

ON THE HILBERT DEPTH OF CERTAIN MONOMIAL IDEALS AND APPLICATIONS

Silviu Bălănescu¹, Mircea Cimpoeaș²

We study the Stanley depth and the Hilbert depth for I and S/I , where $I \subset S = K[x_1, \dots, x_n]$ is the intersection of monomial prime ideals with disjoint sets of variables. As an application, we obtain bounds for the Stanley depth of $I_{n,m}^t$ and $J_{n,m}^t$, where $I_{n,m}$ is the m -path ideal of the path graph of length n and $J_{n,m}$ is the m -path ideal of the cycle graph of length n .

Keywords Monomial ideal, Stanley depth, Hilbert depth, Depth, Path ideal

MSC2020 05A18, 06A07, 13C15, 13P10, 13F20.

Introduction

Let K be a field and $S = K[x_1, \dots, x_n]$ the polynomial ring over K . Let M be a \mathbb{Z}^n -graded S -module. A *Stanley decomposition* of M is a direct sum $\mathcal{D} : M = \bigoplus_{i=1}^r m_i K[Z_i]$ as a \mathbb{Z}^n -graded K -vector space, where $m_i \in M$ is homogeneous with respect to \mathbb{Z}^n -grading, $Z_i \subset \{x_1, \dots, x_n\}$ such that $m_i K[Z_i] = \{u m_i : u \in K[Z_i]\} \subset M$ is a free $K[Z_i]$ -submodule of M . We define $\text{sdepth}(\mathcal{D}) = \min_{i=1, \dots, r} |Z_i|$ and $\text{sdepth}(M) = \max\{\text{sdepth}(\mathcal{D}) \mid \mathcal{D} \text{ is a Stanley decomposition of } M\}$. The number $\text{sdepth}(M)$ is called the *Stanley depth* of M .

Herzog, Vlăduț and Zheng show in [9] that $\text{sdepth}(M)$ can be computed in a finite number of steps if $M = I/J$, where $J \subset I \subset S$ are monomial ideals. In [1], J. Apel restated a conjecture firstly given by Stanley in [13], namely that $\text{sdepth}(M) \geq \text{depth}(M)$ for any \mathbb{Z}^n -graded S -module M . This conjecture proves to be false, in general, for $M = S/I$ and $M = J/I$, where $0 \neq I \subset J \subset S$ are monomial ideals, see [8]. For a friendly introduction in the thematic of Stanley depth, we refer the reader [10].

Let M be a finitely generated graded S -module. The Hilbert depth of M , denoted by $\text{hdepth}(M)$, is the maximal depth of a finitely generated graded S -module N with the same Hilbert series as M . In [6] we introduced a new method to compute the Hilbert depth of a quotient J/I of two squarefree monomial ideals $I \subset J \subset S$; see Section 1.

In Section 2 we consider the edge ideal of a complete bipartite graph, that is

$$I := (x_1, \dots, x_n) \cap (x_{n+1}, \dots, x_{n+m}) \subset S := K[x_1, \dots, x_{n+m}],$$

and we study the Stanley depth and the Hilbert depth of I and S/I .

Assume $m \leq n$. In Proposition 2.2 we show that

$$m \geq \text{sdepth}(S/I) \geq \min\{m, \left\lceil \frac{n}{2} \right\rceil\}.$$

¹Ph-D student, Faculty of Applied Sciences, National University of Science and Technology Politehnica Bucharest, Romania, e-mail: silviu.balanescu@stud.fsa.upb.ro

²Professor, Faculty of Applied Sciences, National University of Science and Technology Politehnica Bucharest, Romania and Simion Stoilow Institute of Mathematics, Romania, e-mail: mircea.cimpoeas@imar.ro

Also, in Theorem 2.6 we prove that

$$\text{hdepth}(S/I) \leq \left\lfloor n + m + \frac{1}{2} - \sqrt{2mn + \frac{1}{4}} \right\rfloor.$$

In particular, we note that $\text{hdepth}(S/I) < m$ if and only if $n \leq 2m - 2$.

In Theorem 2.9 we prove that

$$\text{hdepth}(I) = \text{sdepth}(I) = \left\lceil \frac{m}{2} \right\rceil + \left\lceil \frac{n}{2} \right\rceil,$$

if n and m are not both even. Also, we prove that if $n = 2s$ and $m = 2t$ then

$$t + s \leq \text{sdepth}(I) \leq \text{hdepth}(S/I) = t + s + 1.$$

In particular, we have $\text{hdepth}(I) = \left\lfloor \frac{n+m+2}{2} \right\rfloor$ for any $n \geq m \geq 1$.

In Section 3 we consider a generalization of the ideal from the previous section, namely

$$I := I_{n_1, \dots, n_r} := (x_1, \dots, x_{n_1}) \cap (x_{n_1+1}, \dots, x_{n_1+n_2}) \cap \dots \cap (x_{n_1+\dots+n_{r-1}+1}, \dots, x_N) \subset S,$$

where $N = n_1 + \dots + n_r$ and $S = K[x_1, \dots, x_N]$. In Theorem 3.3 we prove that

$$\left\lfloor \frac{N+r}{2} \right\rfloor \geq \text{hdepth}(I) \geq \text{sdepth}(I) \geq \left\lceil \frac{n_1}{2} \right\rceil + \dots + \left\lceil \frac{n_r}{2} \right\rceil.$$

Also, we conjecture that

$$\text{hdepth}(I) = \left\lfloor \frac{N+r}{2} \right\rfloor.$$

This formula holds for $r = 2$ and if $r \geq 3$ and at most one of the numbers n_1, \dots, n_r is even. In Proposition 3.8 we characterize $\text{hdepth}(S/I)$ and $\text{hdepth}(I)$ in combinatorial terms. In Proposition 3.10 we show that

$$\text{hdepth}(S/I) \leq \min\{d \geq r : \binom{N-d+r-1}{r} < n_1 n_2 \dots n_r\} - 1.$$

Based on Proposition 3.13, we conjecture that $\text{hdepth}(S/I) \approx N - \lceil \sqrt[r]{r!n_1 n_2 \dots n_r} \rceil$.

Let $n > m \geq 2$ and $t \geq 1$ be some integers. In Section 4 we apply the results from Section 3 in order to obtain sharper bounds for the Stanley depth of $I_{n,m}^t$ and $J_{n,m}^t$, where

$$I_{n,m} = (x_1 x_2 \dots x_m, x_2 x_3 \dots x_{m+1}, \dots, x_{n-m+1} \dots x_n) \subset S := K[x_1, \dots, x_n],$$

is the m -path ideal associated to path graph of length n and

$$J_{n,m} = I_{n,m} + (x_{n-m+2} \dots x_n x_1, \dots, x_n x_1 \dots x_{m-1}) \subset S$$

is the m -path ideal associated to the cycle graph of length n .

In Theorem 4.3 we show that

$$\text{sdepth}(I_{n,m}^t) \leq \min\{n - \left\lceil \frac{t_0}{2} \right\rceil, n - \left\lceil \frac{n-t_0+1}{m+1} \right\rceil + 1\},$$

where $t_0 = \min\{t, n-m\}$. In Theorem 4.5 we show that

$$\text{sdepth}(J_{n,m}^t) \leq \left\lfloor \frac{n+d}{2} \right\rfloor,$$

for any $t \geq n-1$, where $d = \gcd(n, m)$.

1. Preliminaries

First, we fix some notations and we recall the main result of [6].

We denote $[n] := \{1, 2, \dots, n\}$ and $S := K[x_1, \dots, x_n]$.

For a subset $C \subset [n]$, we denote $x_C := \prod_{j \in C} x_j \in S$.

For two subsets $C \subset D \subset [n]$, we denote $[C, D] := \{A \subset [n] : C \subset A \subset D\}$, and we call it the *interval* bounded by C and D .

Let $I \subset J \subset S$ be two square free monomial ideals. We let:

$$P_{J/I} := \{C \subset [n] : x_C \in J \setminus I\} \subset 2^{[n]}.$$

A partition of $P_{J/I}$ is a decomposition:

$$\mathcal{P} : P_{J/I} = \bigcup_{i=1}^r [C_i, D_i],$$

into disjoint intervals.

If \mathcal{P} is a partition of $P_{J/I}$, we let $\text{sdepth}(\mathcal{P}) := \min_{i=1}^r |D_i|$. The Stanley depth of $P_{J/I}$ is

$$\text{sdepth}(P_{J/I}) := \max\{\text{sdepth}(\mathcal{P}) : \mathcal{P} \text{ is a partition of } P_{J/I}\}.$$

Herzog, Vlădoi and Zheng proved in [9] that:

$$\text{sdepth}(J/I) = \text{sdepth}(P_{J/I}).$$

Let $P := P_{J/I}$, where $I \subset J \subset S$ are square-free monomial ideals. For any $0 \leq k \leq n$, we denote:

$$P_k := \{A \in P : |A| = k\} \text{ and } \alpha_k(J/I) = \alpha_k(P) = |P_k|.$$

For all $0 \leq d \leq n$ and $0 \leq k \leq d$, we consider the integers

$$\beta_k^d(J/I) := \sum_{j=0}^k (-1)^{k-j} \binom{d-j}{k-j} \alpha_j(J/I). \quad (1.1)$$

From (1.1) we can easily deduce that

$$\alpha_k(J/I) = \sum_{j=0}^k \binom{d-j}{k-j} \beta_k^d(J/I), \text{ for all } 0 \leq k \leq d. \quad (1.2)$$

Also, we have that

$$\beta_k^d(J/I) = \alpha_k(J/I) - \binom{d}{k} \beta_0^d(J/I) - \binom{d-1}{k-1} \beta_1^d(J/I) - \dots - \binom{d-k+1}{1} \beta_{k-1}^d(J/I). \quad (1.3)$$

Theorem 1.1. ([6, Theorem 2.4]) *With the above notations, the Hilbert depth of J/I is*

$$\text{hdepth}(J/I) := \max\{d : \beta_k^d(J/I) \geq 0 \text{ for all } 0 \leq k \leq d\}.$$

As a basic property of the Hilbert depth, we state the following:

Proposition 1.2. *Let $I \subset J \subset S$ be two square-free monomial ideals. Then*

$$\text{sdepth}(J/I) \leq \text{hdepth}(J/I).$$

2. Edge ideal of a complete bipartite graph

Let n and m be two positive integers. We let $S = K[x_1, x_2, \dots, x_{n+m}]$ and we consider the square free monomial ideal:

$$I := (x_1, \dots, x_n) \cap (x_{n+1}, \dots, x_{n+m}) \subset S.$$

Our aim is to study the Stanley depth and the Hilbert depth of I and S/I .

As usual, given a positive integer k , we denote $[k] := \{1, 2, \dots, k\}$.

Remark 2.1. Let $K_{n,m} = (V, E)$ be the complete bipartite graph, that is $V = V' \cup V''$, where $V' = \{1, \dots, n\}$, $V'' = \{n+1, \dots, n+m\}$ and $E = \{\{i, j\} : i \in [n], j - n \in [m]\}$. Note that $I = (x_i x_{n+j} : i \in [n], j \in [m])$ is the edge ideal of $K_{n,m}$.

Also, we mention that $\text{depth}(S/I) = 1$, which can be easily checked.

Proposition 2.2. *Let $n \geq m \geq 1$ be two integers. Then:*

- (1) $m \geq \text{sdepth}(S/I) \geq \min\{m, \lceil \frac{n}{2} \rceil\}$.
- (2) $m + \lceil \frac{n}{2} \rceil \geq \text{sdepth}(I) \geq \lceil \frac{n}{2} \rceil + \lceil \frac{m}{2} \rceil$.
- (3) If $n \geq 2m - 1$ then $\text{sdepth}(S/I) = m$.

Proof. (1) Since $I = I'S \cap I''S$, where $I' = (x_1, \dots, x_n) \subset S' = K[x_1, \dots, x_n]$ and $I'' = (x_{n+1}, \dots, x_{n+m}) \subset S'' = K[x_{n+1}, \dots, x_{n+m}]$, from [3, Theorem 1.3(2)] it follows that

$$\text{sdepth}(S/I'S) \geq \text{sdepth}(S/I) \geq \min\{\text{sdepth}(S/I'S), \text{sdepth}_{S''}(S''/I'') + \text{sdepth}_{S'}(I')\}.$$

As $S/I'S \cong S''$, we have that $\text{sdepth}(S/I'S) = m$.

Also, $S''/I'' \cong K$, so $\text{sdepth}_{S''}(S''/I'') = 0$.

Finally, $\text{sdepth}_{S'}(I') = \lceil \frac{n}{2} \rceil$, see [2, Theorem 2.2].

(2) Since $(I : x_{n+1}) = I'S$, from [12, Proposition 2], [2, Theorem 2.2] and [9, Lemma 3.6] we have

$$\text{sdepth}(I) \leq \text{sdepth}(I : x_{n+1}) = \text{sdepth}(I'S) = m + \text{sdepth}_{S'}(I') = m + \lceil \frac{n}{2} \rceil.$$

The other inequality follows from [11, Lemma 1.1] and [2, Theorem 2.2].

(3) If $n \geq 2m - 1$ then $\lceil \frac{n}{2} \rceil \geq m$, hence the result follows from (1). \square

Lemma 2.3. *Let $n \geq m \geq 1$ be two integers and $N := n + m$. We have that*

- (1) $\alpha_k(I) = \begin{cases} 0, & 0 \leq k \leq 1 \\ \sum_{j=1}^{k-1} \binom{n}{j} \binom{m}{k-j}, & 2 \leq k \leq N \end{cases}$.
- (2) $\alpha_k(I) = \binom{N}{k} - \binom{n}{k} - \binom{m}{k} + \delta_{k0}$, for all $0 \leq k \leq N$.
- (3) $\alpha_k(S/I) = \binom{n}{k} + \binom{m}{k} - \delta_{k0}$, for all $0 \leq k \leq N$, where $\delta_{kj} = \begin{cases} 1, & k = j \\ 0, & k \neq j \end{cases}$ is the Kronecker symbol.

Proof. (1) Since I is generated in degree 2, we have $\alpha_0(I) = \alpha_1(I) = 1$. Any squarefree monomial $u \in I$ with $\deg(u) = k \geq 2$ can be written as $u = v \cdot w$, where $v \in S' = K[x_1, \dots, x_n]$ and $w \in S'' = K[x_{n+1}, \dots, x_N]$ are squarefree monomials. Assume $\deg(v) = j$ with $1 \leq j \leq k-1$. Then $\deg(w) = k-j$. Since there are $\binom{n}{j}$ squarefree monomials of degree j in S' and $\binom{m}{k-j}$ squarefree monomials of degree $k-j$ in S'' , we easily get the required conclusion.

(2) For $k \leq 1$ the identity can be easily checked. Assume $k \geq 2$. From (1) and the well known combinatorial formula $\sum_{j=0}^k \binom{n}{j} \binom{m}{k-j} = \binom{n+m}{k} = \binom{N}{k}$, we get the required conclusion.

(3) It follows immediately from (2).

□

Lemma 2.4. *For any integers $0 \leq k \leq d$ and $n \geq 0$ we have that*

$$\sum_{j=0}^k (-1)^{k-j} \binom{d-j}{k-j} \binom{n}{j} = (-1)^k \binom{d-n}{k} = \binom{n-d+k-1}{k}.$$

Proof. Using the identity $(-1)^k \binom{x}{k} = \binom{-x+k-1}{k}$ and the Chu–Vandermonde summation, we get the required formula. □

Lemma 2.5. *Let $n \geq m \geq 1$ and $0 \leq k \leq d \leq N := n+m$ some integers. We have that*

$$\begin{aligned} (1) \quad \beta_k^d(S/I) &= \binom{n-d+k-1}{k} + \binom{m-d+k-1}{k} + (-1)^{k+1} \binom{d}{k}, \\ (2) \quad \beta_k^d(I) &= \binom{N-d+k-1}{k} - \binom{n-d+k-1}{k} - \binom{m-d+k-1}{k} + (-1)^k \binom{d}{k}. \end{aligned}$$

Proof. (1) From (1.1), Lemma 2.3(3) and Lemma 2.4 we have that

$$\begin{aligned} \beta_k^d(S/I) &= \sum_{j=1}^k (-1)^{k-j} \binom{d-j}{k-j} \binom{n}{j} + \sum_{j=1}^k (-1)^{k-j} \binom{d-j}{k-j} \binom{m}{j} - (-1)^k \binom{d}{k} = \\ &= \binom{n-d+k-1}{k} + \binom{m-d+k-1}{k} + (-1)^{k+1} \binom{d}{k}, \end{aligned}$$

as required.

(2) The proof is similar, using (1.1), Lemma 2.3(2) and Lemma 2.4. □

Note that, if $n \geq 2m-1$ then, according to Proposition 2.2(3) and Proposition 1.2 we have $\text{hdepth}(S/I) \geq \text{sdepth}(S/I) = m$. Also, $\text{sdepth}(S/I) \leq m$, for any $n \geq m$.

Theorem 2.6. *Let $n \geq m \geq 1$ be two integers. Then*

$$\text{sdepth}(S/I) \leq \text{hdepth}(S/I) \leq \left\lfloor n+m + \frac{1}{2} - \sqrt{2mn + \frac{1}{4}} \right\rfloor.$$

In particular, if $n \leq 2m-2$ then $\text{hdepth}(S/I) < m$.

Proof. The first inequality follows from Proposition 1.2. We consider the quadratic function

$$\varphi(t) = \frac{1}{2}t(t-1) - (n+m)t + \frac{1}{2}n(n+1) + \frac{1}{2}m(m+1).$$

Note that, according to Lemma 2.5(1), we have that

$$\begin{aligned} \beta_2^d(S/I) &= \frac{1}{2}((n-d)(n-d+1) + (m-d)(m-d+1) - d(d-1)) = \\ &= \frac{1}{2}d(d-1) - (n+m)d + \frac{1}{2}n(n+1) + \frac{1}{2}m(m+1) = \varphi(d). \end{aligned}$$

The roots of $\varphi(t) = 0$ are $t_{1,2} = n+m + \frac{1}{2} \pm \sqrt{2mn + \frac{1}{4}}$ and therefore

$$\varphi(t) < 0 \text{ if and only if } t \in \left(n+m + \frac{1}{2} - \sqrt{2mn + \frac{1}{4}}, n+m + \frac{1}{2} + \sqrt{2mn + \frac{1}{4}} \right).$$

From the fact that $\beta_2^d(S/I) = \varphi(d)$ and the above, it follows that

$$\beta_2^d(S/I) < 0 \text{ for } \left\lfloor n+m + \frac{1}{2} - \sqrt{2mn + \frac{1}{4}} \right\rfloor + 1 \leq d \leq n+m.$$

From Theorem 1.1, we get $\text{hdepth}(S/I) \leq \left\lfloor n + m + \frac{1}{2} - \sqrt{2mn + \frac{1}{4}} \right\rfloor$.

In order to prove the last part, we consider the function

$$\psi(x) = x + m + \frac{1}{2} - \sqrt{2mx + \frac{1}{4}}, \quad x \in [m, \infty).$$

Since $\frac{d\psi}{dx}(x) > 0$, $m \leq n \leq 2m - 2$ and $\psi(2m - 1) = m$, it follows that

$$\left\lfloor 2m + \frac{1}{2} - \sqrt{2m^2 + \frac{1}{4}} \right\rfloor \leq \lfloor \psi(n) \rfloor = \left\lfloor n + m + \frac{1}{2} - \sqrt{2mn + \frac{1}{4}} \right\rfloor < \psi(2m - 1) = m,$$

as required. \square

Theorem 2.7. *Let $n \geq m \geq 2$ be two integers. Then*

$$\text{hdepth}(S/I) = \max\{d \leq n + m : \binom{d-n}{2\ell} + \binom{d-m}{2\ell} \geq \binom{d}{2\ell} \text{ for all } 1 \leq \ell \leq \left\lfloor \frac{d}{2} \right\rfloor\}.$$

Moreover, $\text{hdepth}(S/I) < m$ if $n \leq 2m - 2$. Also, $m \leq \text{hdepth}(S/I) \leq n - m + 1$ if $n \geq 2m - 1$.

Proof. Let $q := \max\{d \leq n + m : \binom{d-n}{2\ell} + \binom{d-m}{2\ell} \geq \binom{d}{2\ell} \text{ for all } 1 \leq \ell \leq \left\lfloor \frac{d}{2} \right\rfloor\}$.

From Lemma 2.5(1) and the identity $\binom{x}{k} = \binom{-x+k-1}{k}$ it follows that

$$\beta_{2\ell}^d(S/I) = \binom{d-n}{2\ell} + \binom{d-m}{2\ell} - \binom{d}{2\ell}. \quad (2.1)$$

Hence $\text{hdepth}(S/I) \leq q$.

On the other hand, from the proof of Theorem 2.6 and (2.1), it follows that

$$q \leq \left\lfloor n + m + \frac{1}{2} - \sqrt{2mn + \frac{1}{4}} \right\rfloor. \quad (2.2)$$

We consider two cases:

(i) $n \leq 2m - 2$. From Theorem 2.6, it follows that $q < m$. From Lemma 2.5(2) and $0 \leq k \leq q$ with k odd, we have

$$\beta_k^q(S/I) = \binom{n-q+k-1}{k} + \binom{m-q+k-1}{k} + \binom{q}{k} \geq \binom{n-m+k}{k} + 1 + \binom{q}{k} > 0.$$

Since, by the definition of q , we have $\beta_k^q(S/I) \geq 0$ for all $0 \leq k \leq q$ with k even, we conclude that $\text{hdepth}(S/I) \geq q$. Hence $\text{hdepth}(S/I) = q < m$, as required.

(ii) $n \geq 2m - 1$. First, note that

$$m = \text{sdepth}(S/I) \leq \text{hdepth}(S/I) \leq q.$$

From (2.2) and the above it follows that

$$m \leq q \leq \left\lfloor n + m + \frac{1}{2} - \sqrt{2m(2m-1) + \frac{1}{4}} \right\rfloor = \left\lfloor n + m + \frac{1}{2} - (2m - \frac{1}{2}) \right\rfloor = n - m + 1.$$

From Lemma 2.5(2) and $0 \leq k \leq q$ with k odd, we have

$$\beta_k^q(S/I) = \binom{n-q+k-1}{k} + \binom{q-m}{k} + \binom{q}{k} \geq \binom{m}{k} + 0 + \binom{m}{k} \geq 0.$$

Using the same argument as in the case (i), it follows that $\text{hdepth}(S/I) = q$, as required.

Thus, the proof is complete. \square

Lemma 2.8. *Let $n \geq m \geq 1$ be two integers. Then*

$$\text{hdepth}(I) \leq \left\lfloor \frac{n+m+2}{2} \right\rfloor.$$

Proof. If $n+m=2$, that is $n=m=1$, then there is nothing to prove. Assume $n+m \geq 3$. From Lemma 2.5(2) and straightforward computations, it follows that

$$\beta_3^d(I) = \frac{nm(n+m-2d+2)}{2} < 0,$$

if and only if $d > \frac{n+m+2}{2}$. Hence, we get the required result. \square

Theorem 2.9. *Let $n \geq m \geq 1$ be two integers.*

(1) *If n and m are not both even then we have that:*

$$\text{sdepth}(I) = \text{hdepth}(I) = \left\lceil \frac{n}{2} \right\rceil + \left\lceil \frac{m}{2} \right\rceil.$$

(2) *If $n = 2t$ and $m = 2s$ then we have that:*

$$t+s \leq \text{sdepth}(I) \leq \text{hdepth}(I) \leq t+s+1.$$

In both cases, we have $\text{hdepth}(I) = \left\lfloor \frac{n+m+2}{2} \right\rfloor$.

Proof. (1) According to Proposition 2.2(2), we have that

$$\text{sdepth}(I) \geq \left\lceil \frac{n}{2} \right\rceil + \left\lceil \frac{m}{2} \right\rceil. \quad (2.3)$$

On the other hand, according to Proposition 1.2 and Lemma 2.8, we have that

$$\text{sdepth}(I) \leq \text{hdepth}(I) \leq \left\lfloor \frac{n+m}{2} \right\rfloor + 1. \quad (2.4)$$

Note that, if n and m are not both even, then

$$\left\lceil \frac{n}{2} \right\rceil + \left\lceil \frac{m}{2} \right\rceil = \left\lfloor \frac{n+m}{2} \right\rfloor + 1. \quad (2.5)$$

Hence, (1) follows from (2.3), (2.4) and (2.5).

(2) From (2.3) and (2.4) we have that

$$t+s \leq \text{sdepth}(I) \leq \text{hdepth}(I) \leq t+s+1.$$

On the other hand, for $0 \leq k \leq t+s+1$, from Lemma 2.5(2) we have

$$\beta_k^{t+s+1}(I) = \binom{t+s-2+k}{k} - \binom{t-s-2+k}{k} - \binom{s-t-2+k}{k} + (-1)^k \binom{t+s+1}{k}. \quad (2.6)$$

By direct computations, from (2.6) it follows that

$$\beta_0^{t+s+1}(I) = 0, \beta_1^{t+s+1}(I) = 0, \beta_2^{t+s+1}(I) = 4st \text{ and } \beta_3^{t+s+1}(I) = 0.$$

Also, by straightforward computations, we get

$$\beta_4^{t+s+1}(I) = \beta_5^{t+s+1}(I) = \frac{ts(2s^2+2t^2-1)}{3} > 0.$$

Now, assume $6 \leq k \leq t+s+1$. Without any loss of generality, we assume that $t = s+a$, where a is a nonnegative integer. In order to prove that $\beta := \beta_k^{t+s+1}(I) \geq 0$, we consider the following cases:

(i) k is even.

(i.1) $a = 0$. From (2.6) and the fact that $s \geq 1$ it follows that

$$\beta = \binom{2s-2+k}{k} - \binom{k-2}{k} - \binom{k-2}{k} + \binom{2s+1}{k} \geq \binom{k}{k} + \binom{2s+1}{k} > 0.$$

(i.2) $a = 1$. From (2.6) and the fact that $s \geq 1$ it follows that

$$\beta = \binom{2s-1+k}{k} - \binom{k-1}{k} - \binom{k-3}{k} + \binom{2s+2}{k} \binom{k+1}{k} + \binom{2s+2}{k} > 0.$$

(i.3) $a \geq 2$ and $k \geq a+2$. From (2.6) we get

$$\beta = \binom{2s+a+k-2}{k} - \binom{a+k-2}{k} + \binom{2s+a+1}{k} > \binom{2s+a+1}{k} \geq 0.$$

(i.4) $a \geq 5$ and $k \leq a+1$. From (2.6), using $\binom{-x}{k} = (-1)^k \binom{x+k-1}{k}$, we get

$$\begin{aligned} \beta &= \binom{2s+a+k-2}{k} - \binom{a+k-2}{k} - \binom{a+1}{k} + \binom{2s+a+1}{k} = \\ &= \binom{2s+a+k-2}{k} - \binom{a+k-2}{k} + \binom{2s+a+1}{k} - \binom{a+1}{k} > 0. \end{aligned}$$

(ii) k is odd.

(ii.1) $a = 0$. From (2.6) and the fact that $k \geq 6$ it follows that

$$\beta = \binom{2s-2+k}{k} - \binom{k-2}{k} - \binom{k-2}{k} - \binom{2s+1}{k} \geq \binom{2s+4}{k} - \binom{2s+1}{k} > 0.$$

(ii.2) $a = 0$. From (2.6) and the fact that $k \geq 6$ it follows that

$$\beta = \binom{2s-1+k}{k} - \binom{k-1}{k} - \binom{k-3}{k} - \binom{2s+2}{k} \geq \binom{2s+5}{k} - \binom{2s+2}{k} > 0.$$

(ii.3) $a \geq 2$ and $k \geq a+2$. From (2.6) and the fact that $k \geq 6$ and $s \geq 1$ we get

$$\begin{aligned} \beta &= \binom{2s+a+k-2}{k} - \binom{a+k-2}{k} - \binom{2s+a+1}{k} > \binom{2s+a+k-3}{k-1} - \\ &- \binom{a+k-2}{k} \geq \binom{a+k-1}{k-1} - \binom{a+k-2}{k} = \frac{ak+k^2-k-a^2+a}{a(a-1)} \binom{a+k-2}{k} > 0. \end{aligned}$$

(ii.4) $a \geq 5$ and $k \leq a+1$. From (2.6), using $\binom{-x}{k} = (-1)^k \binom{x+k-1}{k}$, we get

$$\begin{aligned} \beta &= \binom{2s+a+k-2}{k} - \binom{a+k-2}{k} + \binom{a+1}{k} - \binom{2s+a+1}{k} = \\ &= \binom{2s+a+k-2}{k} - \binom{2s+a+1}{k} - \left(\binom{a+k-2}{k} - \binom{a+1}{k} \right) = \\ &= \sum_{\ell=2s+a+1}^{2s+a+k-3} \binom{\ell}{k-1} - \sum_{\ell=a+1}^{a+k-3} \binom{\ell}{k-1} > 0. \end{aligned}$$

Hence, $\text{hdepth}(I) = s+t+1$ and the proof is complete. \square

3. A generalization

Let n_1, n_2, \dots, n_r be some positive integers, $N = n_1 + \dots + n_r$ and $S := K[x_1, \dots, x_N]$. We consider the ideal

$$I := I_{n_1, n_2, \dots, n_r} := (x_1, \dots, x_{n_1}) \cap (x_{n_1+1}, \dots, x_{n_1+n_2}) \cap \dots \cap (x_{n_1+\dots+n_{r-1}+1}, \dots, x_N) \subset S,$$

which generalize the ideal I from the previous section.

Lemma 3.1. *With the above notations, we have that*

$$\alpha_k(I) = \begin{cases} 0, & k \leq r-1 \\ \sum_{\substack{\ell_1, \ell_2, \dots, \ell_r \geq 1 \\ \ell_1 + \dots + \ell_r = k}} \binom{n_1}{\ell_1} \binom{n_2}{\ell_2} \dots \binom{n_r}{\ell_r}, & k \geq r \end{cases}.$$

Proof. Since I is generated by square free monomials of degree k , it is clear that $\alpha_k(I) = 0$ for $k \leq r-1$. Assume $k \geq r$ and let $u \in I$ a square free monomial of degree k . It follows that $u = u_1 \dots u_r$, where

$$1 \neq u_j \in I_j := (x_{n_1+\dots+n_{j-1}+1}, \dots, x_{n_1+\dots+n_j}) \text{ for all } 1 \leq j \leq r.$$

Let $\ell_j = \deg(u_j) \geq 1$. Since there are $\binom{n_j}{\ell_j}$ squarefree monomials of degree ℓ_j in I_j , we get the required conclusion. \square

Lemma 3.2. *With the above notations, we have that*

- (1) $\alpha_k(I) = 0$ for $k \leq r-1$.
- (2) $\alpha_r(I) = n_1 n_2 \dots n_r$.
- (3) $\alpha_{r+1}(I) = n_1 n_2 \dots n_r \cdot \frac{n_1 + \dots + n_r - r}{2}$.
- (4) $\alpha_k(I) = \binom{N}{k}$ for $k \geq N - \min_{i=1}^r n_i + 1$.

Proof. (1), (2) and (3) follow immediately from Lemma 3.1. In order to prove (4), it is enough to observe that any squarefree monomial $u \in S$ of degree $k \geq N - \min_{i=1}^r n_i + 1$, belongs to I . \square

Theorem 3.3. *With the above notations, we have that:*

$$\left\lfloor \frac{N+r}{2} \right\rfloor \geq \text{hdepth}(I) \geq \text{sdepth}(I) \geq \left\lceil \frac{n_1}{2} \right\rceil + \dots + \left\lceil \frac{n_r}{2} \right\rceil.$$

Proof. In order to prove the first inequality, let $d > \frac{n_1 + \dots + n_r + r}{2}$ be an integer. From Theorem 1.1 and Lemma 3.2(1,2,3) it follows that

$$\begin{aligned} \beta_k^d(I) &= 0 \text{ for } 0 \leq k \leq r-1, \quad \beta_r^d(I) = \alpha_r(I) = n_1 n_2 \dots n_r \text{ and} \\ \beta_{r+1}^d(I) &= \alpha_{r+1}(I) - (d-r)\alpha_r(I) = n_1 n_2 \dots n_r \left(\frac{n_1 + \dots + n_r + r}{2} - d \right) < 0. \end{aligned}$$

Hence $\text{hdepth}(I) \leq \frac{n_1 + \dots + n_r + r}{2}$.

The inequality $\text{hdepth}(I) \geq \text{sdepth}(I)$ follows from Proposition 1.2, and the last inequality follows from [3, Corollary 1.9(1)] and [2, Theorem 2.2]. \square

Based on our computer experiments, we propose the following conjecture:

Conjecture 3.4. *With the above notations, we have*

$$\text{hdepth}(I) = \left\lfloor \frac{N+r}{2} \right\rfloor.$$

Note that, according to Theorem 2.9, Conjecture 3.4 holds for $r = 2$. Also, according to Theorem 3.3, Conjecture 3.4 is true when at most one of the numbers n_1, \dots, n_r is even.

Proposition 3.5. *With the above notations, we have that*

$$N - \min_{i=1}^r n_i \geq \text{hdepth}(S/I) \geq \text{sdepth}(S/I) \geq \left\lceil \frac{n_1}{2} \right\rceil + \dots + \left\lceil \frac{n_r}{2} \right\rceil - \min_{i=1}^r \left\lceil \frac{n_i}{2} \right\rceil.$$

Proof. From Lemma 3.2(4) it follows that

$$\alpha_k(S/I) = 0 \text{ for all } k \geq N - \max_{i=1}^r n_i + 1.$$

Hence, from [6, Lemma 1.3], we get the first inequality.

The second inequality follows from [3, Corollary 1.9] and [2, Theorem 2.2]. \square

Note that, Proposition 3.5 reproves the fact that $\text{hdepth}(S/I) \geq \text{depth}(S/I) = r - 1$.

Lemma 3.6. *For any $0 \leq k \leq N$, we have that:*

- (1) $\alpha_k(I) = \sum_{J \subsetneq [n]} (-1)^{|J|} \binom{N - \sum_{i \in J} n_i}{k}$.
- (2) $\alpha_k(I) = \sum_{\emptyset \neq J \subsetneq [n]} (-1)^{|J|+1} \binom{N - \sum_{i \in J} n_i}{k}$.

Proof. (1) For all $1 \leq i \leq r$ we let:

$$A_i = \{(\ell_1, \dots, \ell_d) : \ell_1 + \dots + \ell_r = k, \ell_i = 0 \text{ and } \ell_j \geq 0 \text{ for } j \neq i\}.$$

Also, we consider the set:

$$A = \{(\ell_1, \dots, \ell_d) : \ell_1 + \dots + \ell_r = k \text{ and } \ell_i \geq 0 \text{ for all } 1 \leq i \leq r\}.$$

For any nonempty subset $J \subset [n]$, we let $A_J = \bigcup_{i \in J} A_i$. Also, we denote $A_\emptyset = A$. From Lemma 3.1 it follows that

$$\alpha_k(I) = \sum_{(\ell_1, \dots, \ell_r) \in A_\emptyset \setminus (\bigcup_{i=1}^r A_i)} \binom{n_1}{\ell_1} \cdots \binom{n_r}{\ell_r}. \quad (3.1)$$

Note that this equality holds also for $k < r$ as both terms are zero in this case. It is well known that

$$\sum_{(\ell_1, \dots, \ell_r) \in A} \binom{n_1}{\ell_1} \cdots \binom{n_r}{\ell_r} = \binom{n_1 + \cdots + n_r}{k} = \binom{N}{k}.$$

Similarly, if $J \subset [n]$ then

$$\sum_{(\ell_1, \dots, \ell_r) \in \bigcap_{i \in J} A_i} \binom{n_1}{\ell_1} \cdots \binom{n_r}{\ell_r} = \binom{N - \sum_{i \in J} n_i}{k}. \quad (3.2)$$

From (3.1) and (3.2), using the inclusion exclusion principle, we get the required conclusion.

(2) Follows from (1) and the fact that $\alpha(S/I) = \binom{N}{k} - \alpha(I)$. \square

Note that Lemma 3.6 generalizes Lemma 2.3(2,3). From Lemma 3.6 and Lemma 2.4 we get the following generalization of Lemma 2.5:

Lemma 3.7. *For any $0 \leq k \leq d \leq N$, we have that:*

- (1) $\beta_k^d(I) = \sum_{J \subsetneq [n]} (-1)^{|J|} \binom{N - \sum_{i \in J} n_i - d + k - 1}{k}$.
- (2) $\beta_k^d(S/I) = \sum_{\emptyset \neq J \subsetneq [n]} (-1)^{|J|+1} \binom{N - \sum_{i \in J} n_i - d + k - 1}{k}$.

Proposition 3.8. *With the above notations, we have that:*

- (1) $\text{hdepth}(I) = \max\{d : \left\lceil \frac{n_1}{2} \right\rceil + \cdots + \left\lceil \frac{n_r}{2} \right\rceil \leq d \leq \left\lfloor \frac{N+r}{2} \right\rfloor \text{ and}$

$$\sum_{J \subsetneq [n]} (-1)^{|J|} \binom{N - \sum_{i \in J} n_i - d + k - 1}{k} \geq 0 \text{ for all } r \leq k \leq d\}.$$
- (2) $\text{hdepth}(S/I) = \max\{d : \left\lceil \frac{n_1}{2} \right\rceil + \cdots + \left\lceil \frac{n_r}{2} \right\rceil - \min_{i=1}^r \left\lceil \frac{n_i}{2} \right\rceil \leq d \leq N - \min_{i=1}^r n_i \text{ and}$

$$\sum_{\emptyset \neq J \subsetneq [n]} (-1)^{|J|+1} \binom{N - \sum_{i \in J} n_i - d + k - 1}{k} \geq 0 \text{ for all } r \leq k \leq d\}.$$

Proof. (1) It follows from Theorem 3.3 and Lemma 3.7(1).

(1) It follows from Proposition 3.5 and Lemma 3.7(2). \square

Lemma 3.9. *Let $d \geq r$. We have that*

$$\beta_r^d(S/I) = \binom{N - d + r - 1}{r} - n_1 n_2 \cdots n_r.$$

Proof. From Lemma 3.2 it follows that

$$\alpha_k(S/I) = \binom{N}{k} \text{ for } k \leq r-1, \quad \alpha_r(S/I) = \binom{N}{r} - n_1 n_2 \cdots n_r.$$

Hence, the required result follows from (1.1) and Lemma 2.4. \square

Proposition 3.10. *With the above notations, we have that:*

$$\text{hdepth}(S/I) \leq \min\{d \geq r : \binom{N - d + r - 1}{r} < n_1 n_2 \cdots n_r\} - 1.$$

Proof. First of all, note that, according to (1.3), we have

$$\beta_0^N(S/I) = 1 \text{ and } \beta_k^N(S/I) = 0 \text{ for all } 1 \leq k \leq r-1.$$

Moreover, according to Lemma 3.9, (1.1) and (1.3), we have

$$\beta_r^N(S/I) = \binom{N - N + r - 1}{r} - n_1 n_2 \cdots n_r = -n_1 n_2 \cdots n_r < 0.$$

Therefore, we have that $q := \min\{d \geq r : \binom{N - d + r - 1}{r} < n_1 n_2 \cdots n_r\}$ is well defined and $q \leq N$. Now, it is enough to notice that, from above, $\beta_r^q(S/I) < 0$ and thus $\text{hdepth}(S/I) \leq q-1$, as required. \square

Lemma 3.11. *We have that*

$$\binom{N - d + r - 1}{r} \geq n_1 n_2 \cdots n_r \text{ for all } d \leq N - \lceil \sqrt[r]{r! n_1 n_2 \cdots n_r} \rceil.$$

Proof. We assume that $d = \lfloor aN \rfloor$, where $a \in (0, 1)$. Then

$$\begin{aligned} \binom{N - d + r - 1}{r} &= \frac{(N - d + r - 1)(N - d + r - 2) \cdots (N - d)}{r!} \geq \\ &\geq \frac{(N - aN + r - 1)(N - aN + r - 2) \cdots (N - aN)}{r!} \geq \frac{N^r (1 - a)^r}{r!}. \end{aligned} \quad (3.3)$$

On the other hand

$$\frac{N^r (1 - a)^r}{r!} \geq n_1 n_2 \cdots n_r \Leftrightarrow (1 - a)^r \geq \frac{r! n_1 n_2 \cdots n_r}{r! N^k} \Leftrightarrow a \leq 1 - \frac{\sqrt[r]{r! n_1 n_2 \cdots n_r}}{N} \quad (3.4)$$

The conclusion follows from (3.3) and (3.4). \square

Remark 3.12. Note that, from the inequality of means, we have

$$\sqrt[r]{r!n_1n_2\cdots n_r} \leq \frac{N\sqrt[r]{r!}}{r},$$

with equality for $n_1 = n_2 = \cdots = n_r = n = \frac{N}{r}$. Therefore, from Lemma 3.11, we have that

$$\binom{N-d+r-1}{r} \geq n^r \text{ for all } d \leq N \left(1 - \sqrt[r]{\frac{r!}{r^r}}\right).$$

Proposition 3.13. *With the above notations, we have that*

$$\beta_r^d(S/I) \geq 0 \text{ for all } d \leq N - \left\lceil \sqrt[r]{r!n_1n_2\cdots n_r} \right\rceil.$$

Proof. It follows from Lemma 3.9 and Lemma 3.11. \square

Proposition 3.13 allows us to conjecture that $\text{hdepth}(S/I) \approx N - \left\lceil \sqrt[r]{r!n_1n_2\cdots n_r} \right\rceil$.

4. Applications

The m -path ideal of a path graph

Let $n \geq m \geq 1$ be two integers and

$$I_{n,m} = (x_1x_2\cdots x_m, x_2x_3\cdots x_{m+1}, \dots, x_{n-m+1}\cdots x_n) \subset S = K[x_1, \dots, x_n],$$

be the m -path ideal associated to the path graph of length n . Let $t \geq 1$. We define:

$$\varphi(n, m, t) := \begin{cases} n-t+2 - \left\lfloor \frac{n-t+2}{m+1} \right\rfloor - \left\lceil \frac{n-t+2}{m+1} \right\rceil, & t \leq n+1-m \\ m-1, & t > n+1-m \end{cases}.$$

According to [4, Theorem 2.6] we have that $\text{sdepth}(S/I_{n,m}^t) \geq \text{depth}(S/I_{n,m}^t) = \varphi(n, m, t)$. Assume that $t \leq n-m$ and let $S_{t+m} := K[x_1, \dots, x_{m+t}]$. We consider the ideal

$$U_{m,t} = (x_{i_1} \cdots x_{i_m} : i_j \equiv j \pmod{m}, 1 \leq j \leq m) \subset S_{t+m}.$$

By Euclidean division, we write $t+m = am+b$, where $1 \leq b \leq m$. According to the proof of [4, Lemma 2.4], we have that

$$U_{m,t} = V_{m,1,a+1} \cap \cdots \cap V_{m,b,a+1} \cap V_{m,b+1,a} \cap \cdots \cap V_{m,m,a}, \text{ where } V_{m,j,k} = (x_j, x_{j+m}, \dots, x_{j+(k-1)m}). \quad (4.1)$$

Proposition 4.1. *We have that: $\text{sdepth}(U_{m,t}) \leq \text{hdepth}(U_{m,t}) \leq m + \lfloor \frac{t}{2} \rfloor$.*

Proof. According to Theorem 3.3, we have that $\text{hdepth}(U_{m,t}) \leq \lfloor \frac{m+t+m}{2} \rfloor = m + \lfloor \frac{t}{2} \rfloor$. Now, apply Proposition 1.2. \square

Lemma 4.2. *Let $I \subset S$ be a proper monomial ideal and $u \in S \setminus I$ a monomial. Then*

- (1) $\text{sdepth}(S/(I : u)) \geq \text{sdepth}(S/I)$. ([3, Proposition 2.7(2)])
- (2) $\text{sdepth}(I : u) \geq \text{sdepth}(I)$. ([12, Proposition 2])

Theorem 4.3. *Let $n \geq m \geq 1$ and $t \geq 1$. Let $t_0 := \min\{t, n-m\}$. We have that*

$$\text{sdepth}(I_{n,m}^t) \leq \min\{n - \left\lceil \frac{t_0}{2} \right\rceil, n - \left\lceil \frac{n-t_0+1}{m+1} \right\rceil + 1\}.$$

Proof. If $t \geq n-m+1$, then $t_0 = n-m$ and, according to [4, Lemma 2.1], we have that $I_{n,m}^{t_0} = I_{n,m}^t : (x_{n-m+1} \cdots x_n)^{t-t_0}$. Therefore, from Lemma 4.2(2) it follows that $\text{sdepth}(I_{n,m}^t) \leq \text{sdepth}(I_{n,m}^{t_0})$. Hence, we can assume that $t \leq n-m$ and $t_0 = t$.

By Euclidean division, we write $n-t+1 = q(m+1)+r$, where $0 \leq r \leq m$. According to [4, Lemma 2.5], there exists a monomial $w \in S$ such that:

$$(I_{n,m}^t : w) = \begin{cases} U_{m,t} + P_{m,t,q}, & r < m \\ U_{m,t} + P_{m,t,q} + (x_{n-m+1} \cdots x_n), & r = m \end{cases}, \quad (4.2)$$

where $P_{m,t,q} \subset K[x_{t+m+1}, \dots, x_{t+q(m+1)-1}]$ is a prime monomial ideal of height $2(q-1)$. If $r < m$ then, from (4.2) and [3, Theorem 1.3] it follows that $\text{sdepth}(I_{n,m}^t : w) \leq \min\{\text{sdepth}(U_{m,t}S), \text{sdepth}(P_{m,t,q}S)\}$. From Proposition 4.1, [9, Lemma 3.6] and [2, Theorem 2.2] we deduce that $\text{sdepth}(I_{n,m}^t : w) \leq \min\{n - \lceil \frac{t}{2} \rceil, n - q + 1\}$. In the case $r = m$, we obtain the same inequality. Therefore, the required conclusion follows from Lemma 4.2(2) and the fact that $q = \left\lfloor \frac{n-t+1}{m+1} \right\rfloor$. \square

The m -path ideal of a cycle graph

Let $n > m \geq 2$ be two integer and

$$J_{n,m} = I_{n,m} + (x_{n-m+2} \cdots x_n x_1, \dots, x_n x_1 \cdots x_{m-1}) \subset S = K[x_1, \dots, x_n],$$

the m -path ideal associated to the cycle graph of length n .

Let $d := \gcd(n, m)$. We consider the ideal

$$U'_{n,d} = (x_1, x_{d+1}, \dots, x_{d(r-1)+1}) \cap (x_2, x_{d+2}, \dots, x_{d(r-1)+2}) \cap \cdots \cap (x_d, x_{2d}, \dots, x_{rd}), \quad (4.3)$$

where $r := \frac{n}{d}$. Note that $U'_{n,1} = \mathbf{m} = (x_1, \dots, x_n)$.

Proposition 4.4. *We have that: $\text{sdepth}(U'_{n,d}) \leq \text{hdepth}(U'_{n,d}) \leq \left\lfloor \frac{n+d}{2} \right\rfloor$.*

Proof. According to Theorem 3.3, we have that $\text{hdepth}(U'_{n,d}) \leq \left\lfloor \frac{n+d}{2} \right\rfloor$. Now, apply Proposition 1.2. \square

Let $t_0 := t_0(n, m)$ be the maximal integer such that $t_0 \leq n-1$ and there exists a positive integer α such that $mt_0 = \alpha n + d$. Let $t \geq t_0$ be an integer.

Theorem 4.5. *Let $n > m \geq 2$ and $t \geq t_0$. We have that $\text{sdepth}(J_{n,m}^t) \leq \left\lfloor \frac{n+d}{2} \right\rfloor$.*

Proof. By [5, Lemma 2.2], there exists a monomial $w_t \in S$ such that $(J_{n,m}^t : w_t) = U'_{n,d}$. The conclusion follows from Lemma 4.2(2) and Proposition 4.4. \square

5. Conclusion

Let n, m be two positive integers and $I = (x_1, \dots, x_n) \cap (x_{n+1}, \dots, x_{n+m})$ be the ideal of $S = K[x_1, \dots, x_{n+m}]$. We proved that $\text{hdepth}(I) = \left\lfloor \frac{n+m+2}{2} \right\rfloor$. Also, we proved that $\text{hdepth}(S/I) \leq \left\lfloor n + m + \frac{1}{2} - \sqrt{2mn + \frac{1}{4}} \right\rfloor$.

More generally, let n_1, n_2, \dots, n_r be some positive integers, $N = n_1 + \cdots + n_r$, $S := K[x_1, \dots, x_N]$ and $I = (x_1, \dots, x_{n_1}) \cap \cdots \cap (x_{n_1+\dots+n_{r-1}+1}, \dots, x_N) \subset S$. We proved that $\text{hdepth}(I) \leq \left\lfloor \frac{N+r}{2} \right\rfloor$ and we conjectured that we have equality.

Acknowledgments

We gratefully acknowledge the use of the computer algebra system *Cocoa* ([7]) for our experiments. The second author, Mircea Cimpoeaş, was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2021-1633, within PNCDI III.

REFERENCES

- [1] *J. Apel*, On a conjecture of R. P. Stanley; Part II - Quotients Modulo Monomial Ideals, *J. of Alg. Comb.* **17** (2003), 57–74.
- [2] *C. Biro, D. M. Howard, M. T. Keller, W. T. Trotter, S. J. Young*, Interval partitions and Stanley depth, *J. Combin. Theory Ser. A* **117(4)** (2010), 475–482.
- [3] *M. Cimpoeaş*, Several inequalities regarding Stanley depth, *Rom. J. Math. Comput. Sci.* **2(1)** (2012), 28–40.
- [4] *S. Bălănescu, M. Cimpoeaş*, Depth and Stanley depth of powers of the path ideal of a path graph, *U.P.B. Sci. Bull., Series A* 86(4) (2024), 65–76.
- [5] *S. Bălănescu, M. Cimpoeaş*, Depth and Stanley depth of powers of the path ideal of a cycle graph, accepted to *Rev. Un. Mat. Argentina*, <https://doi.org/10.33044/revuma.4641> (2024), 13pp.
- [6] *S. Bălănescu, M. Cimpoeaş, C. Krattenthaler*, On the Hilbert depth of monomial ideals, (2024), 18pp., arXiv:2306.09450v4.
- [7] *CoCoATeam*, CoCoA: a system for doing Computations in Commutative Algebra, Available at <http://cocoa.dima.unige.it>
- [8] *A. M. Duval, B. Goeckner, C. J. Klivans, J. L. Martine*, A non-partitionable Cohen-Macaulay simplicial complex, *Advances in Mathematics* **299** (2016), 381–395.
- [9] *J. Herzog, M. Vlădoiu, X. Zheng*, How to compute the Stanley depth of a monomial ideal, *Journal of Algebra* **322(9)** (2009), 3151–3169.
- [10] *J. Herzog*, A survey on Stanley depth, In *Monomial Ideals, Computations and Applications*, Springer, (2013), 3–45.
- [11] *A. Popescu*, Special Stanley decompositions, *Bull. Math. Soc. Sci. Math. Roumanie* **53(101)(4)** (2010), 363–372.
- [12] *D. Popescu*, Bounds of Stanley depth, *An. Științ. Univ. “Ovidius” Constanța Ser. Mat.* **19(2)** (2011), 187–194.
- [13] *R. P. Stanley*, Linear Diophantine equations and local cohomology, *Invent. Math.* **68** (1982), 175–193.