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FRECHET o-LIPSCHITZ VECTOR-VALUED OPERATOR ALGEBRA

A. Ranjbari' and A. Rejali®

Let (X,d) be a metric space with at least two elements and (A, p;), be a
Fréchet algebra over the scalar field F' and take oo € R with o > 0. In this paper, at first
we define the big and little Fréchet a-Lipschitz vector-valued operator algebras of order
and examine how this concept in Banach algebra can be generalized for Fréchet algebra.
Furthermore, we study some properties and ideal amenability of Fréchet a-Lipschitz
vector-valued operator algebras.

Keywords: Vector-valued Lipschitz algebra, Fréchet algebra, Ideal amenability of Fréchet
algebra, Metric space.

1. Introduction

Some of the notions related to Banach algebras, have been introduced and studied for
Fréchet algebra. For example, the notion of amenability of a Fréchet algebra was studied
by Pirkovskii [22]. Lawson and Read introduced and studied the notions of approximate
amenability and approximate contractibility of Fréchet algebras in [21]. Furthermore in [1],
Abtahi and et al introduced and studied the notion of weak amenability of Fréchet algebra.
Moreover, according to the basic definition of Segal algebras and abstract Segal algebras [2],
recently they introduced the Segal- Fréchet algebra for the Fréchet algebra (A, p;). Rejali
and Ranjbari generalized the concept of ideal amenability for Freéchet algebras in [20].

In this paper we introduce and study the notion of Lipschitz algebra, for Fréchet
algebra. Let (X, d) be a metric space and B(X) indicates the Banach space consisting of all
bounded complex valued functions on X, endowed with the norm

(1 eB()

Take a € R with a > 0. Then Lip,, X is the subspace of B(X), consisting of all of bounded
complex-valued functions f on X such that

_ f(z) = f(y)|
pOé(f) T Sup{ d(l’7y)a
It is known that Lip, X endowed with the norm ||.||, given by

1 llor := Pa(f) + [[f]lsup

and pointwise product is a unital commutative Banach algebra, which is called Lipschitz
algebra of order a.

If F is a Banach space, for a constant o > 0 and a function f : X — E, the Lipschitz
constant of f is defined by

Pa,e(f) == SUP{

1 llsup = sup | f(z)
zeX

:x,y€X7x7éy}<oo

| (x) = F()ll

: X
A(z.9)° T,y € ,x#y}
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and the vector-valued big Lipschitz algebra (of order «), or simply, the vector-valued Lips-
chitz algebra is defined by

Lip, (X, E) ={f: X — E: fis bounded and p, g(f) < co}.
Similarly, for v > 0 the vector-valued little Lipschitz algebra (of order «) is defined by

lip, (X, E) = {f € Lip, (X, E) : W

These Lipschitz algebras were first studied by Sherbert in [24, 25].
Let E be a Banach algebra, and || f||a,z = ||f||co,E+Da,(f). In [9] it has been shown

that (Lipa (X,B), || HQE) is complete and it is, in fact, a Banach subalgebra of Cy (X, E),

and moreover, lip, (X, F) is a closed subalgebra of Lip (X, E).
Many results on amenability and weak amenability of Lipschitz algebras are given in
[4, 14, 18, 26]. For any ¢ € A(lip,, X), ¢-amenability of Lip, X, considered by Kaniuth and
et al. (see [19], Example 5.3), and some results about character amenability of these algebras
are studied in [5, 6, 7, 10]. Many results on Lipschitz algebra are given in [27, 28, 17, 3, 12].
Gordji and et al. (see [14],Theorem 2.4) proved that if (X, d) is a metric space. Then,
the following statements are equivalent:
(i) Lip, X is character amenable;
(ii) (X,d) is uniformly discrete;
(iii) Lip, X is amenable.

— 0as d(xz,y) — 0}.

2. Preliminaries and introduction

In this section, we recall and review some of the basic terminologies about Fréchet
algebra and Lipschitz algebras. For further details, see [13, 28].

A Fréchet algebra (A, p;) is a topological algebra A whose topology can be defined by
a sequence (p;) of separating and submultiplicative seminorms, i.e., p;(fg) < pi(f)pi(g) for
all f,g € A and which is complete with respect to this topology.

Without loss of generality we can assume that p; < p;11 and that p;(1) = 1 if A has
identity 1. Note that a sequence (a,)nen in the Fréchet algebra (A, p;) converges to a € A
if and only if p;(a, —a) — 0 for each | € N jas n — oo. A locally convex space F is a linear
space over the field K (R or C) together with a compatible topology (i.e. addition Ex E — E
and scalar multiplication K x E' — E are continuous) and which has a 0-neighborhood basis
consisting of (absolutely) convex sets.

A locally convex space is a Fréchet space, if and only if, it is metrizable and complete.
Locally convex spaces provide the general framework for the Hahn-Banach theorem and its
consequences.

Let (A, p;) be a locally convex space. Then B C A is bounded if and only if for each
leN

sup py(z) < 0o
zEB
Proposition 2.1. [23, Proposition 22.12] Let E be a locally convex space, F be a subspace
of E and p be a continuous seminorm on E. Then
(a) For each y € F* there exists a Y € E* with Y|p = y;
(b) For each z € E there exists a o € E* with o(z) = p(z) and |o| < p;
(¢) For each x € E with x # 0 there exists a 0 € E* with o(x) # 0.

Let E, F be linear spaces and &, n linear forms on F and F, respectively. Then the
map (z,y) — £(z)n(y) is bilinear on E x F. Hence for u = Z?:l z;Qy; € E®F, the map
u— >0 E(x5)n(y;) is a linear form on B ® F.
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Let p on E and q on F be seminorms. Then for u € E® F, we set

P ®e q(u) = sup{| Y _ &(z;)n(y;)| : p*(€) < Land ¢*(n) < 1}
j=1

As usually p*(€) := sup{|¢{(z)| : p(x) < 1} and ¢*(n) analogous.

P ®¢ q is a seminorm on E® F and p ®. q¢(z ® y) = p(x)q(y), for all z € E and y € F.
Since p ®. q increases when p and ¢ are increased, the following definition makes sense. The
e-tensor product of two locally convex spaces E and F' is their tensor product equipped with
the uniquely defined locally convex topology on E ® F' given by the seminorms p ®. ¢ where
p runs through the continuous seminorms on E, g those on F. It is denoted by F ®. F' and
its completion is denoted by E®.F.

The injective tensor product E ®. F' is metrizable (resp. normable) if F and F' are.

3. Fréchet a-lipschitz vector-valued operator algebras

Let (X,d) be a metric space with at least two elements and (A, p;) be a Fréchet
algebra over the scalar field F' | for a constant & > 0 and a function f: X — A, set

o) = 5w (1)) and (1) = sup UL = )

Definition 3.1. Let (X, d) be a metric space with at least two elements, (A, p;) be a Fréchet
algebra and o > 0. We define, the vector-valued Fréchet Lipschitz algebra, Lip, (X, A) of all
functions such f: X — A satisfy in the following conditions:

1) qai(f) < oo, for each | € N;

i) pai(f) < oo, for each l € N.
The Lipschitz algebra lip,, (X, A) is the subalgebra of Lip, (X, A) defined by

w(f@) = Fw)
d(x,y)*

Let (X,d) be a metric space with at least two elements and (A, p;) be a Fréchet
algebra and a > 0. We define

Ta,l(.f) = QOc,l(f) +pa,l(f) (f € Lipa(X7 A))
We denote the set of all bounded continuous operators from X into A by Cp(X, A), and
define q;(f) := sup,cx pi(f(z)) for each f € Cp(X, A).
Let f,g € Cy(X, A), and A € C. Define
(f+9)@)=f@)+g(x) and (Af)(x) =Af(z) (z € X)
It is easy to see that (Cy(X, A),q) becomes a Fréchet space over C and Lip, (X, A) is a
linear subspace of Cp(X, A).

Lemma 3.1. (Lip, (X, A),rq,1) is a Fréchet subalgebra of Cp(X, A).

lip,, (X, A) := {f:X—>A‘ —0as d(x,y)—>0}

Proof. Let x € X and (x,)nen be a sequence in X such that x,, — x. Then d(z,,z) — 0.
Let f € Lip, (X, A), since p,i(f) < oo (for each I € N), thus there exist M; such that

n@n)=f@) < prfor each 1 € N.

d(zn,x)e

Hence pi(f(zn) — f(z)) < Mid(zy,2)* — 0, so pi(f(z,) — f(z)) — 0.

Thus f(x,) — f(x) in the topology of A. It follows that f is continuous.

It is obvious that the sequence (r, ;) is a countable family of seminorms. We show that the
sequence (rq ;) are submultiplicative seminorms i. e.

9o (fg) = sup pi(fg(x)) < sup pi(f(x)) sup pi(9(x)) = qa,i(f)4a,i(9)
rzeX rzeX reX
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Also

oi(fg(x) — fo(y))
pai(fg) i=sup l i)
p(f(@)g(x) — f(y)g(x) + f(y)g(x) — f(y)g(y))

= sup

TFY d(l‘, y)a
< sup p(f(x) — fW)pi(g(x) + pi(f(y)pilg(x) — 9(y))
- TH£Y d(.’b, y)a

= 40, 1(9)Pa 1 (f) + Qo1 (f)Pa,1(9)

Hence we have:

Ta,i(f9) = qai(f9) + Pai(f9)
< 40.1(f)90,1(9) + 4, 1(9)Pa i (f) + Qo i (f)Pari(9)
< (ot (f) + Pt ()01 (9) + Pai(9)) = Tai(f) + Tai(9)
0

The Fréchet algebra (Lip,, (X, A), r4,) will be called Fréchet Lipschitz algebra of order
a on X. The elements of Lip, (X, A) and lip, (X, A) are called big and little Fréchet a-
Lipschitz operators, respectively. Sometimes we call them Lipschitz operators, for short.

It is easy to show that if (X, d) be a metric space and (A, p;) be a Fréchet algebra.
Then Lip,, (X, A) is a commutative (unital) Fréchet algebra if and only if A is a commutative
(unital) Fréchet algebra.

Lemma 3.2. Let (A, p,) and (B, qm) be Fréchet algebras and ¢ : A — B be a continuous
homomorphic, with dense range, and (e, ) be a bounded approzimate identity for A. Then
(d(eq)) is a bounded approzimate identity for B.

Proof. Suppose that b € B, so there exist (a,) C A, such that ¢(a,) — b, hence for all
m €N, gm(¢p(an) —b) — 0. Let a,, € A, since (e,) is a bounded approximate identity for
A, hence anyeq — any — 0, S0 Pr(an,eq — an,) — 0 for all n € N. Also there exist M > 0,
such that p,(eq) < M.

Since ¢ is continuous, hence for all m,n € N there exist k > 0 such that ¢, (¢(eq)) <
kpn(eq) < kM. Thus (¢(eq)) is bounded. Moreover we have

gm(bd(ea) = b) = gm(bp(ea) — ¢(any)P(ea) + dlan,)p(ea) — ¢(any) + ¢(an,) —b)
< gm(d(ea))gm(b — dan,) + gm(d(ansea — angy)) + gm(P(an,) —b)
< kMg (b — ¢(an,) + kpn(ansea — ang) + gm(p(an) —b) — 0

Hence for each b € B, bg(e,) — b. Similarly ¢(eq)b — b. Therefore (¢(eq)) is a bounded
approximate identity for B. O

It is worth mentioning that, if (E,p;) be a Fréchet algebra and (4, ||-||) be a Banach
algebra. Then (A®FE, s;) is a Fréchet algebra where s;(a ® €) = ||a||p;(e), for all @ € A and
ec k.

Lemma 3.3. Let (X,d) be metric space, (A,p;) be a Fréchet algebra and o > 0. If (A, p;)
has a bounded approzimate identity. Then (Lip,(X)®A,s;) has a bounded approzimate
identity.

Proof. Let (z,) be a bounded approximate identity for (A4,p;). Put e, := 1 ® 2z, we now
show that (e.) is a bounded approximate identity for Lip, (X)®A.

Let f € Lip,(X)®A. Then f = 30", g5 @ an, for some g,, € Lip,(X) and a, € A
such that Y07 | llgnllapi(an) < oo.
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Thus for each € > 0, there exist N € N such that Y 7" . |lgnllapi(an) <.

So for each € > 0 we have:
n o0

Sl( Z (gn®an)'(1®z’v)_ Z (gn®an))
n=N+1 n=N+1

§ Z sl(gn & (anz'y - an))
n=N+1
o0

Z ”gn”apl(anz'y - a'n)
n=N+1
oo oo

Z Hgn”apl(anzv)"’ Z ”gn”ocpl(an)

n=N-+1 n=N+1
(p1(2y) + 1)e

(M +1)e

where M := sup, {pi(z,) : | € N} < oo.

Also we have

IN

IN

<
<

N
gn®an : ®27_Z(gn®an))

n=1

1(gn ® (anzy — an))

|gn||apl Qn 2 an) — 0
Y

HMZ HMZ HMZ

Hence for each f € Lip, (X )®A 1(f-e5—f) — 0. Therefore (e4) is a bounded approximate
for Lip,, (X)®A. O

Proposition 3.1. Let (X,d) be metric space , (A, p;) be a Fréchet algebra and o > 0. Then
the following statements are equivalent

i) Lip, (X, A) has a bounded approximate identity;

ii) (A,p1) has a bounded approximate identity.

Proof. (i) — (ii): Suppose that (eg) be a bounded approximate identity for Lip, (X, A). For
zo € X, we define zg := eg(x).
Let f,(z) = z, for z € X. Then f, € Lip, (X, A) and
pizp-z = 2) = piles - f=(x0) — f=(0))

< Q(x,l(eﬁ : fz - fz)

< Ta,l(eﬁ . fz - fz) =0
Hence, z5 -z — z, for all z € A. Similarly z- z3 — 2. Also, pi(25) = pi(eg(z0)) < ga,i(er) <
ra(eg) < M, for some M > 0 and each 5. Hence (z3) is a bounded approximate identity
of A.
(ii) — (i): Let (eg) be a bounded approximate identity for (A, p;). For every h € Lip, (X)®A,
there exist, (f;)ien € Lip,(X) and (a;)ien € A such that, h =32, (f; ® a;). Define

T : Lip, (X)®A — Lip, (X, A)

o0
= Z fia;
=1
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and for all z € X, we have f-a(z) = f(x)a. Then T is continuos homorphic, with dense range.
Thus by using lemma 3.3, (1 ® eg) is a bounded approximate identity for Lip, (X, A4). O

The following result is a generalization of [Proposition 2.1] for the Fréchet case.
Lemma 3.4. Let (A, p;) be a Fréchet algebra and z € A. Then
pi(z) =sup{lo(z)] : 0 € A" and |o| < pi}
Proof. Since p; is a seminorm on A, so there is a g € A* such that
oo(z) =pi(z) and |oo| < py

Hence we have

pi(z) = 00(z) < sup{lo(z)] : 0 € A" and |o| < pi} (1)

Conversly, suppose that |o| < p;. Then we have |o(z)| < pi(z), so
sup{lo(z)] : 0 € A" and |o| < pi} < pi(2) (2)
By using (1) and (2), we have p;(z) = sup{|o(2)| : 0 € A* and |o| < p;}. O

The following result is a generalization of [5, Lemma 1.1], for the Fréchet case.

Theorem 3.1. Let (X,d) be a metric space with at least two elements, (A,p;) be a Fréchet
space, a« > 0 and f € B(X,A). Then the following statements are equivalent.

(i) f € Lip, (X, A);

(ii) oof € Lip, (X), for all 0 € A*.

Proof. (i) — (i1) Suppose that f € Lip,(X,A) and 0 € A*. Then there exists ¢ > 0
and | € N such that |o(z)| < epi(z), for all z € A. Especially for all z € X, we have
o (f ()] < epi(f(2)).
On the other hand ¢, (f) := sup,ex pi(f(x)) < co. Hence |o(f(2))| < cqa,i(f) < oo and
oof is bounded. Also
|oof (x) — oof(y)] o(f(x) = fF(W))
pal(oof) = sup =sup ——-———
NI T e SE T dy)
oy @) = F(0)
TH#y d(fcvy)a

= Cpa,l(f) < 00

Therefore oof € Lip, (X).

(#4) — (i) Suppose that ¢ € A*. We define T, : Lip,(X,A) — Lip,(X) by
T,(f) = oof, for all f € Lip,(X,A). Then {T,}sca- is a family of continuous linear
maps. Since o € A*, so there exists ¢ > 0 and [ € N such that for all x € X

lo(f(@))| < epi(f(2))

Hence |loof||cc < ¢qa,i(f) and we have

o) - wopw) _ n(f@ - fw)
Pl = T e ST ey

Thus for each f € Lip, (X, A),
176 (Hlla = llooflla
= |loof||e + Paloof)
< (€Ga (f) + cpay(f))
= CTa,l(f)

= Cpa,l(f)
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Therefore T, is continuous.
Now, we show that f € Lip, (X, F). For each | € N there exists o; € A*:

pi(f(z) = f(y) = ou(f(2) = f(y))

Thus:
p(f(x) — f(v))
Pai(f) = S )
_ o Ne(F (@) —a(f )]
T Gy mleeDse
Also
Gt (f) = sup pi(f(x))
reX
= sup |o(f(2))] = galo0f) < o0
ocE*
lo|<p
Therefore f € Lip, (X, E). O

Corollary 3.1. Let (X, d) be metric space and (A, p;) be a Fréchet algebra. Then Lip, (X, A)
is the mazimal subalgebra of Cy(X, A) satisfying

A*o Lipa (Xa A) c Lipa (X)

Proof. Suppose that E is a subalgebra of Cy(X, A) satisfying A* o E C Lip,(X), we show
that E is contained in Lip, (X, A). To see this, let f € F then for every o € FE we have,
oof € Lip,(X) by Theorem 3.1, so f € Lip, (X, A), which implies that E C Lip, (X, A). O

Let (A, p;) and (B, q;) be Fréchet space and ¢ : A — B be a linear bijecion map such
that g;(¢(x)) = pi(x) for each z € A. Then the metric induced by (p;) and (¢;) are isometric.

Proposition 3.2. Let (X,d) be a compact metric space and (A,p;) be a Fréchet algebra.
Then Cy(X) ®: A is isometrically isomorphic to Cyp(X, A).

Proof. For all f € Cp(X) and a € A, f.a € Cy(X, A) where by f.a(z) = f(z)a, (x € X).The
mapping (f,a) = f.a from Cp(X) x A into Cp(X, A) is bilinear. Hence there exists a unique
linear map ¢ : Cp(X) ® A — Cp(X, A) such that ¢(f ® a)(x) = f(x)a, for all f € Cp(X),
x € X and a € A. Clearly, ¢ is a homomorphism.

Foru=73", fi®a; € Cp(X)® A and | € N we have

a(p(u)) = sup{pi((u)(z)) : z € X}
= sup{pl(z filx)a;) 1z € X}

= sug{sup{\o(z fi(@)a;| : 0 € A" and |o| < p;}
*€ i=1

sug{sup{\ Zfi(x)a(aiﬂ co€ A" and |0 < pi}
€ i=1

sup sup{| Y _ fi(x)o(a;)| : |o] < pi}

cEA* z€X im1

n
sup {|| Y fio(ai)ll : lo] < pi}
ceAr o
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=sup sup {|>_o(a)u(f;)|: o] <p}

ceA* peC(X)y ;44

= sup{] Zd(ai)u(ﬁ) :pi(0) < Land p € Cp(X)7}

= (Il @ pi)(u)
Thus ¢ is an isometry. It remains to show that ¢(Cy(X)® A) is dense in Cp(X, A). Choose
a seminorm p on A and ¢ > 0. For f € Cp(X,A), we can find ay, -+ ,a, € A such that

X = UL {xlp(a; — f(z)) <e}. Put ¢;(z) = max{0,e — p(a; — f(x))} and ¢ = 37, ¢;.
Note that ¢(z) > 0, for all z € X. Put

=3 %a e (X)04
= ¢
Then we have for x € X

Hence Cp(X) ® A = Cp(X, A) O

Now, as a consequence of Theorem 3.2, we generalize the following result on vector-
valued Lipschitz algebras for Fréchet algebra. Although, this result has already been proved
in [26] for Banach algebra.

Corollary 3.2. Let (X,d) be a compact metric space with at least two elements, (A,p;) be
a Fréchet algebra and o > 0. Then

Lip, (X, A) = Cp(X, A)

Proof. Let h € Cy(X, A). Since Cp(X)®. A = Cp(X, A), thus there exists f1, fa,... € Cp(X)
and a1, as, ... € Asuch that h =32, fi - a;.

In other hand we have Cy(X) = Lip, (X). Hence for each i € N there exist g; € Lip,(X)

such that
€

i — Jilloo < 5773

llgi = fill Spr(ar)

Therefore for each € > 0 and for each z € X,
lgi(z) = fi(z)] <

Now, we define ¢; : C — A, by ¢;(\) = A - a;.
Then ¢;0g; € Lip, (X, A). Since

Qa1 (Pi0gi) = sup pi(di(gi(x)) = sup pi(gi(x) - a;)
zeX zeX

€
2ipl (ai)

= [|gilloopi(ai) < o0
We have
- pi((9:09:)(x) — (¢i09:)(y))
Pa,1(@i0gi) = 21;2 Az )
o pi(gi(®) - ai — gi(y) - ai)
ok d(z,y)°
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80 s
TH#Yy d(xvy)
< |lgillsopr(ai) < o0
Therefore

Goi(h = 6:i09:) =qau Y _(fi - ai — gi - ai)

i=1 i=1

= sup pl(ifi(x) nai — gi(x) - ai)
i=1

zeX

< sup Y |fi(x) = gi(2)lpe(ai)

reX i—1

o0
g
< - . i) =
= ; 2lpl(ai) pl(az) €

4. Ideal amenability of Lip, (X, A)

In this section, we study the ideal amenability of vector-valued Fréchet lipschitz algebra
Lip, (X, A).

Let (A,pi) be a Fréchet algebra and I be a closed (two-sided) ideal in A. Similar to the
Banach algebra case, we say that A is I-weakly amenable if every continuous derivation
D : A — I* is inner. Moreover we introduce the concept of ideal amenability for Fréchet
algebras as the following:

A Fréchet algebra A is called ideally amenable if it is I-weakly amenable, for every
closed (two-sided) ideal I in A.

Let A be a Fréchet algebra and ¢ € A(A), the set consisting of all non-zero continuous
characters on A. A point derivation d at ¢ is a linear functional satisfying d(xy) = d(x)¢(y)+
o(x)d(y), where x,y € A, i.e. d is a derivation into the A-bimodule C, where the module
actions is defined by - A =Xz = A¢(z),z € Aand X € C.

The following lemma is immediate.

Lemma 4.1. Let (X,d) be a metric space with at least two elements, (A,p;) be a Fréchet
algebra and o > 0. For each non-isolated point x € X and o € A*. Let ¢ : Lip, (X, A) = C

is given by ¢(f) = (oof)(x), (f € Lip, (X, A)) then ¢ € A(Lip, (X, A4)).

Let CY := {(2)nen : 7, € C and n € N} be the set of all complex sequences. Then
CN becomes an algebra by defining algebraic operations coordinatewise. For each n € N,
the function p, : CY — R define by p,(z) = mMaxi<m<n |Tm| defines a submultiplicativ
seminorm on CN.
Clearly {p,} defines the product topology on CN, under which CY is complete [13]. Thus,
(CY p,,) becomes a Hausdorff Fréchet algebra.
Similar to the Banach algebra case in [24], we say that a bounded linear functional LIM:
(CN,p,) — C is is Fréchet limit if for every z = (z,) € CV, y = (y,) € CN and a € C
satisfying
(1) LIM is linear: LIM(x 4+ y) = LIM(z) + LIM(y) and LIM(az) = o LIM(x).
(2) LIM is positive: LIM(x) > 0, for every z, > 0.
(3) LIM is normalized: LIM(1) =1, where 1 = (1,1,---).
(4) LIM is shift invariant: LIM(sx) = LIM(z).

The above properties on the functional LIM imply the following:
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(5) LIM extends lim on the subspace of convergent sequences:

lim x, = c= LIM(x) =¢

n—oo

(6) If lim,, oo 7, = c and y = (y,,) € CN, then LIM(z,9,) = ¢ LIM(yy,).
Let (X, d) be a fixed non-empty compact metric space, set

A={(z,y) e XxX:z=yland W:=X x X — A
The following result is a generalization of [26, Theorem 3.4] for the Fréchet case.

Theorem 4.1. Let (X,d) be an infinite compact metric space, (A,p;) be a Fréchet algebra
and 0 < a < 1. Then Lip, (X, A) is not ideally amenable.

Proof. Let x be a non-isolated point in K. We define
Wy o= {0, 00) ¢ (@) €W, Tim (2,9) = ()}
For the net W = {(zn,yn)} in W, and o € A, we put
W, : Lip,(X,A) = C

defined by

Wa(f) = (Uof)(j(fnyng)(y") (f € Lina (X, 4))

Since f € Lip, (X, A) and o € A*, so gof : X — C is continues. Hence

There exists ¢ > 0 and [ € Nsuch that |(cof)(z,) — (cof)(yn)| = |o(f(xn) — f(yn))]
< Cpl(f(xn) - f(yn)) < Cpa,l(f)d(xmyn)a

Thus
(cof)(zn) — (00f)(yn)
A, yn)®

I, W)l = |
Therefore, W, is continues. Now set

D : Lip, (X, A) — C, by D(f) = LIM(W,(f))

| S Cpa,l(f)

We show that the linear map D is a non-zero point derivation at ¢, for which ¢ is given by

¢(f) = (oof)(x), (f € Lip, (X, A)).

We have
D(fg) = LIM(W,(fg)) = LIM (UOfg)(;&) —y(a)zfg)(yn)
=LIM ;(oo(f(xn)g(xn) — fyn)g(yn))

d(z,y)*
=LIM d(a:,%)a (00(f(ﬂcn) (9(xn) — g(yn)) + (f(zn) — f(yn))g(yn))>
= (00f)(x) LIM(W,(9)) + (cog)(x) LIM(W,(f))
= ¢(f)D(g) — ¢(9)D(f)

Therefore, by the continuity f,g and properties of Fréchet limit, we conclude D is a non-
zero, continues point derivation at ¢ on Lip, (X, A). Hence by using [20, Proposition 3.1]
Lip, (X, A) is not ideally amenable. O

Example 4.1. Let (A,p;) be a commutative Fréchet algebra, T = {z € C : |z| = 1} be the
group of complex numbers of modulus one, and o > % Then by using [16, Proposition 3.5]

and [20, Theorem 4.2] the proof is immediate. Also lip, (T)®A is not ideally amenable.
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