

FRÉCHET α -LIPSCHITZ VECTOR-VALUED OPERATOR ALGEBRAA. Ranjbari¹ and A. Rejali²

Let (X, d) be a metric space with at least two elements and (A, p_l) , be a Fréchet algebra over the scalar field F and take $\alpha \in \mathbb{R}$ with $\alpha > 0$. In this paper, at first we define the big and little Fréchet α -Lipschitz vector-valued operator algebras of order α and examine how this concept in Banach algebra can be generalized for Fréchet algebra. Furthermore, we study some properties and ideal amenability of Fréchet α -Lipschitz vector-valued operator algebras.

Keywords: Vector-valued Lipschitz algebra, Fréchet algebra, Ideal amenability of Fréchet algebra, Metric space.

1. Introduction

Some of the notions related to Banach algebras, have been introduced and studied for Fréchet algebra. For example, the notion of amenability of a Fréchet algebra was studied by Pirkovskii [22]. Lawson and Read introduced and studied the notions of approximate amenability and approximate contractibility of Fréchet algebras in [21]. Furthermore in [1], Abtahi and et al introduced and studied the notion of weak amenability of Fréchet algebra. Moreover, according to the basic definition of Segal algebras and abstract Segal algebras [2], recently they introduced the Segal- Fréchet algebra for the Fréchet algebra (A, p_l) . Rejali and Ranjbari generalized the concept of ideal amenability for Fréchet algebras in [20].

In this paper we introduce and study the notion of Lipschitz algebra, for Fréchet algebra. Let (X, d) be a metric space and $B(X)$ indicates the Banach space consisting of all bounded complex valued functions on X , endowed with the norm

$$\|f\|_{\sup} = \sup_{x \in X} |f(x)| \quad (f \in B(X))$$

Take $\alpha \in \mathbb{R}$ with $\alpha > 0$. Then $\text{Lip}_\alpha X$ is the subspace of $B(X)$, consisting of all of bounded complex-valued functions f on X such that

$$p_\alpha(f) := \sup \left\{ \frac{|f(x) - f(y)|}{d(x, y)^\alpha} : x, y \in X, x \neq y \right\} < \infty$$

It is known that $\text{Lip}_\alpha X$ endowed with the norm $\|\cdot\|_\alpha$ given by

$$\|f\|_\alpha := p_\alpha(f) + \|f\|_{\sup}$$

and pointwise product is a unital commutative Banach algebra, which is called Lipschitz algebra of order α .

If E is a Banach space, for a constant $\alpha > 0$ and a function $f : X \rightarrow E$, the Lipschitz constant of f is defined by

$$p_{\alpha, E}(f) := \sup \left\{ \frac{\|f(x) - f(y)\|}{d(x, y)^\alpha} : x, y \in X, x \neq y \right\}$$

¹Department of Mathematics, University of Isfahan, Isfahan, Iran, e-mail: aranjbari1353@yahoo.com

²Department of Mathematics, University of Isfahan, Isfahan, Iran, e-mail: rejali@sci.ui.ac.ir

and the vector-valued big Lipschitz algebra (of order α), or simply, the vector-valued Lipschitz algebra is defined by

$$\text{Lip}_\alpha(X, E) = \{f : X \rightarrow E : f \text{ is bounded and } p_{\alpha, E}(f) < \infty\}.$$

Similarly, for $\alpha > 0$ the vector-valued little Lipschitz algebra (of order α) is defined by

$$\text{lip}_\alpha(X, E) = \{f \in \text{Lip}_\alpha(X, E) : \frac{\|f(x) - f(y)\|}{d(x, y)^\alpha} \rightarrow 0 \text{ as } d(x, y) \rightarrow 0\}.$$

These Lipschitz algebras were first studied by Sherbert in [24, 25].

Let E be a Banach algebra, and $\|f\|_{\alpha, E} = \|f\|_{\infty, E} + p_{\alpha, E}(f)$. In [9] it has been shown that $(\text{Lip}_\alpha(X, E), \|\cdot\|_{\alpha, E})$ is complete and it is, in fact, a Banach subalgebra of $C_b(X, E)$, and moreover, $\text{lip}_\alpha(X, E)$ is a closed subalgebra of $\text{Lip}_\alpha(X, E)$.

Many results on amenability and weak amenability of Lipschitz algebras are given in [4, 14, 18, 26]. For any $\phi \in \Delta(\text{lip}_\alpha X)$, ϕ -amenability of $\text{Lip}_\alpha X$, considered by Kaniuth and et al. (see [19], Example 5.3), and some results about character amenability of these algebras are studied in [5, 6, 7, 10]. Many results on Lipschitz algebra are given in [27, 28, 17, 3, 12].

Gordji and et al. (see [14], Theorem 2.4) proved that if (X, d) is a metric space. Then, the following statements are equivalent:

- (i) $\text{Lip}_\alpha X$ is character amenable;
- (ii) (X, d) is uniformly discrete;
- (iii) $\text{Lip}_\alpha X$ is amenable.

2. Preliminaries and introduction

In this section, we recall and review some of the basic terminologies about Fréchet algebra and Lipschitz algebras. For further details, see [13, 28].

A Fréchet algebra (A, p_l) is a topological algebra A whose topology can be defined by a sequence (p_l) of separating and submultiplicative seminorms, i.e., $p_l(fg) \leq p_l(f)p_l(g)$ for all $f, g \in A$ and which is complete with respect to this topology.

Without loss of generality we can assume that $p_l \leq p_{l+1}$ and that $p_l(1) = 1$ if A has identity 1. Note that a sequence $(a_n)_{n \in \mathbb{N}}$ in the Fréchet algebra (A, p_l) converges to $a \in A$ if and only if $p_l(a_n - a) \rightarrow 0$ for each $l \in \mathbb{N}$, as $n \rightarrow \infty$. A locally convex space E is a linear space over the field $K(\mathbb{R} \text{ or } \mathbb{C})$ together with a compatible topology (i.e. addition $E \times E \rightarrow E$ and scalar multiplication $K \times E \rightarrow E$ are continuous) and which has a 0-neighborhood basis consisting of (absolutely) convex sets.

A locally convex space is a Fréchet space, if and only if, it is metrizable and complete. Locally convex spaces provide the general framework for the Hahn-Banach theorem and its consequences.

Let (A, p_l) be a locally convex space. Then $B \subseteq A$ is bounded if and only if for each $l \in \mathbb{N}$

$$\sup_{x \in B} p_l(x) < \infty$$

Proposition 2.1. [23, Proposition 22.12] *Let E be a locally convex space, F be a subspace of E and p be a continuous seminorm on E . Then*

- (a) *For each $y \in F^*$ there exists a $Y \in E^*$ with $Y|_F = y$;*
- (b) *For each $z \in E$ there exists a $\sigma \in E^*$ with $\sigma(z) = p(z)$ and $|\sigma| \leq p$;*
- (c) *For each $x \in E$ with $x \neq 0$ there exists a $\sigma \in E^*$ with $\sigma(x) \neq 0$.*

Let E, F be linear spaces and ξ, η linear forms on E and F , respectively. Then the map $(x, y) \rightarrow \xi(x)\eta(y)$ is bilinear on $E \times F$. Hence for $u = \sum_{j=1}^n x_j \otimes y_j \in E \otimes F$, the map $u \rightarrow \sum_{j=1}^m \xi(x_j)\eta(y_j)$ is a linear form on $E \otimes F$.

Let p on E and q on F be seminorms. Then for $u \in E \otimes F$, we set

$$p \otimes_{\varepsilon} q(u) := \sup \left\{ \left| \sum_{j=1}^m \xi(x_j) \eta(y_j) \right| : p^*(\xi) \leq 1 \text{ and } q^*(\eta) \leq 1 \right\}$$

As usually $p^*(\xi) := \sup \{ |\xi(x)| : p(x) \leq 1 \}$ and $q^*(\eta)$ analogous.

$p \otimes_{\varepsilon} q$ is a seminorm on $E \otimes F$ and $p \otimes_{\varepsilon} q(x \otimes y) = p(x)q(y)$, for all $x \in E$ and $y \in F$. Since $p \otimes_{\varepsilon} q$ increases when p and q are increased, the following definition makes sense. The ε -tensor product of two locally convex spaces E and F is their tensor product equipped with the uniquely defined locally convex topology on $E \otimes F$ given by the seminorms $p \otimes_{\varepsilon} q$ where p runs through the continuous seminorms on E , q those on F . It is denoted by $E \otimes_{\varepsilon} F$ and its completion is denoted by $E \hat{\otimes}_{\varepsilon} F$.

The injective tensor product $E \otimes_{\varepsilon} F$ is metrizable (resp. normable) if E and F are.

3. Fréchet α -lipschitz vector-valued operator algebras

Let (X, d) be a metric space with at least two elements and (A, p_l) be a Fréchet algebra over the scalar field F , for a constant $\alpha > 0$ and a function $f : X \rightarrow A$, set

$$q_{\alpha, l}(f) := \sup_{x \in X} p_l(f(x)) \quad \text{and} \quad p_{\alpha, l}(f) := \sup_{x \neq y} \frac{p_l(f(x) - f(y))}{d(x, y)^{\alpha}}$$

Definition 3.1. Let (X, d) be a metric space with at least two elements, (A, p_l) be a Fréchet algebra and $\alpha > 0$. We define, the vector-valued Fréchet Lipschitz algebra, $\text{Lip}_{\alpha}(X, A)$ of all functions such $f : X \rightarrow A$ satisfy in the following conditions:

- i) $q_{\alpha, l}(f) < \infty$, for each $l \in \mathbb{N}$;
- ii) $p_{\alpha, l}(f) < \infty$, for each $l \in \mathbb{N}$.

The Lipschitz algebra $\text{lip}_{\alpha}(X, A)$ is the subalgebra of $\text{Lip}_{\alpha}(X, A)$ defined by

$$\text{lip}_{\alpha}(X, A) := \left\{ f : X \rightarrow A \mid \frac{p_l(f(x) - f(y))}{d(x, y)^{\alpha}} \rightarrow 0 \text{ as } d(x, y) \rightarrow 0 \right\}$$

Let (X, d) be a metric space with at least two elements and (A, p_l) be a Fréchet algebra and $\alpha > 0$. We define

$$r_{\alpha, l}(f) := q_{\alpha, l}(f) + p_{\alpha, l}(f) \quad (f \in \text{Lip}_{\alpha}(X, A))$$

We denote the set of all bounded continuous operators from X into A by $C_b(X, A)$, and define $q_l(f) := \sup_{x \in X} p_l(f(x))$ for each $f \in C_b(X, A)$.

Let $f, g \in C_b(X, A)$, and $\lambda \in \mathbb{C}$. Define

$$(f + g)(x) = f(x) + g(x) \quad \text{and} \quad (\lambda f)(x) = \lambda f(x) \quad (x \in X)$$

It is easy to see that $(C_b(X, A), q_l)$ becomes a Fréchet space over \mathbb{C} and $\text{Lip}_{\alpha}(X, A)$ is a linear subspace of $C_b(X, A)$.

Lemma 3.1. $(\text{Lip}_{\alpha}(X, A), r_{\alpha, l})$ is a Fréchet subalgebra of $C_b(X, A)$.

Proof. Let $x \in X$ and $(x_n)_{n \in \mathbb{N}}$ be a sequence in X such that $x_n \rightarrow x$. Then $d(x_n, x) \rightarrow 0$. Let $f \in \text{Lip}_{\alpha}(X, A)$, since $p_{\alpha, l}(f) < \infty$ (for each $l \in \mathbb{N}$), thus there exist M_l such that $\frac{p_l(f(x_n) - f(x))}{d(x_n, x)^{\alpha}} \leq M_l$ for each $l \in \mathbb{N}$.

Hence $p_l(f(x_n) - f(x)) \leq M_l d(x_n, x)^{\alpha} \rightarrow 0$, so $p_l(f(x_n) - f(x)) \rightarrow 0$.

Thus $f(x_n) \rightarrow f(x)$ in the topology of A . It follows that f is continuous.

It is obvious that the sequence $(r_{\alpha, l})$ is a countable family of seminorms. We show that the sequence $(r_{\alpha, l})$ are submultiplicative seminorms i. e.

$$q_{\alpha, l}(fg) = \sup_{x \in X} p_l(fg(x)) \leq \sup_{x \in X} p_l(f(x)) \sup_{x \in X} p_l(g(x)) = q_{\alpha, l}(f)q_{\alpha, l}(g)$$

Also

$$\begin{aligned}
p_{\alpha,l}(fg) &:= \sup_{x \neq y} \frac{p_l(fg(x) - fg(y))}{d(x, y)^\alpha} \\
&= \sup_{x \neq y} \frac{p_l(f(x)g(x) - f(y)g(x) + f(y)g(x) - f(y)g(y))}{d(x, y)^\alpha} \\
&\leq \sup_{x \neq y} \frac{p_l(f(x) - f(y))p_l(g(x)) + p_l(f(y))p_l(g(x) - g(y))}{d(x, y)^\alpha} \\
&= q_{\alpha,l}(g)p_{\alpha,l}(f) + q_{\alpha,l}(f)p_{\alpha,l}(g)
\end{aligned}$$

Hence we have:

$$\begin{aligned}
r_{\alpha,l}(fg) &:= q_{\alpha,l}(fg) + p_{\alpha,l}(fg) \\
&\leq q_{\alpha,l}(f)q_{\alpha,l}(g) + q_{\alpha,l}(g)p_{\alpha,l}(f) + q_{\alpha,l}(f)p_{\alpha,l}(g) \\
&\leq (q_{\alpha,l}(f) + p_{\alpha,l}(f))(q_{\alpha,l}(g) + p_{\alpha,l}(g)) = r_{\alpha,l}(f) + r_{\alpha,l}(g)
\end{aligned}$$

□

The Fréchet algebra $(\text{Lip}_\alpha(X, A), r_{\alpha,l})$ will be called Fréchet Lipschitz algebra of order α on X . The elements of $\text{Lip}_\alpha(X, A)$ and $\text{lip}_\alpha(X, A)$ are called big and little Fréchet α -Lipschitz operators, respectively. Sometimes we call them Lipschitz operators, for short.

It is easy to show that if (X, d) be a metric space and (A, p_l) be a Fréchet algebra. Then $\text{Lip}_\alpha(X, A)$ is a commutative (unital) Fréchet algebra if and only if A is a commutative (unital) Fréchet algebra.

Lemma 3.2. *Let (A, p_n) and (B, q_m) be Fréchet algebras and $\phi : A \rightarrow B$ be a continuous homomorphic, with dense range, and (e_α) be a bounded approximate identity for A . Then $(\phi(e_\alpha))$ is a bounded approximate identity for B .*

Proof. Suppose that $b \in B$, so there exist $(a_n) \subseteq A$, such that $\phi(a_n) \rightarrow b$, hence for all $m \in \mathbb{N}$, $q_m(\phi(a_n) - b) \rightarrow 0$. Let $a_{n_0} \in A$, since (e_α) is a bounded approximate identity for A , hence $a_{n_0}e_\alpha - a_{n_0} \rightarrow 0$, so $p_n(a_{n_0}e_\alpha - a_{n_0}) \rightarrow 0$ for all $n \in \mathbb{N}$. Also there exist $M > 0$, such that $p_n(e_\alpha) \leq M$.

Since ϕ is continuous, hence for all $m, n \in \mathbb{N}$ there exist $k > 0$ such that $q_m(\phi(e_\alpha)) \leq kp_n(e_\alpha) \leq kM$. Thus $(\phi(e_\alpha))$ is bounded. Moreover we have

$$\begin{aligned}
q_m(b\phi(e_\alpha) - b) &= q_m(b\phi(e_\alpha) - \phi(a_{n_0})\phi(e_\alpha) + \phi(a_{n_0})\phi(e_\alpha) - \phi(a_{n_0}) + \phi(a_{n_0}) - b) \\
&\leq q_m(\phi(e_\alpha))q_m(b - \phi(a_{n_0}) + q_m(\phi(a_{n_0}e_\alpha - a_{n_0})) + q_m(\phi(a_{n_0}) - b) \\
&\leq kMq_m(b - \phi(a_{n_0}) + kp_n(a_{n_0}e_\alpha - a_{n_0}) + q_m(\phi(a_{n_0}) - b) \rightarrow 0
\end{aligned}$$

Hence for each $b \in B$, $b\phi(e_\alpha) \rightarrow b$. Similarly $\phi(e_\alpha)b \rightarrow b$. Therefore $(\phi(e_\alpha))$ is a bounded approximate identity for B . □

It is worth mentioning that, if (E, p_l) be a Fréchet algebra and $(A, \|\cdot\|)$ be a Banach algebra. Then $(A \hat{\otimes} E, s_l)$ is a Fréchet algebra where $s_l(a \otimes e) = \|a\|p_l(e)$, for all $a \in A$ and $e \in E$.

Lemma 3.3. *Let (X, d) be metric space, (A, p_l) be a Fréchet algebra and $\alpha > 0$. If (A, p_l) has a bounded approximate identity. Then $(\text{Lip}_\alpha(X) \hat{\otimes} A, s_l)$ has a bounded approximate identity.*

Proof. Let (z_γ) be a bounded approximate identity for (A, p_l) . Put $e_\gamma := 1 \otimes z_\gamma$ we now show that (e_γ) is a bounded approximate identity for $\text{Lip}_\alpha(X) \hat{\otimes} A$.

Let $f \in \text{Lip}_\alpha(X) \hat{\otimes} A$. Then $f = \sum_{n=1}^{\infty} g_n \otimes a_n$, for some $g_n \in \text{Lip}_\alpha(X)$ and $a_n \in A$ such that $\sum_{n=1}^{\infty} \|g_n\|_\alpha p_l(a_n) < \infty$.

Thus for each $\epsilon > 0$, there exist $N \in \mathbb{N}$ such that $\sum_{n=N+1}^{\infty} \|g_n\|_{\alpha} p_l(a_n) < \epsilon$.
So for each $\epsilon > 0$ we have:

$$\begin{aligned}
& s_l \left(\sum_{n=N+1}^{\infty} (g_n \otimes a_n) \cdot (1 \otimes z_{\gamma}) - \sum_{n=N+1}^{\infty} (g_n \otimes a_n) \right) \\
& \leq \sum_{n=N+1}^{\infty} s_l(g_n \otimes (a_n z_{\gamma} - a_n)) \\
& \leq \sum_{n=N+1}^{\infty} \|g_n\|_{\alpha} p_l(a_n z_{\gamma} - a_n) \\
& \leq \sum_{n=N+1}^{\infty} \|g_n\|_{\alpha} p_l(a_n z_{\gamma}) + \sum_{n=N+1}^{\infty} \|g_n\|_{\alpha} p_l(a_n) \\
& \leq (p_l(z_{\gamma}) + 1)\epsilon \\
& \leq (M + 1)\epsilon
\end{aligned}$$

where $M := \sup_{\gamma} \{p_l(z_{\gamma}) : l \in \mathbb{N}\} < \infty$.

Also we have

$$\begin{aligned}
& s_l \left(\sum_{n=1}^N (g_n \otimes a_n) \cdot (1 \otimes z_{\gamma}) - \sum_{n=1}^N (g_n \otimes a_n) \right) \\
& \leq \sum_{n=1}^N s_l(g_n \otimes (a_n z_{\gamma} - a_n)) \\
& = \sum_{n=1}^N \|g_n\|_{\alpha} p_l(a_n z_{\gamma} - a_n) \rightarrow 0
\end{aligned}$$

Hence for each $f \in \text{Lip}_{\alpha}(X) \hat{\otimes} A$, $s_l(f \cdot e_{\gamma} - f) \rightarrow 0$. Therefore (e_{γ}) is a bounded approximate for $\text{Lip}_{\alpha}(X) \hat{\otimes} A$. \square

Proposition 3.1. *Let (X, d) be metric space, (A, p_l) be a Fréchet algebra and $\alpha > 0$. Then the following statements are equivalent*

- i) $\text{Lip}_{\alpha}(X, A)$ has a bounded approximate identity;
- ii) (A, p_l) has a bounded approximate identity.

Proof. (i) \rightarrow (ii): Suppose that (e_{β}) be a bounded approximate identity for $\text{Lip}_{\alpha}(X, A)$. For $x_0 \in X$, we define $z_{\beta} := e_{\beta}(x_0)$.

Let $f_z(x) = z$, for $x \in X$. Then $f_z \in \text{Lip}_{\alpha}(X, A)$ and

$$\begin{aligned}
p_l(z_{\beta} \cdot z - z) &= p_l(e_{\beta} \cdot f_z(x_0) - f_z(x_0)) \\
&\leq q_{\alpha, l}(e_{\beta} \cdot f_z - f_z) \\
&\leq r_{\alpha, l}(e_{\beta} \cdot f_z - f_z) \rightarrow 0
\end{aligned}$$

Hence, $z_{\beta} \cdot z \rightarrow z$, for all $z \in A$. Similarly $z \cdot z_{\beta} \rightarrow z$. Also, $p_l(z_{\beta}) = p_l(e_{\beta}(x_0)) \leq q_{\alpha, l}(e_{\beta}) \leq r_{\alpha, l}(e_{\beta}) \leq M$, for some $M > 0$ and each β . Hence (z_{β}) is a bounded approximate identity of A .

(ii) \rightarrow (i): Let (e_{β}) be a bounded approximate identity for (A, p_l) . For every $h \in \text{Lip}_{\alpha}(X) \hat{\otimes} A$, there exist, $(f_i)_{i \in \mathbb{N}} \in \text{Lip}_{\alpha}(X)$ and $(a_i)_{i \in \mathbb{N}} \in A$ such that, $h = \sum_{i=1}^{\infty} (f_i \otimes a_i)$. Define

$$\begin{aligned}
T : \text{Lip}_{\alpha}(X) \hat{\otimes} A &\rightarrow \text{Lip}_{\alpha}(X, A) \\
T(h) &= \sum_{i=1}^{\infty} f_i a_i
\end{aligned}$$

and for all $x \in X$, we have $f \cdot a(x) = f(x)a$. Then T is continuous homomorphic, with dense range. Thus by using lemma 3.3, $(1 \otimes e_\beta)$ is a bounded approximate identity for $\text{Lip}_\alpha(X, A)$. \square

The following result is a generalization of [Proposition 2.1] for the Fréchet case.

Lemma 3.4. *Let (A, p_l) be a Fréchet algebra and $z \in A$. Then*

$$p_l(z) = \sup\{|\sigma(z)| : \sigma \in A^* \text{ and } |\sigma| \leq p_l\}$$

Proof. Since p_l is a seminorm on A , so there is a $\sigma_0 \in A^*$ such that

$$\sigma_0(z) = p_l(z) \quad \text{and} \quad |\sigma_0| \leq p_l$$

Hence we have

$$p_l(z) = \sigma_0(z) \leq \sup\{|\sigma(z)| : \sigma \in A^* \text{ and } |\sigma| \leq p_l\} \quad (1)$$

Conversely, suppose that $|\sigma| \leq p_l$. Then we have $|\sigma(z)| \leq p_l(z)$, so

$$\sup\{|\sigma(z)| : \sigma \in A^* \text{ and } |\sigma| \leq p_l\} \leq p_l(z) \quad (2)$$

By using (1) and (2), we have $p_l(z) = \sup\{|\sigma(z)| : \sigma \in A^* \text{ and } |\sigma| \leq p_l\}$. \square

The following result is a generalization of [5, Lemma 1.1], for the Fréchet case.

Theorem 3.1. *Let (X, d) be a metric space with at least two elements, (A, p_l) be a Fréchet space, $\alpha > 0$ and $f \in B(X, A)$. Then the following statements are equivalent.*

- (i) $f \in \text{Lip}_\alpha(X, A)$;
- (ii) $\sigma of \in \text{Lip}_\alpha(X)$, for all $\sigma \in A^*$.

Proof. (i) \rightarrow (ii) Suppose that $f \in \text{Lip}_\alpha(X, A)$ and $\sigma \in A^*$. Then there exists $c > 0$ and $l \in \mathbb{N}$ such that $|\sigma(f(z))| \leq cp_l(z)$, for all $z \in X$. Especially for all $x \in X$, we have $|\sigma(f(x))| \leq cp_l(f(x))$.

On the other hand $q_{\alpha, l}(f) := \sup_{x \in X} p_l(f(x)) < \infty$. Hence $|\sigma(f(x))| \leq cq_{\alpha, l}(f) < \infty$ and σof is bounded. Also

$$\begin{aligned} p_\alpha(\sigma of) &= \sup_{x \neq y} \frac{|\sigma of(x) - \sigma of(y)|}{d(x, y)^\alpha} = \sup_{x \neq y} \frac{|\sigma(f(x) - f(y))|}{d(x, y)^\alpha} \\ &\leq \sup_{x \neq y} \frac{cp_l(f(x) - f(y))}{d(x, y)^\alpha} = cp_{\alpha, l}(f) < \infty \end{aligned}$$

Therefore $\sigma of \in \text{Lip}_\alpha(X)$.

(ii) \rightarrow (i) Suppose that $\sigma \in A^*$. We define $T_\sigma : \text{Lip}_\alpha(X, A) \rightarrow \text{Lip}_\alpha(X)$ by $T_\sigma(f) = \sigma of$, for all $f \in \text{Lip}_\alpha(X, A)$. Then $\{T_\sigma\}_{\sigma \in A^*}$ is a family of continuous linear maps. Since $\sigma \in A^*$, so there exists $c > 0$ and $l \in \mathbb{N}$ such that for all $x \in X$,

$$|\sigma(f(x))| \leq cp_l(f(x))$$

Hence $\|\sigma of\|_\infty \leq cq_{\alpha, l}(f)$ and we have

$$p_\alpha(\sigma of) = \sup_{x \neq y} \frac{|(\sigma of)(x) - (\sigma of)(y)|}{d(x, y)^\alpha} \leq c \sup_{x \neq y} \frac{p_l(f(x) - f(y))}{d(x, y)^\alpha} = cp_{\alpha, l}(f)$$

Thus for each $f \in \text{Lip}_\alpha(X, A)$,

$$\begin{aligned} \|T_\sigma(f)\|_\alpha &= \|\sigma of\|_\alpha \\ &= \|\sigma of\|_\infty + p_\alpha(\sigma of) \\ &\leq (cq_{\alpha, l}(f) + cp_{\alpha, l}(f)) \\ &= cr_{\alpha, l}(f) \end{aligned}$$

Therefore T_σ is continuous.

Now, we show that $f \in \text{Lip}_\alpha(X, E)$. For each $l \in \mathbb{N}$ there exists $\sigma_l \in A^*$:

$$p_l(f(x) - f(y)) = \sigma_l(f(x) - f(y))$$

Thus:

$$\begin{aligned} p_{\alpha,l}(f) &= \sup_{x \neq y} \frac{p_l(f(x) - f(y))}{d(x, y)^\alpha} \\ &= \sup_{x \neq y} \frac{|\sigma_l(f(x)) - \sigma_l(f(y))|}{d(x, y)^\alpha} = p_\alpha(\sigma_l \circ f) < \infty \end{aligned}$$

Also

$$\begin{aligned} q_{\alpha,l}(f) &= \sup_{x \in X} p_l(f(x)) \\ &= \sup_{\sigma \in E^*} |\sigma(f(x))| = q_\alpha(\sigma \circ f) < \infty \\ |\sigma| &\leq p_l \end{aligned}$$

Therefore $f \in \text{Lip}_\alpha(X, E)$. \square

Corollary 3.1. *Let (X, d) be metric space and (A, p_l) be a Fréchet algebra. Then $\text{Lip}_\alpha(X, A)$ is the maximal subalgebra of $C_b(X, A)$ satisfying*

$$A^* \circ \text{Lip}_\alpha(X, A) \subseteq \text{Lip}_\alpha(X)$$

Proof. Suppose that E is a subalgebra of $C_b(X, A)$ satisfying $A^* \circ E \subseteq \text{Lip}_\alpha(X)$, we show that E is contained in $\text{Lip}_\alpha(X, A)$. To see this, let $f \in E$ then for every $\sigma \in E$ we have, $\sigma \circ f \in \text{Lip}_\alpha(X)$ by Theorem 3.1, so $f \in \text{Lip}_\alpha(X, A)$, which implies that $E \subseteq \text{Lip}_\alpha(X, A)$. \square

Let (A, p_l) and (B, q_l) be Fréchet space and $\phi : A \rightarrow B$ be a linear bijection map such that $q_l(\phi(x)) = p_l(x)$ for each $x \in A$. Then the metric induced by (p_l) and (q_l) are isometric.

Proposition 3.2. *Let (X, d) be a compact metric space and (A, p_l) be a Fréchet algebra. Then $C_b(X) \otimes_\varepsilon A$ is isometrically isomorphic to $C_b(X, A)$.*

Proof. For all $f \in C_b(X)$ and $a \in A$, $f.a \in C_b(X, A)$ where by $f.a(x) = f(x)a$, $(x \in X)$. The mapping $(f, a) \rightarrow f.a$ from $C_b(X) \times A$ into $C_b(X, A)$ is bilinear. Hence there exists a unique linear map $\phi : C_b(X) \otimes A \rightarrow C_b(X, A)$ such that $\phi(f \otimes a)(x) = f(x)a$, for all $f \in C_b(X)$, $x \in X$ and $a \in A$. Clearly, ϕ is a homomorphism.

For $u = \sum_{i=1}^n f_i \otimes a_i \in C_b(X) \otimes A$ and $l \in \mathbb{N}$ we have

$$\begin{aligned} q_l(\phi(u)) &= \sup\{p_l(\phi(u)(x)) : x \in X\} \\ &= \sup\{p_l(\sum_{i=1}^n f_i(x)a_i) : x \in X\} \\ &= \sup_{x \in X} \{\sup\{|\sigma(\sum_{i=1}^n f_i(x)a_i)| : \sigma \in A^* \text{ and } |\sigma| \leq p_l\} \\ &= \sup_{x \in X} \{\sup\{|\sum_{i=1}^n f_i(x)\sigma(a_i)| : \sigma \in A^* \text{ and } |\sigma| \leq p_l\} \\ &= \sup_{\sigma \in A^*} \sup_{x \in X} \{|\sum_{i=1}^n f_i(x)\sigma(a_i)| : |\sigma| \leq p_l\} \\ &= \sup_{\sigma \in A^*} \{||\sum_{i=1}^n f_i\sigma(a_i)||_\infty : |\sigma| \leq p_l\} \end{aligned}$$

$$\begin{aligned}
&= \sup_{\sigma \in A^*} \sup_{\mu \in C(X)_1^*} \left\{ \left| \sum_{i=1}^n \sigma(a_i) \mu(f_i) \right| : |\sigma| \leq p_l \right\} \\
&= \sup \left\{ \left| \sum_{i=1}^n \sigma(a_i) \mu(f_i) \right| : p_l^*(\sigma) \leq 1 \text{ and } \mu \in C_b(X)_1^* \right\} \\
&= (||.|| \otimes p_l)(u)
\end{aligned}$$

Thus ϕ is an isometry. It remains to show that $\phi(C_b(X) \otimes A)$ is dense in $C_b(X, A)$. Choose a seminorm p on A and $\varepsilon > 0$. For $f \in C_b(X, A)$, we can find $a_1, \dots, a_m \in A$ such that $X = \bigcup_{j=1}^m \{x \mid p(a_j - f(x)) < \varepsilon\}$. Put $\phi_j(x) = \max\{0, \varepsilon - p(a_j - f(x))\}$ and $\phi = \sum_{j=1}^m \phi_j$. Note that $\phi(x) > 0$, for all $x \in X$. Put

$$u = \sum_{j=1}^m \frac{\phi_j}{\phi} a_j \in C_b(X) \otimes A$$

Then we have for $x \in X$

$$\begin{aligned}
p(u(x) - f(x)) &= p\left(\sum_{j=1}^m \frac{\phi_j(x)}{\phi(x)} (a_j - f(x))\right) \\
&\leq \sum_{j=1}^m \frac{\phi_j(x)}{\phi(x)} p(a_j - f(x)) < \varepsilon
\end{aligned}$$

Hence $\overline{C_b(X) \otimes_\varepsilon A} = C_b(X, A)$ □

Now, as a consequence of Theorem 3.2, we generalize the following result on vector-valued Lipschitz algebras for Fréchet algebra. Although, this result has already been proved in [26] for Banach algebra.

Corollary 3.2. *Let (X, d) be a compact metric space with at least two elements, (A, p_l) be a Fréchet algebra and $\alpha > 0$. Then*

$$\overline{\text{Lip}_\alpha(X, A)} = C_b(X, A)$$

Proof. Let $h \in C_b(X, A)$. Since $C_b(X) \otimes_\varepsilon A = C_b(X, A)$, thus there exists $f_1, f_2, \dots \in C_b(X)$ and $a_1, a_2, \dots \in A$ such that $h = \sum_{i=1}^\infty f_i \cdot a_i$.

In other hand we have $C_b(X) = \overline{\text{Lip}_\alpha(X)}$. Hence for each $i \in \mathbb{N}$ there exist $g_i \in \text{Lip}_\alpha(X)$ such that

$$||g_i - f_i||_\infty < \frac{\varepsilon}{2^i p_l(a_i)}$$

Therefore for each $\varepsilon > 0$ and for each $x \in X$,

$$|g_i(x) - f_i(x)| < \frac{\varepsilon}{2^i p_l(a_i)}$$

Now, we define $\phi_i : \mathbb{C} \rightarrow A$, by $\phi_i(\lambda) = \lambda \cdot a_i$.

Then $\phi_i \circ g_i \in \text{Lip}_\alpha(X, A)$. Since

$$\begin{aligned}
q_{\alpha, l}(\phi_i \circ g_i) &= \sup_{x \in X} p_l(\phi_i(g_i(x))) = \sup_{x \in X} p_l(g_i(x) \cdot a_i) \\
&= ||g_i||_\infty p_l(a_i) < \infty
\end{aligned}$$

We have

$$\begin{aligned}
p_{\alpha, l}(\phi_i \circ g_i) &= \sup_{x \neq y} \frac{p_l((\phi_i \circ g_i)(x) - (\phi_i \circ g_i)(y))}{d(x, y)^\alpha} \\
&= \sup_{x \neq y} \frac{p_l(g_i(x) \cdot a_i - g_i(y) \cdot a_i)}{d(x, y)^\alpha}
\end{aligned}$$

$$\begin{aligned}
&= \sup_{x \neq y} \frac{|g_i(x) - g_i(y)|}{d(x, y)^\alpha} p_l(a_i) \\
&\leq \|g_i\|_\infty p_l(a_i) < \infty
\end{aligned}$$

Therefore

$$\begin{aligned}
q_{\alpha, l}(h - \sum_{i=1}^{\infty} \phi_i \circ g_i) &= q_{\alpha, l} \sum_{i=1}^{\infty} (f_i \cdot a_i - g_i \cdot a_i) \\
&= \sup_{x \in X} p_l \left(\sum_{i=1}^{\infty} f_i(x) \cdot a_i - g_i(x) \cdot a_i \right) \\
&\leq \sup_{x \in X} \sum_{i=1}^{\infty} |f_i(x) - g_i(x)| p_l(a_i) \\
&\leq \sum_{i=1}^{\infty} \frac{\varepsilon}{2^i p_l(a_i)} \cdot p_l(a_i) = \varepsilon
\end{aligned}$$

□

4. Ideal amenability of $\text{Lip}_\alpha(X, A)$

In this section, we study the ideal amenability of vector-valued Fréchet lipschitz algebra $\text{Lip}_\alpha(X, A)$.

Let (A, p_l) be a Fréchet algebra and I be a closed (two-sided) ideal in A . Similar to the Banach algebra case, we say that A is I -weakly amenable if every continuous derivation $D : A \rightarrow I^*$ is inner. Moreover we introduce the concept of ideal amenability for Fréchet algebras as the following:

A Fréchet algebra A is called ideally amenable if it is I -weakly amenable, for every closed (two-sided) ideal I in A .

Let A be a Fréchet algebra and $\phi \in \Delta(A)$, the set consisting of all non-zero continuous characters on A . A point derivation d at ϕ is a linear functional satisfying $d(xy) = d(x)\phi(y) + \phi(x)d(y)$, where $x, y \in A$, i.e. d is a derivation into the A -bimodule \mathbb{C} , where the module actions is defined by $x \cdot \lambda = \lambda \cdot x = \lambda\phi(x)$, $x \in A$ and $\lambda \in \mathbb{C}$.

The following lemma is immediate.

Lemma 4.1. *Let (X, d) be a metric space with at least two elements, (A, p_l) be a Fréchet algebra and $\alpha > 0$. For each non-isolated point $x \in X$ and $\sigma \in A^*$. Let $\phi : \text{Lip}_\alpha(X, A) \rightarrow \mathbb{C}$ is given by $\phi(f) = (\sigma \circ f)(x)$, ($f \in \text{Lip}_\alpha(X, A)$) then $\phi \in \Delta(\text{Lip}_\alpha(X, A))$.*

Let $\mathbb{C}^{\mathbb{N}} := \{(x_n)_{n \in \mathbb{N}} : x_n \in \mathbb{C} \text{ and } n \in \mathbb{N}\}$ be the set of all complex sequences. Then $\mathbb{C}^{\mathbb{N}}$ becomes an algebra by defining algebraic operations coordinatewise. For each $n \in \mathbb{N}$, the function $p_n : \mathbb{C}^{\mathbb{N}} \rightarrow \mathbb{R}$ define by $p_n(x) = \max_{1 \leq m \leq n} |x_m|$ defines a submultiplicativ seminorm on $\mathbb{C}^{\mathbb{N}}$.

Clearly $\{p_n\}$ defines the product topology on $\mathbb{C}^{\mathbb{N}}$, under which $\mathbb{C}^{\mathbb{N}}$ is complete [13]. Thus, $(\mathbb{C}^{\mathbb{N}}, p_n)$ becomes a Hausdorff Fréchet algebra.

Similar to the Banach algebra case in [24], we say that a bounded linear functional $\text{LIM} : (\mathbb{C}^{\mathbb{N}}, p_n) \rightarrow \mathbb{C}$ is is Fréchet limit if for every $x = (x_n) \in \mathbb{C}^{\mathbb{N}}$, $y = (y_n) \in \mathbb{C}^{\mathbb{N}}$ and $\alpha \in \mathbb{C}$ satisfying

- (1) LIM is linear: $\text{LIM}(x + y) = \text{LIM}(x) + \text{LIM}(y)$ and $\text{LIM}(\alpha x) = \alpha \text{LIM}(x)$.
- (2) LIM is positive: $\text{LIM}(x) \geq 0$, for every $x_n \geq 0$.
- (3) LIM is normalized: $\text{LIM}(\mathbf{1}) = 1$, where $\mathbf{1} = (1, 1, \dots)$.
- (4) LIM is shift invariant: $\text{LIM}(sx) = \text{LIM}(x)$.

The above properties on the functional LIM imply the following:

(5) LIM extends \lim on the subspace of convergent sequences:

$$\lim_{n \rightarrow \infty} x_n = c \Rightarrow \text{LIM}(x) = c$$

(6) If $\lim_{n \rightarrow \infty} x_n = c$ and $y = (y_n) \in \mathbb{C}^{\mathbb{N}}$, then $\text{LIM}(x_n y_n) = c \text{LIM}(y_n)$.
Let (X, d) be a fixed non-empty compact metric space, set

$$\Delta := \{(x, y) \in X \times X : x = y\} \text{ and } W := X \times X - \Delta$$

The following result is a generalization of [26, Theorem 3.4] for the Fréchet case.

Theorem 4.1. *Let (X, d) be an infinite compact metric space, (A, p_l) be a Fréchet algebra and $0 < \alpha \leq 1$. Then $\text{Lip}_\alpha(X, A)$ is not ideally amenable.*

Proof. Let x be a non-isolated point in X . We define

$$W_x := \{(x_n, y_n) : (x_n, y_n) \in W, \lim_{n \rightarrow \infty} (x_n, y_n) = (x, x)\}$$

For the net $W = \{(x_n, y_n)\}$ in W_x and $\sigma \in A$, we put

$$W_n : \text{Lip}_\alpha(X, A) \rightarrow \mathbb{C}$$

defined by

$$W_n(f) = \frac{(\sigma of)(x_n) - (\sigma of)(y_n)}{d(x_n, y_n)^\alpha} \quad (f \in \text{Lip}_\alpha(X, A))$$

Since $f \in \text{Lip}_\alpha(X, A)$ and $\sigma \in A^*$, so $\sigma of : X \rightarrow \mathbb{C}$ is continuous. Hence

$$\begin{aligned} \text{There exists } c > 0 \text{ and } l \in \mathbb{N} \text{ such that } & |(\sigma of)(x_n) - (\sigma of)(y_n)| = |\sigma(f(x_n) - f(y_n))| \\ & \leq c p_l(f(x_n) - f(y_n)) \leq c p_{\alpha, l}(f) d(x_n, y_n)^\alpha \end{aligned}$$

Thus

$$|\langle f, W_n \rangle| = \left| \frac{(\sigma of)(x_n) - (\sigma of)(y_n)}{d(x_n, y_n)^\alpha} \right| \leq c p_{\alpha, l}(f)$$

Therefore, W_n is continuous. Now set

$$D : \text{Lip}_\alpha(X, A) \rightarrow \mathbb{C}, \text{ by } D(f) = \text{LIM}(W_n(f))$$

We show that the linear map D is a non-zero point derivation at ϕ , for which ϕ is given by $\phi(f) = (\sigma of)(x)$, ($f \in \text{Lip}_\alpha(X, A)$).

We have

$$\begin{aligned} D(fg) &= \text{LIM}(W_n(fg)) = \text{LIM} \frac{(\sigma ofg)(x_n) - (\sigma ofg)(y_n)}{d(x_n, y_n)^\alpha} \\ &= \text{LIM} \frac{1}{d(x, y)^\alpha} (\sigma o(f(x_n)g(x_n) - f(y_n)g(y_n))) \\ &= \text{LIM} \frac{1}{d(x, y)^\alpha} \left(\sigma o(f(x_n)(g(x_n) - g(y_n)) + (f(x_n) - f(y_n))g(y_n)) \right) \\ &= (\sigma of)(x) \text{LIM}(W_n(g)) + (\sigma og)(x) \text{LIM}(W_n(f)) \\ &= \phi(f)D(g) - \phi(g)D(f) \end{aligned}$$

Therefore, by the continuity f, g and properties of Fréchet limit, we conclude D is a non-zero, continuous point derivation at ϕ on $\text{Lip}_\alpha(X, A)$. Hence by using [20, Proposition 3.1] $\text{Lip}_\alpha(X, A)$ is not ideally amenable. \square

Example 4.1. *Let (A, p_l) be a commutative Fréchet algebra, $T = \{z \in \mathbb{C} : |z| = 1\}$ be the group of complex numbers of modulus one, and $\alpha > \frac{1}{2}$. Then by using [16, Proposition 3.5] and [20, Theorem 4.2] the proof is immediate. Also $\text{lip}_\alpha(T) \hat{\otimes} A$ is not ideally amenable.*

Acknowledgment. The authors would like to thank the Banach algebra center of Excellence for Mathematics, University of Isfahan.

R E F E R E N C E S

- [1] *F. Abtahi, S. Rahnama and A. Rejali*, Weak amenability of Fréchet algebra, U.P.B. Sci. Bull., Series A, vol 72, ISS.4(2015), 93–104.
- [2] *F. Abtahi, S. Rahnama and A. Rejali*, Semisimple Segal Fréchet algebra, Periodica Mathematica Hungarica, **71**(2015), 146–154.
- [3] *D. Alimohammadi, and A. Ebadian*, Headberg's theorem in real Lipschitz algebras, Indian J. Pure Appl. Math., **32**(2001), 1479–1493.
- [4] *W. G. Bade, P. C. Curtis Jr., and H. G. Dales*, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc., **55**(1987), no. 2, 359–377.
- [5] *E. Biyabani and A. Rejali*, Approximate and Character amenability of vector-valued Lipschitz algebras, Bulletin of the Korean Mathematical Society **55**(4), 1109–1124.
- [6] *E. Biyabani and A. Rejali*, second dual of vector-valued Lipschitz algebras, U.P.B. Sci. Bull., Series A, Vol. 80, Iss. 3, 2018
- [7] *E. R. Bishop*, Generalized Lipschitz algebras, Canad. Math. Bull., **12**(1969), 1–19.
- [8] *H. X. Cao, and Z. B. Xu*, Some properties of Lipschitz- α operators, Acta Mathematica Sinica, English Series, **45** (2)(2002), 279–286.
- [9] *H. X. Cao, J. H. Zhang, and Z. B. Xu*, Characterizations and extinctions of Lipschitz- α operators, Acta Mathematica Sinica, English Series, **22** (3)(2006), 671–678 .
- [10] *M. Dashti, R. Nasr Isfahani and S. Soltani Renani*, Character amenability of Lipschitz algebras, Canad. Math. Bull., **57**(2014), no. 1, 37–41.
- [11] *H. G. Dales*, Banach algebras and Automatic Continuity, Clarendon press. oxford, 2000.
- [12] *A. Ebadian*, Prime ideals in Lipschitz algebras of finite differentiable function, Honam Math. J., **22**(2000), 21–30 .
- [13] *M. Fragoulopoulou*, Topological Algebras with Involution, North- Holland Mathematics Studies, 200, Elsevier Science B.V., Amsterdam, 2005.
- [14] *M. E. Gordji, A. Jabbari, and Gwang Hui Kim*, Some Characterizations Of Character Amenable Banach Algebras, Bull. Korean Math. Soc. **52**(2015), No. 3, 761–769.
- [15] *M.E. Gordji and T. Yazdanpanah*, Derivations into Duals of Ideals of Banach Algebras, Proc. Indian Acad. Sci. **114**(2004), No. 4, 339–403.
- [16] *A. Jabbari*, On Ideal Amenability of Banach Algebras, Journal of Mathematical Physics, Analysis, Geometry (2012), vol. 8, No. 2, 135–143.
- [17] *T. G. Honary, H. Mahyar*, Approximation in Lipschitz algebras, Quest. Math. **23**(2000), 13–19 .
- [18] *B. E. Johnson*, Cohomology in Banach algebras, Mem. Amer. Soc., **127**(1972).
- [19] *E. Kaniuth, A. T. Lau, and J. Pym*, On ϕ -amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc., **144**(2008), no. 1, 85–96.
- [20] *A. Ranjbari, A. Rejali*, Ideal amenability of Fréchet algebra, U.P.B. Sci. Bull., Series A, Vol. 79, Iss. 4(2017), 51–60.
- [21] *P. Lawson, C. J. Read*, Approximate amenability of Fréchet algebras, Math. Proc. Camb. Phil. Soc., **145**(2008), 403–418.
- [22] *A. Yu. Pirkovskii*, Flat cyclic Fréchet modules, amenable Fréchet algebras and approximate identities, Homotopy Appl., **11**(2009), no. 1, 81–114.
- [23] *Runde, Volker*, Lectures on amenability, Springer, 2001.
- [24] *D. R. Sherbert*, Banach algebras of Lipschitz functions, Pacific J. Math., **13**(1963), 1387–1399.

- [25] *D. R. Sherbert*, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, *Trans. Amer. Math. Soc.*, **111**(1964), 240–272.
- [26] *A. A. Shokri, A. Ebadian and A. R. Medghalchi*, Amenability and weak amenability of Lipschitz operator algebras, *Acta Univ. Apulensis Math. Inform.* (2009), no. 18, 87–96.
- [27] *N. Weaver*, Subalgebras of little Lipschitz algebras, *Pacific J. Math.* **173**(1996), 283–293.
- [28] *N. Weaver*, *Lipschitz algebras*, World Scientific Publishing Co. Inc. River Edge, NJ, 1999.
- [29] *Y. Zhang*, Weak amenability of a class of Banach algebras, *Canad. Math. Bull.*, **44**(2001), no. 4, 504–508.