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FRÉCHET α-LIPSCHITZ VECTOR-VALUED OPERATOR ALGEBRA

A. Ranjbari1 and A. Rejali2

Let (X, d) be a metric space with at least two elements and (A, pl), be a
Fréchet algebra over the scalar field F and take α ∈ R with α > 0. In this paper, at first

we define the big and little Fréchet α-Lipschitz vector-valued operator algebras of order α
and examine how this concept in Banach algebra can be generalized for Fréchet algebra.
Furthermore, we study some properties and ideal amenability of Fréchet α-Lipschitz

vector-valued operator algebras.

Keywords: Vector-valued Lipschitz algebra, Fréchet algebra, Ideal amenability of Fréchet
algebra, Metric space.

1. Introduction

Some of the notions related to Banach algebras, have been introduced and studied for
Fréchet algebra. For example, the notion of amenability of a Fréchet algebra was studied
by Pirkovskii [22]. Lawson and Read introduced and studied the notions of approximate
amenability and approximate contractibility of Fréchet algebras in [21]. Furthermore in [1],
Abtahi and et al introduced and studied the notion of weak amenability of Fréchet algebra.
Moreover, according to the basic definition of Segal algebras and abstract Segal algebras [2],
recently they introduced the Segal- Fréchet algebra for the Fréchet algebra (A, pl). Rejali
and Ranjbari generalized the concept of ideal amenability for Freéchet algebras in [20].

In this paper we introduce and study the notion of Lipschitz algebra, for Fréchet
algebra. Let (X, d) be a metric space and B(X) indicates the Banach space consisting of all
bounded complex valued functions on X, endowed with the norm

||f ||sup = sup
x∈X

|f(x)|
(
f ∈ B(X)

)
Take α ∈ R with α > 0. Then Lipα X is the subspace of B(X), consisting of all of bounded
complex-valued functions f on X such that

pα(f) := sup
{ |f(x)− f(y)|

d(x, y)α
: x, y ∈ X,x ̸= y

}
< ∞

It is known that Lipα X endowed with the norm ||.||α given by

||f ||α := pα(f) + ||f ||sup
and pointwise product is a unital commutative Banach algebra, which is called Lipschitz
algebra of order α.

If E is a Banach space, for a constant α > 0 and a function f : X → E, the Lipschitz
constant of f is defined by

pα,E(f) := sup
{ ||f(x)− f(y)||

d(x, y)α
: x, y ∈ X,x ̸= y

}
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and the vector-valued big Lipschitz algebra (of order α), or simply, the vector-valued Lips-
chitz algebra is defined by

Lipα(X,E) = {f : X → E : f is bounded and pα,E(f) < ∞}.

Similarly, for α > 0 the vector-valued little Lipschitz algebra (of order α) is defined by

lipα(X,E) = {f ∈ Lipα(X,E) :
||f(x)− f(y)||

d(x, y)α
→ 0 as d(x, y) → 0}.

These Lipschitz algebras were first studied by Sherbert in [24, 25].
Let E be a Banach algebra, and ||f ||α,E = ||f ||∞,E+pα,E(f). In [9] it has been shown

that
(
Lipα(X,E), || · ||α,E

)
is complete and it is, in fact, a Banach subalgebra of Cb(X,E),

and moreover, lipα(X,E) is a closed subalgebra of Lipα(X,E).
Many results on amenability and weak amenability of Lipschitz algebras are given in

[4, 14, 18, 26]. For any ϕ ∈ ∆(lipα X), ϕ-amenability of Lipα X, considered by Kaniuth and
et al. (see [19], Example 5.3), and some results about character amenability of these algebras
are studied in [5, 6, 7, 10]. Many results on Lipschitz algebra are given in [27, 28, 17, 3, 12].

Gordji and et al. (see [14],Theorem 2.4) proved that if (X, d) is a metric space. Then,
the following statements are equivalent:
(i) Lipα X is character amenable;
(ii) (X, d) is uniformly discrete;
(iii) Lipα X is amenable.

2. Preliminaries and introduction

In this section, we recall and review some of the basic terminologies about Fréchet
algebra and Lipschitz algebras. For further details, see [13, 28].

A Fréchet algebra (A, pl) is a topological algebra A whose topology can be defined by
a sequence (pl) of separating and submultiplicative seminorms, i.e., pl(fg) ≤ pl(f)pl(g) for
all f, g ∈ A and which is complete with respect to this topology.

Without loss of generality we can assume that pl ≤ pl+1 and that pl(1) = 1 if A has
identity 1. Note that a sequence (an)n∈N in the Fréchet algebra (A, pl) converges to a ∈ A
if and only if pl(an − a) → 0 for each l ∈ N ,as n → ∞. A locally convex space E is a linear
space over the field K(R orC) together with a compatible topology (i.e. addition E×E → E
and scalar multiplication K×E → E are continuous) and which has a 0-neighborhood basis
consisting of (absolutely) convex sets.

A locally convex space is a Fréchet space, if and only if, it is metrizable and complete.
Locally convex spaces provide the general framework for the Hahn-Banach theorem and its
consequences.

Let (A, pl) be a locally convex space. Then B ⊆ A is bounded if and only if for each
l ∈ N

sup
x∈B

pl(x) < ∞

Proposition 2.1. [23, Proposition 22.12] Let E be a locally convex space, F be a subspace
of E and p be a continuous seminorm on E. Then
(a) For each y ∈ F ∗ there exists a Y ∈ E∗ with Y |F = y;
(b) For each z ∈ E there exists a σ ∈ E∗ with σ(z) = p(z) and |σ| ≤ p;
(c) For each x ∈ E with x ̸= 0 there exists a σ ∈ E∗ with σ(x) ̸= 0.

Let E, F be linear spaces and ξ, η linear forms on E and F , respectively. Then the
map (x, y) → ξ(x)η(y) is bilinear on E × F . Hence for u =

∑n
j=1 xj ⊗ yj ∈ E ⊗ F , the map

u →
∑m

j=1 ξ(xj)η(yj) is a linear form on E ⊗ F .
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Let p on E and q on F be seminorms. Then for u ∈ E ⊗ F , we set

p⊗ε q(u) := sup{|
m∑
j=1

ξ(xj)η(yj)| : p∗(ξ) ≤ 1 and q∗(η) ≤ 1}

As usually p∗(ξ) := sup{|ξ(x)| : p(x) ≤ 1} and q∗(η) analogous.
p⊗ε q is a seminorm on E ⊗ F and p⊗ε q(x⊗ y) = p(x)q(y), for all x ∈ E and y ∈ F .
Since p⊗ε q increases when p and q are increased, the following definition makes sense. The
ε-tensor product of two locally convex spaces E and F is their tensor product equipped with
the uniquely defined locally convex topology on E⊗ F given by the seminorms p⊗ε q where
p runs through the continuous seminorms on E, q those on F . It is denoted by E ⊗ε F and
its completion is denoted by E⊗̂εF .
The injective tensor product E ⊗ε F is metrizable (resp. normable) if E and F are.

3. Fréchet α-lipschitz vector-valued operator algebras

Let (X, d) be a metric space with at least two elements and (A, pl) be a Fréchet
algebra over the scalar field F , for a constant α > 0 and a function f : X → A, set

qα,l(f) := sup
x∈X

pl(f(x)) and pα,l(f) := sup
x ̸=y

pl(f(x)− f(y))

d(x, y)α

Definition 3.1. Let (X, d) be a metric space with at least two elements, (A, pl) be a Fréchet
algebra and α > 0. We define, the vector-valued Fréchet Lipschitz algebra, Lipα(X,A) of all
functions such f : X → A satisfy in the following conditions:
i) qα,l(f) < ∞, for each l ∈ N;
ii) pα,l(f) < ∞, for each l ∈ N.

The Lipschitz algebra lipα(X,A) is the subalgebra of Lipα(X,A) defined by

lipα(X,A) :=
{
f : X → A

∣∣∣pl
(
f(x)− f(y)

)
d(x, y)α

→ 0 as d(x, y) → 0
}

Let (X, d) be a metric space with at least two elements and (A, pl) be a Fréchet
algebra and α > 0. We define

rα,l(f) := qα,l(f) + pα,l(f) (f ∈ Lipα(X,A))

We denote the set of all bounded continuous operators from X into A by Cb(X,A), and
define ql(f) := supx∈X pl(f(x)) for each f ∈ Cb(X,A).
Let f, g ∈ Cb(X,A), and λ ∈ C. Define

(f + g)(x) = f(x) + g(x) and (λf)(x) = λf(x) (x ∈ X)

It is easy to see that (Cb(X,A), ql) becomes a Fréchet space over C and Lipα(X,A) is a
linear subspace of Cb(X,A).

Lemma 3.1. (Lipα(X,A), rα,l) is a Fréchet subalgebra of Cb(X,A).

Proof. Let x ∈ X and (xn)n∈N be a sequence in X such that xn → x. Then d(xn, x) → 0.
Let f ∈ Lipα(X,A), since pα,l(f) < ∞ (for each l ∈ N), thus there exist Ml such that
pl(f(xn)−f(x))

d(xn,x)α
≤ Ml for each l ∈ N.

Hence pl(f(xn)− f(x)) ≤ Mld(xn, x)
α → 0, so pl(f(xn)− f(x)) → 0.

Thus f(xn) → f(x) in the topology of A. It follows that f is continuous.
It is obvious that the sequence (rα,l) is a countable family of seminorms. We show that the
sequence (rα,l) are submultiplicative seminorms i. e.

qα,l(fg) = sup
x∈X

pl(fg(x)) ≤ sup
x∈X

pl(f(x)) sup
x∈X

pl(g(x)) = qα,l(f)qα,l(g)
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Also

pα,l(fg) := sup
x ̸=y

pl(fg(x)− fg(y))

d(x, y)α

= sup
x ̸=y

pl(f(x)g(x)− f(y)g(x) + f(y)g(x)− f(y)g(y))

d(x, y)α

≤ sup
x ̸=y

pl(f(x)− f(y))pl(g(x)) + pl(f(y))pl(g(x)− g(y))

d(x, y)α

= qα,l(g)pα,l(f) + qα,l(f)pα,l(g)

Hence we have:

rα,l(fg) := qα,l(fg) + pα,l(fg)

≤ qα,l(f)qα,l(g) + qα,l(g)pα,l(f) + qα,l(f)pα,l(g)

≤ (qα,l(f) + pα,l(f))(qα,l(g) + pα,l(g)) = rα,l(f) + rα,l(g)

□

The Fréchet algebra (Lipα(X,A), rα,l) will be called Fréchet Lipschitz algebra of order
α on X. The elements of Lipα(X,A) and lipα(X,A) are called big and little Fréchet α-
Lipschitz operators, respectively. Sometimes we call them Lipschitz operators, for short.

It is easy to show that if (X, d) be a metric space and (A, pl) be a Fréchet algebra.
Then Lipα(X,A) is a commutative (unital) Fréchet algebra if and only if A is a commutative
(unital) Fréchet algebra.

Lemma 3.2. Let (A, pn) and (B, qm) be Fréchet algebras and ϕ : A → B be a continuous
homomorphic, with dense range, and (eα) be a bounded approximate identity for A. Then
(ϕ(eα)) is a bounded approximate identity for B.

Proof. Suppose that b ∈ B, so there exist (an) ⊆ A, such that ϕ(an) → b, hence for all
m ∈ N, qm(ϕ(an) − b) → 0. Let an0 ∈ A, since (eα) is a bounded approximate identity for
A, hence an0eα − an0 → 0, so pn(an0eα − an0) → 0 for all n ∈ N. Also there exist M > 0,
such that pn(eα) ≤ M .

Since ϕ is continuous, hence for all m,n ∈ N there exist k > 0 such that qm(ϕ(eα)) ≤
kpn(eα) ≤ kM . Thus (ϕ(eα)) is bounded. Moreover we have

qm(bϕ(eα)− b) = qm(bϕ(eα)− ϕ(an0)ϕ(eα) + ϕ(an0)ϕ(eα)− ϕ(an0) + ϕ(an0)− b)

≤ qm(ϕ(eα))qm(b− ϕ(an0) + qm(ϕ(an0eα − an0)) + qm(ϕ(an0)− b)

≤ kMqm(b− ϕ(an0) + kpn(an0eα − an0) + qm(ϕ(an)− b) → 0

Hence for each b ∈ B, bϕ(eα) → b. Similarly ϕ(eα)b → b. Therefore (ϕ(eα)) is a bounded
approximate identity for B. □

It is worth mentioning that, if (E, pl) be a Fréchet algebra and (A, ∥·∥) be a Banach
algebra. Then (A⊗̂E, sl) is a Fréchet algebra where sl(a⊗ e) = ∥a∥pl(e), for all a ∈ A and
e ∈ E.

Lemma 3.3. Let (X, d) be metric space, (A, pl) be a Fréchet algebra and α > 0. If (A, pl)
has a bounded approximate identity. Then (Lipα(X)⊗̂A, sl) has a bounded approximate
identity.

Proof. Let (zγ) be a bounded approximate identity for (A, pl). Put eγ := 1 ⊗ zγ we now
show that (eγ) is a bounded approximate identity for Lipα(X)⊗̂A.

Let f ∈ Lipα(X)⊗̂A. Then f =
∑∞

n=1 gn ⊗ an, for some gn ∈ Lipα(X) and an ∈ A
such that

∑∞
n=1 ∥gn∥αpl(an) < ∞.
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Thus for each ϵ > 0, there exist N ∈ N such that
∑∞

n=N+1 ∥gn∥αpl(an) < ϵ.
So for each ϵ > 0 we have:

sl(
n∑

n=N+1

(gn ⊗ an) · (1⊗ zγ)−
∞∑

n=N+1

(gn ⊗ an))

≤
∞∑

n=N+1

sl(gn ⊗ (anzγ − an))

≤
∞∑

n=N+1

∥gn∥αpl(anzγ − an)

≤
∞∑

n=N+1

∥gn∥αpl(anzγ) +
∞∑

n=N+1

∥gn∥αpl(an)

≤ (pl(zγ) + 1)ϵ

≤ (M + 1)ϵ

where M := supγ{pl(zγ) : l ∈ N} < ∞.
Also we have

sl(
N∑

n=1

(gn ⊗ an) · (1⊗ zγ −
N∑

n=1

(gn ⊗ an))

≤
N∑

n=1

sl(gn ⊗ (anzγ − an))

=
N∑

n=1

∥gn∥αpl(anzγ − an) → 0

Hence for each f ∈ Lipα(X)⊗̂A, sl(f ·eγ−f) → 0. Therefore (eγ) is a bounded approximate
for Lipα(X)⊗̂A. □
Proposition 3.1. Let (X, d) be metric space , (A, pl) be a Fréchet algebra and α > 0. Then
the following statements are equivalent
i) Lipα(X,A) has a bounded approximate identity;
ii) (A, pl) has a bounded approximate identity.

Proof. (i) → (ii): Suppose that (eβ) be a bounded approximate identity for Lipα(X,A). For
x0 ∈ X, we define zβ := eβ(x0).

Let fz(x) = z, for x ∈ X. Then fz ∈ Lipα(X,A) and

pl(zβ .z − z) = pl(eβ · fz(x0)− fz(x0))

≤ qα,l(eβ · fz − fz)

≤ rα,l(eβ · fz − fz) → 0

Hence, zβ · z → z, for all z ∈ A. Similarly z · zβ → z. Also, pl(zβ) = pl(eβ(x0)) ≤ qα,l(eB) ≤
rα,l(eβ) ≤ M , for some M > 0 and each β. Hence (zβ) is a bounded approximate identity
of A.
(ii) → (i): Let (eβ) be a bounded approximate identity for (A, pl). For every h ∈ Lipα(X)⊗̂A,
there exist, (fi)i∈N ∈ Lipα(X) and (ai)i∈N ∈ A such that, h =

∑∞
i=1(fi ⊗ ai). Define

T : Lipα(X)⊗̂A → Lipα(X,A)

T (h) =
∞∑
i=1

fiai
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and for all x ∈ X, we have f ·a(x) = f(x)a. Then T is continuos homorphic, with dense range.
Thus by using lemma 3.3, (1⊗ eβ) is a bounded approximate identity for Lipα(X,A). □

The following result is a generalization of [Proposition 2.1] for the Fréchet case.

Lemma 3.4. Let (A, pl) be a Fréchet algebra and z ∈ A. Then

pl(z) = sup{|σ(z)| : σ ∈ A∗ and |σ| ≤ pl}

Proof. Since pl is a seminorm on A, so there is a σ0 ∈ A∗ such that

σ0(z) = pl(z) and |σ0| ≤ pl

Hence we have

pl(z) = σ0(z) ≤ sup{|σ(z)| : σ ∈ A∗ and |σ| ≤ pl} (1)

Conversly, suppose that |σ| ≤ pl. Then we have |σ(z)| ≤ pl(z), so

sup{|σ(z)| : σ ∈ A∗ and |σ| ≤ pl} ≤ pl(z) (2)

By using (1) and (2), we have pl(z) = sup{|σ(z)| : σ ∈ A∗ and |σ| ≤ pl}. □

The following result is a generalization of [5, Lemma 1.1], for the Fréchet case.

Theorem 3.1. Let (X, d) be a metric space with at least two elements, (A, pl) be a Fréchet
space, α > 0 and f ∈ B(X,A). Then the following statements are equivalent.
(i) f ∈ Lipα(X,A);
(ii) σof ∈ Lipα(X), for all σ ∈ A∗.

Proof. (i) → (ii) Suppose that f ∈ Lipα(X,A) and σ ∈ A∗. Then there exists c > 0
and l ∈ N such that |σ(z)| ≤ cpl(z), for all z ∈ A. Especially for all x ∈ X, we have
|σ(f(x))| ≤ cpl(f(x)).
On the other hand qα,l(f) := supx∈X pl(f(x)) < ∞. Hence |σ(f(x))| ≤ cqα,l(f) < ∞ and
σof is bounded. Also

pα(σof) = sup
x̸=y

|σof(x)− σof(y)|
d(x, y)α

= sup
x ̸=y

|σ(f(x)− f(y))|
d(x, y)α

≤ sup
x ̸=y

cpl(f(x)− f(y))

d(x, y)α
= cpα,l(f) < ∞

Therefore σof ∈ Lipα(X).
(ii) → (i) Suppose that σ ∈ A∗. We define Tσ : Lipα(X,A) → Lipα(X) by

Tσ(f) = σof , for all f ∈ Lipα(X,A). Then {Tσ}σ∈A∗ is a family of continuous linear
maps. Since σ ∈ A∗, so there exists c > 0 and l ∈ N such that for all x ∈ X,

|σ(f(x))| ≤ cpl(f(x))

Hence ∥σof∥∞ ≤ cqα,l(f) and we have

pα(σof) = sup
x ̸=y

|(σof)(x)− (σof)(y)|
d(x, y)α

≤ c sup
x ̸=y

pl

(
f(x)− f(y)

)
d(x, y)α

= cpα,l(f)

Thus for each f ∈ Lipα(X,A),

||Tσ(f)||α = ||σof ||α
= ||σof ||∞ + pα(σof)

≤ (cqα,l(f) + cpα,l(f))

= crα,l(f)
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Therefore Tσ is continuous.
Now, we show that f ∈ Lipα(X,E). For each l ∈ N there exists σl ∈ A∗:

pl(f(x)− f(y)) = σl(f(x)− f(y))

Thus:

pα,l(f) = sup
x ̸=y

pl(f(x)− f(y))

d(x, y)α

= sup
x ̸=y

|σl(f(x))− σl(f(y))|
d(x, y)α

= pα(σlof) < ∞

Also

qα,l(f) = sup
x∈X

pl(f(x))

= sup
σ∈E∗

|σ(f(x))| = qα(σof) < ∞

|σ|≤pl

Therefore f ∈ Lipα(X,E). □

Corollary 3.1. Let (X, d) be metric space and (A, pl) be a Fréchet algebra. Then Lipα(X,A)
is the maximal subalgebra of Cb(X,A) satisfying

A∗ ◦ Lipα(X,A) ⊆ Lipα(X)

Proof. Suppose that E is a subalgebra of Cb(X,A) satisfying A∗ ◦ E ⊆ Lipα(X), we show
that E is contained in Lipα(X,A). To see this, let f ∈ E then for every σ ∈ E we have,
σof ∈ Lipα(X) by Theorem 3.1, so f ∈ Lipα(X,A), which implies that E ⊆ Lipα(X,A). □

Let (A, pl) and (B, ql) be Fréchet space and ϕ : A → B be a linear bijecion map such
that ql(ϕ(x)) = pl(x) for each x ∈ A. Then the metric induced by (pl) and (ql) are isometric.

Proposition 3.2. Let (X, d) be a compact metric space and (A, pl) be a Fréchet algebra.
Then Cb(X)⊗ε A is isometrically isomorphic to Cb(X,A).

Proof. For all f ∈ Cb(X) and a ∈ A, f.a ∈ Cb(X,A) where by f.a(x) = f(x)a, (x ∈ X).The
mapping (f, a) → f.a from Cb(X)×A into Cb(X,A) is bilinear. Hence there exists a unique
linear map ϕ : Cb(X) ⊗ A → Cb(X,A) such that ϕ(f ⊗ a)(x) = f(x)a, for all f ∈ Cb(X),
x ∈ X and a ∈ A. Clearly, ϕ is a homomorphism.
For u =

∑n
j=1 fi ⊗ ai ∈ Cb(X)⊗A and l ∈ N we have

ql(ϕ(u)) = sup{pl(ϕ(u)(x)) : x ∈ X}

= sup{pl(
n∑

i=1

fi(x)ai) : x ∈ X}

= sup
x∈X

{sup{|σ(
n∑

i=1

fi(x)ai| : σ ∈ A∗ and |σ| ≤ pl}

= sup
x∈X

{sup{|
n∑

i=1

fi(x)σ(ai)| : σ ∈ A∗ and |σ ≤ pl}

= sup
σ∈A∗

sup
x∈X

{|
n∑

i=1

fi(x)σ(ai)| : |σ| ≤ pl}

= sup
σ∈A∗

{||
n∑

i=1

fiσ(ai)||∞ : |σ| ≤ pl}
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= sup
σ∈A∗

sup
µ∈C(X)∗1

{|
n∑

i=1

σ(ai)µ(fi)| : |σ| ≤ pl}

= sup{|
n∑

i=1

σ(ai)µ(fi) : p
∗
l (σ) ≤ 1 and µ ∈ Cb(X)∗1}

= (||.|| ⊗ pl)(u)

Thus ϕ is an isometry. It remains to show that ϕ(Cb(X)⊗A) is dense in Cb(X,A). Choose
a seminorm p on A and ε > 0. For f ∈ Cb(X,A), we can find a1, · · · , am ∈ A such that
X = ∪m

j=1{x|p(aj − f(x)) < ε}. Put ϕj(x) = max{0, ε− p(aj − f(x))} and ϕ =
∑m

j=1 ϕj .

Note that ϕ(x) > 0, for all x ∈ X. Put

u =
m∑
j=1

ϕj

ϕ
aj ∈ Cb(X)⊗A

Then we have for x ∈ X

p(u(x)− f(x)) = p(

m∑
j=1

ϕj(x)

ϕ(x)
(aj − f(x))

≤
m∑
j=1

ϕj(x)

ϕ(x)
p(aj − f(x)) < ε

Hence Cb(X)⊗ϵ A = Cb(X,A) □

Now, as a consequence of Theorem 3.2, we generalize the following result on vector-
valued Lipschitz algebras for Fréchet algebra. Although, this result has already been proved
in [26] for Banach algebra.

Corollary 3.2. Let (X, d) be a compact metric space with at least two elements, (A, pl) be
a Fréchet algebra and α > 0. Then

Lipα(X,A) = Cb(X,A)

Proof. Let h ∈ Cb(X,A). Since Cb(X)⊗εA = Cb(X,A), thus there exists f1, f2, . . . ∈ Cb(X)
and a1, a2, . . . ∈ A such that h =

∑∞
i=1 fi · ai.

In other hand we have Cb(X) = Lipα(X). Hence for each i ∈ N there exist gi ∈ Lipα(X)
such that

||gi − fi||∞ <
ε

2ipl(ai)

Therefore for each ε > 0 and for each x ∈ X,

|gi(x)− fi(x)| <
ε

2ipl(ai)

Now, we define ϕi : C → A, by ϕi(λ) = λ · ai.
Then ϕiogi ∈ Lipα(X,A). Since

qα,l(ϕiogi) = sup
x∈X

pl(ϕi(gi(x)) = sup
x∈X

pl(gi(x) · ai)

= ||gi||∞pl(ai) < ∞
We have

pα,l(ϕiogi) = sup
x̸=y

pl((ϕiogi)(x)− (ϕiogi)(y))

d(x, y)α

= sup
x̸=y

pl(gi(x) · ai − gi(y) · ai)
d(x, y)α
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= sup
x̸=y

|gi(x)− gi(y)|
d(x, y)α

pl(ai)

≤ ||gi||∞pl(ai) < ∞

Therefore

qα,l(h−
∞∑
i=1

ϕiogi) =qα,l

∞∑
i=1

(fi · ai − gi · ai)

= sup
x∈X

pl

( ∞∑
i=1

fi(x) · ai − gi(x) · ai
)

≤ sup
x∈X

∞∑
i=1

|fi(x)− gi(x)|pl(ai)

≤
∞∑
i=1

ε

2ipl(ai)
· pl(ai) = ε

□

4. Ideal amenability of Lipα(X,A)

In this section, we study the ideal amenability of vector-valued Fréchet lipschitz algebra
Lipα(X,A).
Let (A, pl) be a Fréchet algebra and I be a closed (two-sided) ideal in A. Similar to the
Banach algebra case, we say that A is I-weakly amenable if every continuous derivation
D : A → I∗ is inner. Moreover we introduce the concept of ideal amenability for Fréchet
algebras as the following:

A Fréchet algebra A is called ideally amenable if it is I-weakly amenable, for every
closed (two-sided) ideal I in A.

Let A be a Fréchet algebra and ϕ ∈ ∆(A), the set consisting of all non-zero continuous
characters on A. A point derivation d at ϕ is a linear functional satisfying d(xy) = d(x)ϕ(y)+
ϕ(x)d(y), where x, y ∈ A, i.e. d is a derivation into the A-bimodule C, where the module
actions is defined by x · λ = λ · x = λϕ(x), x ∈ A and λ ∈ C.

The following lemma is immediate.
Lemma 4.1. Let (X, d) be a metric space with at least two elements, (A, pl) be a Fréchet
algebra and α > 0. For each non-isolated point x ∈ X and σ ∈ A∗. Let ϕ : Lipα(X,A) → C
is given by ϕ(f) = (σof)(x), (f ∈ Lipα(X,A)) then ϕ ∈ ∆(Lipα(X,A)).

Let CN := {(xn)n∈N : xn ∈ C and n ∈ N} be the set of all complex sequences. Then
CN becomes an algebra by defining algebraic operations coordinatewise. For each n ∈ N,
the function pn : CN → R define by pn(x) = max1≤m≤n |xm| defines a submultiplicativ
seminorm on CN.
Clearly {pn} defines the product topology on CN, under which CN is complete [13]. Thus,
(CN, pn) becomes a Hausdorff Fréchet algebra.
Similar to the Banach algebra case in [24], we say that a bounded linear functional LIM:
(CN, pn) → C is is Fréchet limit if for every x = (xn) ∈ CN, y = (yn) ∈ CN and α ∈ C
satisfying
(1) LIM is linear: LIM(x+ y) = LIM(x) + LIM(y) and LIM(αx) = αLIM(x).
(2) LIM is positive: LIM(x) ≥ 0, for every xn ≥ 0.
(3) LIM is normalized: LIM(1) = 1, where 1 = (1, 1, · · · ).
(4) LIM is shift invariant: LIM(sx) = LIM(x).

The above properties on the functional LIM imply the following:
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(5) LIM extends lim on the subspace of convergent sequences:

lim
n→∞

xn = c ⇒ LIM(x) = c

(6) If limn→∞ xn = c and y = (yn) ∈ CN, then LIM(xnyn) = cLIM(yn).
Let (X, d) be a fixed non-empty compact metric space, set

∆ := {(x, y) ∈ X ×X : x = y} and W := X ×X −∆

The following result is a generalization of [26, Theorem 3.4] for the Fréchet case.

Theorem 4.1. Let (X, d) be an infinite compact metric space, (A, pl) be a Fréchet algebra
and 0 < α ≤ 1. Then Lipα(X,A) is not ideally amenable.

Proof. Let x be a non-isolated point in K. We define

Wx := {(xn, yn) : (xn, yn) ∈ W, lim
n→∞

(xn, yn) = (x, x)}

For the net W = {(xn, yn)} in Wx and σ ∈ A, we put

Wn : Lipα(X,A) → C

defined by

Wn(f) =
(σof)(xn)− (σof)(yn)

d(xn, yn)α

(
f ∈ Lipα(X,A)

)
Since f ∈ Lipα(X,A) and σ ∈ A∗, so σof : X → C is continues. Hence

There exists c > 0 and l ∈ N such that |(σof)(xn)− (σof)(yn)| = |σ(f(xn)− f(yn))|
≤ cpl(f(xn)− f(yn)) ≤ cpα,l(f)d(xn, yn)

α

Thus

|⟨f,Wn⟩| = | (σof)(xn)− (σof)(yn)

d(xn, yn)α
| ≤ cpα,l(f)

Therefore, Wn is continues. Now set

D : Lipα(X,A) → C, by D(f) = LIM(Wn(f))

We show that the linear map D is a non-zero point derivation at ϕ, for which ϕ is given by
ϕ(f) = (σof)(x), (f ∈ Lipα(X,A)).
We have

D(fg) = LIM(Wn(fg)) = LIM
(σofg)(xn)− (σofg)(yn)

d(xn, yn)α

= LIM
1

d(x, y)α
(σo(f(xn)g(xn)− f(yn)g(yn))

= LIM
1

d(x, y)α

(
σo
(
f(xn)

(
g(xn)− g(yn)

)
+
(
f(xn)− f(yn)

)
g(yn)

))
= (σof)(x) LIM(Wn(g)) + (σog)(x) LIM(Wn(f))

= ϕ(f)D(g)− ϕ(g)D(f)

Therefore, by the continuity f, g and properties of Fréchet limit, we conclude D is a non-
zero, continues point derivation at ϕ on Lipα(X,A). Hence by using [20, Proposition 3.1]
Lipα(X,A) is not ideally amenable. □

Example 4.1. Let (A, pl) be a commutative Fréchet algebra, T = {z ∈ C : |z| = 1} be the
group of complex numbers of modulus one, and α > 1

2 . Then by using [16, Proposition 3.5]

and [20, Theorem 4.2] the proof is immediate. Also lipα(T )⊗̂A is not ideally amenable.
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