distributed Learning (DL), which enables the use of distributed computing
resources to process large amounts of data in a scalable and efficient manner. DL
has become increasingly important in recent years, especially with the rise of
Internet of Things (10T) applications, where massive amounts of sensor data need
to be processed in real-time for timely decision-making. In this research article, we
explore the importance of Data and the role of DL in extracting valuable insights
from it, in a secure and privacy-preserving manner.

DL is a natural progression and mix between DL and Distributed
Systems/Distributed Computing. Parallelization has been widely used for many
years to overcome the hardware limitations imposed by costs or other factors. The
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inclusion of Graphical Processing Units (GPUs), which have thousands of cores
on a single chip, has also drastically improved training and exploitation execution
times.

Concentrating all data on one computer or network raises unacceptable risks
for both the supplier and the end-client. Thus, techniques that do not trust the
communication medium are being developed, like Federated Learning (FL) which
has gained popularity, improving privacy and security on platforms.

DL has opened a new direction of research and optimisations for many use-
cases, some of which are less than obvious, like agriculture. Data may not need to
be so private in this case, but other benefits of DL, like less verbose communication,
can be exploited.

Past DL reviews include Briggs et al. [1], which focused on privacy, Quian
et al. [2] which discuss the orchestration of model building in ML pipelines, and Li
et al. [3] which discuss the challenges and methods of FL in special.
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Fig. 1. Distributed Learning Paradigms

In Fig. 1, we can observe three paradigms of Distributed Learning:
a) Federated Learning: partial models are created within the edge nodes, while
the overall model is created on the Cloud component;
b) Classic Distributed Learning, which uses training parallelisation: data is
centralized on the Cloud and learning is done with workers, to distribute load
and improve training time [4,5,6];
¢) Fog Learning: nodes collaborate and exchange model information,
contributing to an overall decentralized model. The coordination role is
assumed by one of the nodes (a Leader node).
Each of these paradigms introduces improvements over the classical ML
pipeline, optimizing training time, and communication within the system and
solving privacy issues.

2. Research Motivation

The design of a new smart ML platform for large-scale agricultural
deployment motivated this study, which enables yield and quality optimisation
using ML models. Unlike personal data cases, this data was not secret, but the
derived insights were sensitive. In addition, some agricultural systems use
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execution hardware to control temperature, humidity, and watering. Thus, the
system must act quickly to protect crops and is vulnerable to several attacks.
By integrating Artificial Intelligence (Al) into such a system, numerous
opportunities arise, some noteworthy possibilities include:
e Yield prediction: By analysing historical data, farmers can get insights into
the factors that affect crop yields and make more informed decisions;
e Production Planning: Yield prediction helps better production planning and
distribution strategies, optimising resource use, and increasing profitability;
e Predictive maintenance: Al can help predict equipment maintenance,
allowing for preventive measures to be taken before a breakdown occurs;
e Precision farming: Farmers optimise resource use, such as water, fertiliser,
and pesticides. This can improve crop quality while reducing costs and their
environmental impact.

3. Research Questions Formulation

DL offers a pathway to creating Al-based systems by leveraging lower-level
hardware, enabling scalability, and enhancing flexibility. Consequently, several
research questions must be addressed to design such a system, including:

e RQ1: What DL method allows for maximum flexibility, while also
enabling low communication and improving Data Safety?

e RQ2: How can DL be used to facilitate the integration of 10T devices and
other sensor data into agricultural systems, and what are the key challenges
in doing so?

e RQ3: What are the most effective strategies for training and deploying DL
models in resource-constrained environments, such as rural or remote
agricultural settings?

e RQ4: What are the most important challenges that a DL system has to
overcome, and what would be some strategies to do so?

Each of the above questions will offer context into the work needed for
implementing a Distributed Learning Platform, that will operate flexibly.

The remainder of this article has 7 remaining sections, with the following
structure: Section 4 presents an overview of existing applications, Section 5
discusses some frameworks for DL, Section 6 analyses some algorithms for
assuring data security and system resilience, Section 7 presents some frameworks
focused on system resilience, Section 8 discuss frameworks and approaches focused
on data privacy, Section 9 discusses performance, Section 10 provides answers to
the research questions, and finally Section 11 presents the conclusions.
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4. Applications of Distributed Learning

Predd et al. [7] discuss a widely used approach in agricultural applications,
which is Wireless Sensor Networks (WSN). Key features of the WSNs are low
power usage requirements, low bandwidth as well as non-reliable/intermittent
communication, so they pose a special challenge for classical DM methods, that
require centralising all data. The article presents many approaches for generating
and optimizing the algorithm for DL, all within the constraints of WSNs.

Deist et al. [8] propose a DL system that was implemented in five radiation
oncology clinics in three European countries, for use in personalized radiation
oncology treatment. The system is part of their Decision Support System and is
implemented with a Support Vector Machines (SVM) algorithm.

5. Frameworks of Distributed Learning

SwitchML [9] is a framework for optimizing DL in a scalable way.
However, the requirements for the bandwidth tend to be a little too high for specific
applications like WSN. It features support for multiple workers and the
optimization of the resulting model. One downside of this framework, however, is
the need to centralize the data before it can be used in the ML pipeline. The article
compares the framework with other options, with very good results.

Chamikara et al. [10] propose the DISTPAB system, which uses Data
Perturbation-based FL, with very good results. The similarity of the resulting
model with centralized learning is high, making this approach a worthwhile
alternative. This approach, however, is used in conjunction with centralizing the
data, albeit in a Perturbed way, so information leaks are still possible.

Xu et al. [11] are proposing the GRACE platform for DL. This platform uses
multiple machines on the local network, to distribute the load on multiple
computers. This platform has easy scalability, as more computers can be easily
added. Still, disadvantages include the need to centralise data in the cloud, and
lower platform security (as it usually runs inside its separate network).

Li [12] discusses two approaches for DL, namely Parameter Server,
designed for efficient data communication, and MXNet, a library aimed at NN. Both
are applications for Distributed Computing primarily, so privacy concerns are not
taken into consideration strictly. The architecture includes a centralized training
data pool, that feeds into a manager. This manager then provides chunks of data to
worker nodes and creates the final model based on worker results.

A very different paradigm, namely Fog Learning, is proposed by
Hosseinalipour et al. [13]. This paradigm distributes the effort of creating the final
model to the edge nodes, intelligently, also accounting for network topology.
Multiple layers of data transfer are considered, each providing dimensionality
reduction, to limit upstream transfers. This approach has many benefits for large
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numbers of edge nodes. For smaller systems, this approach introduces unnecessary
complexity to the system, which can degrade quality but can prove useful when
scaling applications.

Mai et al. [14] propose the KungFu system, which promises an adaptive
approach to the DL paradigm. Their method centralises the user data and uses
multiple systems, called workers, to compute new learning parameters.

Erdei et al. [15] propose a Security-Centric multi-paradigm platform that
can handle both FL as well as Centralized Classical ML, depending on the user's
option. This system, validated within an agricultural use-case, provides support for
heterogeneity, enabling the system to act flexibly upon the edge nodes.

6. Algorithms for Processing and Optimisations in DL

Federated Optimization is a topic proposed by Konecny et al. [16], with
the assumption that no device from an FL network has a correct overview of the
behaviour in the system. Data points are distributed over a vast number of edge
nodes, and they also can have a different distribution, making Collaborative Data
Mining (CDM) harder. The proposed algorithm successfully integrates the available
data sources, resulting in a quality model.

Model Averaging is a widely used and easy-to-implement method for FL.
McMahan et al. [17,18] propose an efficient system for this on an application for
Long-Short Term Memory (LSTM) networks, with some good results, yielding
production-ready models. Communication is also addressed, and the system can
reduce it effectively. Further work from McMahan et al. [19] has resulted in
strategies for improving security inside the system, that can be applied singularly
or combined. Also, in [17] they propose two weighted average algorithms (FedSGD
and FedAvg) for computing weights or values of the model parameters and calculate
weights by the number of data points that the node has.

Communication Optimization inside decentralized networks of nodes is
discussed in detail by Elgabli et al. [20]. They discuss optimization possibilities like
gradient quantization [21], model parameter quantization [22] and model output
exchange [23] as alternatives, and present the GADMM algorithm. However, this
communication optimization algorithm does not use partial models, so training is
done with very verbose communication.

The problem of Heterogeneity in edge nodes is addressed by Hu et al. [24],
which describes an algorithm (ADSP) which treats model updates as commits.
These commits are forced to be sent only in specific intervals so that independent
of the node training speed, model convergence would be achieved.

Damaskinos et al. [25] discuss the problem model staleness and
performance prediction, proposing the FLeet online system for FL.
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Heterogeneous devices are used, so that performance evaluation also includes
hardware information. The proposed system performs better than classic FL.

7. Resilience in Distributed Learning

Resilience in distributed systems is a complex topic, that covers safety,
security and the capacity to properly respond to byzantine errors within the system.
As some DL systems are intrinsically more secure to data loss, research on this
topic is currently limited, as more general protection strategies will work fine also
in this case.

Chamikara et al. [10] proposed the DISTPAB system that can be very
resilient to Known 1/0O (10) attacks, Naive Inference (NI), and Independent
Component Analysis (ICA).

Byzantine Attacks are addressed by Sohn et al. [26], which present an
election-based system, mathematically proven to be resilient against byzantine
attacks or failures.

Byzantine Resilience is another important topic and an important issue that
most distributed systems must face. This topic is discussed in detail by Zhou et al.
[27] and is also applied in their PIRATE system. Their approach is based on
Blockchain, to safely store model updates. After an attack, new models can be
generated by using historical updates from the Blockchain.

8. Data Privacy and Security in Distributed Learning

Data Privacy and Data Security are notions that gain importance and
traction. Users are more aware of the data they are sharing while companies are
more careful of their company secrets. This momentum can also be understood by
analysing the GDPR law that the EU has enforced. The importance of this move
will force research within the area of Data Analysis and ML.

A theoretical study of the implications and applications of data privacy is
done by Balcan et al. [28], where they discuss privacy in the context of low-
communicating systems. In the case of DL, especially FL, Data Privacy and
Security can be a side-effect of the low-communication aim.

Data Perturbation is presented by Jayaraman et al. [35] as a solution to
improving Data Privacy in ML. Multiple actors can collaboratively train a global
model without exposing their own data and removing the risk of inferring it.

Froelicher et al. [29] propose a scalable system that does DL in a privacy-
centric way, with good results, and propose the SPINDLE framework. Each node
will compute a gradient update that will be sent to the central node and integrated
into the final model. The same approach is taken by Huang et al. [30] and Jayaraman
et al. [31].
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Deist et al. [8] propose the euroCAT DL platform which is safe to use within
the health industry. An Alternating Direction Method of Multipliers (ADMM) [32]
method is used to train an SVM [33] model.

As evidenced in the presented study, Data Privacy and Data Security in DL
are primarily determined by the platform's operational approach, rather than being
a deliberate design decision, however, techniques such as Data Perturbation may
improve the privacy of the ML system.

9. Performance of Distributed Learning Systems

Performance in DL can either be regarded as processing speed or resulting
model accuracy. Both are equally important when comparing DL to Centralised
Learning. When analysing processing speed, it is evident that the distribution
process impact is marginal, compared to the training/inferring process. However,
training parallelisation introduces vast benefits, with results that react 80% decrease
in training time, as reported by [33].

Resulting model accuracy depends on the type of DL used. For FL, usually,
the federated models are of lower accuracy [17], mainly due to the inferior
capabilities of the federation process, compared to a model optimiser which has
access to the entire dataset at once. Algorithms like FedAVG [17] aim to mitigate
these aspects by weighting the parameters according to the row count they are based
on, hence allowing significant potential for improvement.

10. Answers to the Research Questions

RQ1 - What DL method allows for maximum flexibility, while also enabling
low communication and improving Data Safety?

Among all the DL methods, the one that stands out for Data Privacy is FL.
FL operates by creating local partial models or model updates which do not carry
any information about the entity that generated them. This feature makes FL an
ideal choice for privacy-critical applications.

FL has several advantages. First, it reduces communication overhead and
computational burden associated with large data transfers. Second, it allows the use
of sensitive or private data without compromising data privacy or security. Finally,
it promotes collaboration and knowledge sharing among multiple parties.

Despite many benefits, FL comes with some limitations. The quality of the
local models varies based on the data quality available on each device or node.
Additionally, device heterogeneity can pose a challenge when trying to aggregate
the model.

RQ2 -How can distributed learning be used to facilitate the integration of
loT devices and other sensor data into agricultural systems, and what are the key
challenges in doing so?
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DL allows farmers to assess enormous volumes of data in real-time and
make informed decisions about crop management, water consumption, and other
aspects that impact yield and profitability, even in large-scale installations.

One of the key challenges is the need for robust and reliable communication
infrastructure. To effectively process distributed data, it is essential to have a high-
speed and low-latency network that can handle large volumes without interruptions.
This can be especially challenging in rural areas, where connectivity may be limited
or unreliable.

Privacy and security are particularly critical when integrating 10T devices
and sensor data into agricultural systems. These devices may capture sensitive data
on crops, land usage, workers' identities, and many other aspects, therefore it's
crucial to secure it. Researchers are creating FL, homomorphic encryption, and
differential privacy for safe and privacy-preserving distributed learning to meet this
difficulty.

Finally, while creating distributed learning systems for agricultural loT,
user experience is crucial. Farmers and other stakeholders may need simple data
access interfaces due to low expertise or resources.

RQ3 - What are the most effective strategies for training and deploying
distributed learning models in resource-constrained environments, such as rural or
remote agricultural settings?

Training and deploying DL models in resource-constrained environments,
such as rural or remote agricultural settings, requires careful consideration of
several factors, including limited computing resources, unreliable network
connectivity, and limited access to specialized expertise.

In resource-constrained environments, it is important to optimize the model
architecture and training algorithms to reduce the computational and memory
requirements. Techniques such as pruning, quantization, and distillation can be
used to reduce the size and complexity of the models while somewhat maintaining
their accuracy.

Federated learning enables the training of models on local devices without
uploading the raw data to a central server. It can also benefit from Transfer
Learning, which involves leveraging pre-trained models and adapting them to a
specific task or environment, before creating the initial model.

Collaborative Research Networks can facilitate the sharing of knowledge,
expertise, and computational resources among researchers and practitioners in
resource-constrained environments. This approach can be useful for developing and
deploying distributed learning models in settings where specialized expertise or
computational resources are limited.
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RQ4 - What are the most important challenges that a Distributed Learning

system must overcome, and what would be some strategies to do so?

DL systems face several challenges that need to be overcome to ensure their

effectiveness and efficiency. Some of the most important challenges are:

Communication Overhead: involves the exchange of large amounts of
data between different devices;

Privacy and Security: sharing data between different devices can pose
significant privacy and security risks;

Heterogeneity: Different devices in a distributed learning system may have
different hardware capabilities and network connectivity;

Fault Tolerance: Distributed learning systems may experience device
failures or network outages, which can disrupt the learning process and
result in data loss.

To overcome these challenges, several strategies can be employed,

including:

Model Compression: To reduce communication overhead, models can be
compressed before they are transmitted between devices;

Encryption and Access Controls: To ensure privacy and security, data can
be encrypted, and access controls can be put in place to ensure that only
authorized devices can access the data;

Resource Allocation: To address heterogeneity, resources can be allocated
dynamically based on the capabilities of each device;

Replication and Backup: To ensure fault tolerance, models are replicated
across multiple devices or backed up regularly to prevent data loss in the
event of device failures or network outages.

Federated Learning: this approach can help address communication
overhead, privacy and security concerns, and heterogeneity challenges.

11. Conclusions

DL has come a long way, attempting to solve problems like parallelization

and data privacy. Some frameworks implement useful DL algorithms into practical
applications, bridging the gap to production environments.

Depending on application requirements and other constraints (like data

privacy), several DL methodologies and frameworks exist, making it easier for
platform developers to choose the more suitable option. Regarding Fig. 1, where
we can observe the three DL paradigms, their utility can be summarized:

a) Federated Learning: used where the edge nodes do not trust the

communication medium and/or Cloud Integrator with the data, or where
bandwidth/data transfer is an issue;
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b) Classic Distributed Learning: should be used only for non-critical/non-
secret data, or within the company infrastructure. All the components trust
each other and data transfer is verbose;

¢) Fog Learning: could be used with systems that cannot have a central node.
Lack of centralization will introduce a fair amount of complexity and
communication overhead.

The data private options include Federated Learning and Fog Learning, as
they tend not to exchange data points. Results can vary between partial models and
gradient updates. For FL, several algorithms are provided that make updates easier
to do.

Future research trends

Improving FL can be done in several directions, by designing more complex
methodologies, incorporating and improving privacy-enhancing technologies,
personalising the model to local environments, mitigating bias and improving
resource efficiency.

Another research direction would be comprised of model importance and
model drift metrics, where each model update is graded to be used accordingly,
based on the data used for building the partial model and its current performance.
This might involve quantity, quality and several other metrics like distribution,
variety and so on.
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