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ON THE HILBERT DEPTH OF CERTAIN MONOMIAL IDEALS AND
APPLICATIONS

Silviu Bélinescu!, Mircea Cimpoeas?

We study the Stanley depth and the Hilbert depth for I and S/I, where I C
S = Klz1,...,zn] is the intersection of monomial prime ideals with disjoint sets of
variables. As an application, we obtain bounds for the Stanley depth of Ifl,m and Jfl’m,
where I m is the m-path ideal of the path graph of length n and Jn m is the the m-path
ideal of the cycle graph of length n.
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Introduction

Let K be a field and S = KJz1,...,z,] the polynomial ring over K. Let M be a
Z"-graded S-module. A Stanley decomposition of M is a direct sum D : M = @;_, m;K|[Z;]
as a Z"-graded K-vector space, where m; € M is homogeneous with respect to Z"-grading,
Z; CA{x1,...,xn} such that m; K[Z;] = {um; : v € K[Z;]} C M is a free K[Z;]-submodule
of M. We define sdepth(D) = min;—y,_, |Z;| and sdepth(M) = max{sdepth(D)| D is a
Stanley decomposition of M}. The number sdepth(M) is called the Stanley depth of M.

Herzog, Vladoiu and Zheng show in [9] that sdepth(M) can be computed in a finite
number of steps if M = 1I/J, where J C I C S are monomial ideals. In [1], J. Apel restated
a conjecture firstly given by Stanley in [13], namely that sdepth(M) > depth(M) for any
Z"-graded S-module M. This conjecture proves to be false, in general, for M = S/I and
M = J/I, where 0 # I C J C S are monomial ideals, see [8]. For a friendly introduction in
the thematic of Stanley depth, we refer the reader [10].

Let M be a finitely generated graded S-module. The Hilbert depth of M, denoted
by hdepth(M), is the maximal depth of a finitely generated graded S-module N with the
same Hilbert series as M. In [6] we introduced a new method to compute the Hilbert depth
of a quotient J/I of two squarefree monomial ideals I C J C S; see Section 1.

In Section 2 we consider the edge ideal of a complete bipartite graph, that is

Ii=(21,...,Zn) N (Tpt1s- s Tnpm) CS = K[x1, ..., Tntm)],
and we study the Stanley depth and the Hilbert depth of I and S/I.
Assume m < n. In Proposition 2.2 we show that

m > sdepth(S/I) > min{m, {g—‘ }.

L1Ph-D student, Faculty of Applied Sciences, National University of Science and Technology Politehnica
Bucharest, Romania, e-mail: silviu.balanescu@stud.fsa.upb.ro

2Professor, Faculty of Applied Sciences, National University of Science and Technology Po-
litehnica Bucharest, Romania and Simion Stoilow Institute of Mathematics, Romania, e-mail:

mircea.cimpoeas@imar.ro

53



54 Silviu Balanescu, Mircea Cimpoeas

Also, in Theorem 2.6 we prove that

1 1
hdepth(S/I) < {n—i—m—k 5~ \/2mn + 4J .

In particular, we note that hdepth(S/I) < m if and only if n < 2m — 2.

In Theorem 2.9 we prove that
hdepth(I) = sdepth(I) = [%] n {%W 7

if n and m are not both even. Also, we prove that if n = 2s and m = 2t then
t + s < sdepth(I) < hdepth(S/I) =t+ s+ 1.

In particular, we have hdepth(I) = | 2242 | for any n > m > 1.
In Section 3 we consider a generalization of the ideal from the previous section, namely

I = ITL1-,--.,7LT = (.’ﬂl, e ,l’nl) n (1’n1+1, N ,Zn1+n2) n---N (xn1+“'+nr—1+17 ey SUN) C S,
where N =ny +---+n, and S = K[z1,...,2y]. In Theorem 3.3 we prove that

{N;TJ > hdepth(I) > sdepth(1) > || +---+ [ 5]

Also, we conjecture that

N
hdepth(7) = { ; TJ .
This formula holds for » = 2 and if » > 3 and at most one of the numbers nq,...,n, is even.

In Proposition 3.8 we characterize hdepth(S/I) and hdepth(I) in combinatorial terms. In
Proposition 3.10 we show that

N—-d+r-1

hdepth(S/I) < min{d > r : ( .

) <ming---npp— 1.

Based on Proposition 3.13, we conjecture that hdepth(S/I) ~ N — {(/T!nlng e nr].
Let n > m > 2 and ¢ > 1 be some integers. In Section 4 we apply the results from
Section 3 in order to obtain sharper bounds for the Stanley depth of I}, ,, and J}, ,,, where

n,m:?
Inm = (x1T2 - T, T2X3 - Tong1y -« s Tnemil - Tn) C S = Kz, ..., 2],
is the m-path ideal associated to path graph of length n and

Jn,m = In,m + (xn—m+2 Il ..., Tndy 'xm—l) cS

is the m-path ideal associated to the cycle graph of length n.
In Theorem 4.3 we show that

. to n—ty+1
sdepth (I} < — | = - | — 1
sdepth(z}) < minfn — | 0 | "B ),

where tg = min{t,n — m}. In Theorem 4.5 we show that

d
sdepth(J}, ,,,) < {n;r J ,

for any ¢ > n — 1, where d = ged(n, m).
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1. Preliminaries

First, we fix some notations and we recall the main result of [6].

We denote [n] :={1,2,...,n} and S := K[z1,...,Zy].

For a subset C' C [n], we denote zc :=[[;ccz; € S.

For two subsets C' C D C [n], we denote [C,D] :={A C [n] : C C AC D}, and we
call it the interval bounded by C' and D.

Let I € J C S be two square free monomial ideals. We let:

Pyr={CcCn]: zce€J\I}c2m.

A partition of Py, is a decomposition:

T

?: Py =JICi, D,

i=1

into disjoint intervals.
If P is a partition of P/, we let sdepth(?) := minj_, |[D;|. The Stanley depth of
PJ/I is

sdepth(P;,;) := max{sdepth(P) : P is a partition of P;/;}.
Herzog, V1addoiu and Zheng proved in [9] that:
sdepth(.J/I) = sdepth(P ;7).

Let P := P/, where I C J C § are square-free monomial ideals. For any 0 < k < n, we
denote:

ri={AeP : |A =k} and ai(J/I) = ar(P) = | Pk .
For all 0 < d <n and 0 < k < d, we consider the integers
- —j
ai/m = Y0 (- Yas(a/m), (11)
_ —J
7=0
From (1.1) we can easily deduce that

k

ap(J/I)=>" < >ﬁk (J/I), for all 0 < k < d. (1.2)

j=0

Also, we have that
d d—1 d—k+1
siom =anin - ()stom - (37 )stom - (" st as)
Theorem 1.1. (6, Theorem 2.4]) With the above notations, the Hilbert depth of J/I is
hdepth(J/I) := max{d : BI(J/I) >0 for all 0 < k < d}.
As a basic property of the Hilbert depth, we state the following;:

Proposition 1.2. Let I C J C S be two square-free monomial ideals. Then

sdepth(J/I) < hdepth(J/I).
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2. Edge ideal of a complete bipartite graph

Let n and m be two positive integers. We let S = K[z, xa, ..., Zn1m] and we consider
the square free monomial ideal:
I:=(z1,..,Zn) N (Tpt1s- -, Tntm) C S
Our aim is to study the Stanley depth and the Hilbert depth of I and S/I.
As usual, given a positive integer k, we denote [k] := {1,2,...,k}.

Remark 2.1. Let K, ,, = (V, E) be the complete bipartite graph, that is V.= V' U V",
where V! ={1,...,n}, V' ={n+1,...,n+m} and E = {{i,j} : i € [n], j —n € [m]}.
Note that I = (z;x,4; @ @ € [n], j € [m]) is the edge ideal of K, ,.

Also, we mention that depth(S/I) = 1, which can be easily checked.

Proposition 2.2. Let n > m > 1 be two integers. Then:
(1) m > sdepth(S/I) > min{m, [§]}.
(2) m+[5] = sdepth(I) > [5] + [3].
(3) If n > 2m — 1 then sdepth(S/I) = m.
Proof. (1) Since I = I'S N 1"S, where I' = (z1,...,2,) C S = Klx1,...,2,] and
I" = (p41,- s @Tngm) C 8" = K[Tpi1,--. Tntm], from [3, Theorem 1.3(2)] it follows
that
sdepth(S/I'S) > sdepth(S/I) > min{sdepth(S/I'S), sdepthg, (S"/I") + sdepthg, (I')}.
As S/I'S =2 5", we have that sdepth(S/I'S) = m.
Also, 8" /1" = K, so sdepthg.(S”/I") = 0.
Finally, sdepthg, (I") = [§], see [2, Theorem 2.2].
(2) Since (I : ¢p41) = I'S, from [12, Proposition 2], [2, Theorem 2.2] and [9, Lemma
3.6] we have
sdepth(I) < sdepth(I : zn11) = sdepth(I'S) = m + sdepthg (I') = m + {g] .
The other inequality follows from [11, Lemma 1.1] and [2, Theorem 2.2].
(3) If n > 2m — 1 then [ ] > m, hence the result follows from (1). O

Lemma 2.3. Let n > m > 1 be two integers and N :=n + m. We have that
0 0<k<1
(1) ak(I):{ k1 m P
Yo (DGI), 2<k<N
2) arl) =)= ¢) = (7) + Oko, for all0 <k < N.

1, k=j
(3) an(S/1) = (1) + (1) = o, Jor all 0 < k < N, where 3; = {o’ oy
) J

is the

Kronecker symbol.

Proof. (1) Since I is generated in degree 2, we have ag(l) = a1(I) = 1. Any squarefree
monomial v € I with deg(u) = k > 2 can be written as u = v - w, where v € S’ =
Klzy,...,zy]and w € 8" = K[2p41, ..., 2] are squarefree monomials. Assume deg(v) = j
with 1 < j < k—1. Then deg(w) = k—j. Since there are (;‘) squarefree monomials of degree
j in S and (k'fj) squarefree monomials of degree k — j in S”, we easily get the required
conclusion.

(2) For k < 1 the identity can be easily checked. Assume k > 2. From (1) and the well

k

known combinatorial formula Z (;‘) (k"jj) = ("zm) = (JZ ), we get the required conclusion.

(3) It follows immediately from (2).
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Lemma 2.4. For any integers 0 < k < d and n > 0 we have that

jzi:o(_l)k_j (Z_:D (Z) = (—1)’“(d;”) _ (”—d:k— 1).

Proof. Using the identity (—1)*(7) = ("%~} and the Chu-Vandermonde summation, we

get the required formula. O

Lemma 2.5. Letn>m>1 and 0 < k < d < N :=n+ m some integers. We have that

weism= (") (T o (),

2) BT = <N d;kzl)(nd;kl) (md;k1>+(1)k<z)'

Proof. (1) From (1.1), Lemma 2.3(3) and Lemma 2.4 we have that

st =330 () )+ pov= () () -0 () -

= Jj=1

_ (n—d—l:k;—l)+(m—d2—k—1>+<_1)k+l(:>7

as required.
(2) The proof is similar, using (1.1), Lemma 2.3(2) and Lemma 2.4. O

Note that, if n > 2m — 1 then, according to Proposition 2.2(3) and Proposition 1.2
we have hdepth(S/I) > sdepth(S/I) = m. Also, sdepth(S/I) < m, for any n > m.

Theorem 2.6. Let n > m > 1 be two integers. Then

depth(S/T) < hdepth(S/1) < {n bmdo MJ |

In particular, if n < 2m — 2 then hdepth(S/I) < m.

Proof. The first inequality follows from Proposition 1.2. We consider the quadratic function

o(t) = %t(t )= (4 m)t+ %n(n 1)+ %m(m +1).

Note that, according to Lemma 2.5(1), we have that

BUS/T) = %((n —d)(n—d+1)+(m—-—d(m—-d+1)—d(d—-1)) =

= %d(d —1)—(n+m)d+ %n(n +1)+ %m(m +1) = p(d).

The roots of ¢(t) =0 are t12 =n+m+ 5 £ ,/2mn+ % and therefore

1 1 1 1
p(t) < 0if and only if ¢ € <n+m+2—1/2mn+4,n+m+2+m>.

From the fact that 34(S/I) = ¢(d) and the above, it follows that

BA(S/I) < 0 for {n—i—m—i—;—y&mn—i—iJ +1<d<n+m.
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From Theorem 1.1, we get hdepth(S/I) < {n—l— m+ 3 —4/2mn + iJ
In order to prove the last part, we consider the function

1 1
w(x):m—l—m—l—i—q/me—&—Z, x € [m,00).

Since %(m) >0,m<n<2m-—2and ¢¥(2m — 1) = m, it follows that

{2m+;— 2m2+iJ < [@¥(n)]| = {n—l—m—l—;—\/an—i—iJ <P(2m—1) =m,

as required. (]

Theorem 2.7. Let n > m > 2 be two integers. Then

d—n d—m d d
hdepth(S/I) = max{d <n+m ( 90 >+< o0 )<2£> foralll1 <£< {2J}
Moreover, hdepth(S/I) < m if n < 2m — 2. Also, m < hdepth(S/I) < n—m+1 if

n>2m — 1.

Proof. Let ¢ :=max{d <n+m : (d;e”) + (dgem) > (2‘14) forall 1 <¢<|4]}.

From Lemma 2.5(1) and the identity (}) = (_“;Ck_l) it follows that

BL(S/T) = (d 2‘6”) . (d g[”) - (;;) 2.1)
Hence hdepth(S/I) < g.

On the other hand, from the proof of Theorem 2.6 and (2.1), it follows that
1 1
qg\‘n+m+2—\/2mn+4J. (2.2)
We consider two cases:

(i) » < 2m — 2. From Theorem 2.6, it follows that ¢ < m. From Lemma 2.5(2) and
0 < k < q with k odd, we have

BI(S/T) = (n_qzk_l>+<m_qzk_l>+<z> > (n_z+k)+1+<z> > 0.

Since, by the definition of ¢, we have 8}(S/I) > 0 for all 0 < k < ¢ with k even, we
conclude that hdepth(S/I) > q. Hence hdepth(S/I) = ¢ < m, as required.
(ii) m > 2m — 1. First, note that

m = sdepth(S/I) < hdepth(S/I) < q.
From (2.2) and the above it follows that

1 1 1 1
m<q< \‘n+m+2—\/2m(2m—l)+4J = {n+m+2—(2m—2)J =n—m+1.

From Lemma 2.5(2) and 0 < k < ¢ with k odd, we have

BI(S/T) = (n_qzk_l>+(q;m>+<z> : (ZL)*O*(TZ) =0

Using the same argument as in the case (i), it follows that hdepth(S/I) = ¢, as
required.

Thus, the proof is complete. O
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Lemma 2.8. Let n > m > 1 be two integers. Then

n+m+2J

hdepth(I) < { 5

Proof. If n+m = 2, that is n = m = 1, then there is nothing to prove. Assume n +m > 3.
From Lemma 2.5(2) and straightforward computations, it follows that

nm(n+m — 2d 4 2

g = Mmtn k=242

if and only if d > 2242 Hence, we get the required result. O

<0,

Theorem 2.9. Let n >m > 1 be two integers.

(1) If n and m are not both even then we have that:
sdepth(I) = hdepth(I) = {%W + [%W .
(2) If n =2t and m = 2s then we have that:
t + s < sdepth(J) < hdepth(l) <t+ s+ 1.
In both cases, we have hdepth(I) = | 742 |

Proof. (1) According to Proposition 2.2(2), we have that

sdepth(l) > {g] + [%} . (2.3)
On the other hand, according to Proposition 1.2 and Lemma 2.8, we have that
sdepth(I) < hdepth(I) < V;mJ +1. (2.4)

Note that, if n and m are not both even, then

{%W + [%1 = {n;mJ +1. (2.5)
Hence, (1) follows from (2.3), (2.4) and (2.5).
(2) From (2.3) and (2.4) we have that
t + s < sdepth(I) < hdepth(I) < ¢+ s+ 1.
On the other hand, for 0 < k <t+ s+ 1, from Lemma 2.5(2) we have

grHH(]) = (t—&-s;Z-i—k‘) _(t—s;2+k)_ (s—t;Q—i—kz)_’_(_l)k(t—f—z—kl).
(2.6)

By direct computations, from (2.6) it follows that
Bo T (I) =0, BrTTHI) = 0, By (I) = st and B TH(I) = 0.
Also, by straightforward computations, we get
ts(2s2 42t — 1)
3
Now, assume 6 < k < t+ s+ 1. Without any loss of generality, we assume that ¢t = s + a,

where a is a nonnegative integer. In order to prove that g := B}?‘SH(I) > 0, we consider
the following cases:

BrtH 1) = g5 () = > 0.

(i) k is even.
(i.1) @ =0. From (2.6) and the fact that s > 1 it follows that

) () () (- (1)
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(i.2) a=1. From (2.6) and the fact that s > 1 it follows that
g (25TUERY (BT (k=B (282 (K1) (25 42)
- k k k k k k ’
(i.3) a>2and k > a + 2. From (2.6) we get
2s+a+k—2 a+k—2 2s+a+1 2s+a+1
_ _ > 0.
() () e
(i4) a>5and k < a+ 1. From (2.6), using (77) = (=1)F(*77 1), we get
5= 2s+a+k—-2\ fa+k-2\ (a+l L 2s+a+1\
B k k k k B
_(2s+ta+k—-2 a+k—2 n 2s+a+1 a+1 50
B k k k k '

(i) k is odd.
(ii.1) a =0. From (2.6) and the fact that k > 6 it follows that

T ) ) (7)) ()

(ii.2) a = 0. From (2.6) and the fact that k > 6 it follows that
s—1+k -1 k-3 25+ 2 25+ 5 2s + 2
= — > — .
= () () -C0) - ()= (00) - () =
(ii.3) @ > 2 and k > a + 2. From (2.6) and the fact that £ > 6 and s > 1 we get
5= 2s+a+k—2 _ a+k—2 _ 2s+a+1 S 2s+a+k—3 _
a k k k k—1
_ a+k—2 > at+k—-1 _ a+k—2 _ak+k2—k—a2+a a+k—2 >0
k - k-1 k - ala —1) k '
(ii.4) a>5and k <a+ 1. From (2.6), using (77) = (-1)* (”H'k 1) we get
5= 2s+a+k—2 B a+k—2 a—|—1 28+a—|—1
o k k
(2s+ta+k—-2 7 2s+a+1 +k— 7 a+1 B
o k k k k -

2s+a+k—3 ) a+k—3 /
> (kl) > (kzl) > 0.

t=2s+a+1 t=a+1
Hence, hdepth(I) = s + ¢ + 1 and the proof is complete. a
3. A generalization
Let n1,no, ..., n, be some positive integers, N = ny+---+n, and S := K[z,...,xN].
We consider the ideal
I'=1In nyimy =(Z1, . Zny) N (Tny 15+ Trgtmn) N - NV Ty doodgmy 1415 - - -, ZN) C S,

which generalize the ideal I from the previous section.
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Lemma 3.1. With the above notations, we have that

0 k<r-—1
(D) = X @), kzr

L1,02,.. 0. 2>1

L+ ALr=k

Proof. Since I is generated by square free monomials of degree k, it is clear that a(l) =0
for Kk < r—1. Assume k > r and let u € I a square free monomial of degree k. It follows
that v = uq - - - u,., where

1 7é U S IJ = (xn1+---+nj,1+la ce ;xn1+-~-+nj) for all 1 S] <r.
Let ¢; = deg(u;) > 1. Since there are (Z? ) squarefree monomials of degree ¢; in I;, we get
J
the required conclusion. O

Lemma 3.2. With the above notations, we have that
(1) ax(I) =0 fork <r—1.
(2) ar(I) =ning---n,.

3) apt1(I) =ning---n,

(4) an(D) = (§) for k> N — minn, +1.

3 .

Proof. (1), (2) and (3) follow immediately from Lemma 3.1. In order to prove (4), it is
enough to observe that any squarefree monomial u € S of degree & > N — Hll{l n; + 1,
belongs to I. O

Theorem 3.3. With the above notations, we have that:

VV;?AJ > hdepth (/) > sdepth(/) > [%—‘ T [%" .

Proof. In order to prove the first inequality, let d > w be an integer. From Theorem
1.1 and Lemma 3.2(1,2,3) it follows that

BTy =0for 0 <k<r—1, B4I) = a,(I) =niny---n, and

BLA(I) = apgr (I) = (d — 1)ar(I) = nang -y (

Hence hdepth(I) < W
The inequality hdepth(I) > sdepth(I) follows from Proposition 1.2, and the last

inequality follows from [3, Corollary 1.9(1)] and [2, Theorem 2.2]. O

Based on our computer experiments, we propose the following conjecture:

Conjecture 3.4. With the above notations, we have
N+r
5 .

hdepth(I) = L

Note that, according to Theorem 2.9, Conjecture 3.4 holds for r = 2. Also, according
to Theorem 3.3, Conjecture 3.4 is true when at most one of the numbers ny, ..., n, is even.

Proposition 3.5. With the above notations, we have that
ni n

N—Iil'lii{l’ni > hdepth(S/I) > sdepth(S/I) > [7-‘ +- 4 [77-‘ —mrin {&-‘ .
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Proof. From Lemma 3.2(4) it follows that
o (S/I) =0 for all k > N — miafcm +1.

Hence, from [6, Lemma 1.3], we get the first inequality.
The second inequality follows from [3, Corollary 1.9] and [2, Theorem 2.2]. O

Note that, Proposition 3.5 reproves the fact that hdepth(S/I) > depth(S/I) =r — 1.

Lemma 3.6. For any 0 < k < N, we have that:

(1) a(I) = ng[n](—l)u‘ (N_Zkie‘]"i).
) 04l1) = Spseg (DI (T ).

Proof. (1) For all 1 < i < r we let:

Ai ={(r,.. . La) : o+ 4L, =k, L;=0and ¢; >0 for j # i}.
Also, we consider the set:

A={(t1,....6g) : 4+ - +4.=kand {; >0forall 1 <i<r}.

For any nonempty subset J C [n], we let A; = |J,. ; A;. Also, we denote Ay = A. From

Lemma 3.1 it follows that

S~ ) I ) S

(01,es8r) €A\ (UT=y Ad)

icJ

Note that this equality holds also for k < r as both terms are zero in this case. It is well

5 (-(0-C7)-0)

(l1,....0r)EA

> () ()T 62

(417~--75r)€ﬂi€J Ai

Similarly, if J C [n] then

From (3.1) and (3.2), using the inclusion exclusion principle, we get the required conclusion.
(2) Follows from (1) and the fact that a(S/I) = (],:) —a(I). O

Note that Lemma 3.6 generalizes Lemma 2.3(2,3). From Lemma 3.6 and Lemma 2.4
we get the following generalization of Lemma 2.5:

Lemma 3.7. For any 0 < k <d < N, we have that:
(1) Blccl(l) = Z (_1)‘J‘(NfzieJZi*d+k71).
JC[n]

(2) BS/D) = 3 (=P (NTRes R,
0#£7C[n]
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Proposition 3.8. With the above notations, we have that:

n1 N, N +r
= A 2 <d<
(1) hdepth(I) max{d.[Q-‘—i- +{2—‘d{ 5 Jand
N->._,n—-d+k-1
Z (—1)J( ZleJnk T ) >0 for allr < k <dj}.
JGIn]
_ N ) T L I
(2) hdepth(S/I) = max{d : [ 5 -‘ +o 4 [ > —‘ 1111:1{1 [ 2—‘ <d<N - ml{lm and
N->. . ,n—d+k—
Z (—1)|J|+1< ZZEJ nk + ) >0 forallr <k <d}.
0£JCln)
Proof. (1) It follows from Theorem 3.3 and Lemma 3.7(1).
(1) It follows from Proposition 3.5 and Lemma 3.7(2). O

Lemma 3.9. Let d > r. We have that

ﬁﬁﬂﬂZ(N_d+r_v—nmy~m.

r

Proof. From Lemma 3.2 it follows that

N N
ap(S/I) = (k) for k<r—1, a.(S/I) = <r> —ning - Ny
Hence, the required result follows from (1.1) and Lemma 2.4. ]
Proposition 3.10. With the above notations, we have that:

N-—-d+r-1

hdepth(S/I) < min{d > r : ( .

) <ming---npp— 1.

Proof. First of all, note that, according to (1.3), we have
BY(S/I)=1and B (S/I)=0forall 1 <k <r—1.

Moreover, according to Lemma 3.9, (1.1) and (1.3), we have
N—-N+r-1
o (s/n = (

r
Therefore, we have that ¢ := min{d > r < ming---n.} is well defined and
g < N. Now, it is enough to notice that, from above B2(S/I) < 0 and thus hdepth(S/I) <

q — 1, as required. O

)—nlng---nr:—n1n2~-~nr<0.

d+r 1)

Lemma 3.11. We have that

N —d —1
( +r )znm,umﬂwmdgw_[ymmwnmJ.

r
Proof. We assume that d = |aN |, where a € (0,1). Then
(Nd+r1> ~ (N—d+r—1)(N—d+r—2)---(N —d) S

T r!

> (N—aN+r—1)(N—aN+r—-2)---(N —aN) S N’“(l—a)’“.

r! - r! (3.3)
On the other hand
N™(1—a)" r o Tlning---n, vringng - n,.
Tznlng---nrﬁ(l—a) EW@agl—# (3.4)

The conclusion follows from (3.3) and (3.4). O
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Remark 3.12. Note that, from the inequality of means, we have

. N+/r!
vrlning---n, < )

r

with equality for ny =no=---=n, =n= % Therefore, from Lemma 3.11, we have that

_ _ |
<N d+r 1>znrfora11d§1v<1’“ri>.
r r’

Proposition 3.13. With the above notations, we have that

BLUS/I) >0 for alld < N — ’V\T/T!ﬂqng . ~-nr—| .
Proof. Tt follows from Lemma 3.9 and Lemma 3.11. O

Proposition 3.13 allows us to conjecture that hdepth(S/I) ~ N — [v/rIniny - n,|.

4. Applications

The m-path ideal of a path graph

Let n > m > 1 be two integers and

Inm = (122 T, T2T3 Tmtly -« s Tnemitl - Tn) C S = K[T1,...,2p],
be the m-path ideal associated to the path graph of length n. Let ¢ > 1. We define:

n—t+2— {"‘t”J — [”‘“‘2—‘, t<n+1-—-m

p(n,m,t) = { mH mH

m—1, t>n+1—m

According to [4, Theorem 2.6] we have that sdepth(S/I}, ,,) > depth(S/I}, ,,) = @(n,m,t).

n,m

Assume that t <n —m and let Sy, = K[21,...,Zm4t]. We consider the ideal

Uyt = (xiy 25, : i; =j(mod m),1 <j<m)C Sipm.

m

By Euclidean division, we write ¢t + m = am + b, where 1 < b < m. According to the proof
of [4, Lemma 2.4], we have that

Um,t = Vm,l,a—&-lm' : 'mvm,b,a—&-lmvm,b—&-l,am' . 'ﬁvm,m,m where Vm,j,k = (l‘j, Tjtmy--- 7xj+(k:71)m)~
(4.1)

Proposition 4.1. We have that: sdepth(Uy, ;) < hdepth(Up, ) <m+ |£].

Proof. According to Theorem 3.3, we have that hdepth(Up, +) < LWJ =m+ L%J . Now,
apply Proposition 1.2. O

Lemma 4.2. Let I C S be a proper monomial ideal and uw € S\ I a monomial. Then

(1) sdepth(S/(I : uw)) > sdepth(S/I). (3, Proposition 2.7(2)])
(2) sdepth(I : u) > sdepth(I). ([12, Proposition 2])

Theorem 4.3. Letn>m > 1 andt > 1. Let to := min{t,n — m}. We have that

. to n—to—i-l
depth(I! ) <m —|= - | — 1}.
sdep (n)m)_ in{n [2—‘,71 { 1 J+}

Proof. Ift > n—m+1, then ty = n—m and, according to [4, Lemma 2.1], we have that I}°, .

I} o (Tn—my1 - @) "0, Therefore, from Lemma 4.2(2) it follows that sdepth(Z}, ,,) <
sdepth([/?,,). Hence, we can assume that t <n —m and to = t.
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By Euclidean division, we write n—t+1 = g(m+1)+r, where 0 < r < m. According
to [4, Lemma 2.5], there exists a monomial w € S such that:

Unt+ Pt <
(It cw) = § ot Tt e (4.2)
’ Um,t + Pm,t,q + (-Tn—m—i-l ce IZ?n), r=m
where P tq C K[Ti1mi1,- -, Tigq(m+1)—1] is @ prime monomial ideal of height 2(¢ — 1).

If r < m then, from (4.2) and [3, Theorem 1.3] it follows that sdepth(I},, : w) <
min{sdepth(U,, +S), sdepth(Pp, + ¢5)}. From Proposition 4.1, [9, Lemma 3.6] and [2, Theo-
rem 2.2] we deduce that sdepth(I} ,, : w) < min{n— [£],n—¢+1}. In the case r = m, we
obtain the same inequality. Therefore, the required conclusion follows from Lemma 4.2(2)

and the fact that ¢ = L%J -

The m-path ideal of a cycle graph
Let n > m > 2 be two integer and
Jn,m - In,m + (xn—m+2' L1y, Tl "'xm—l) cS= K[xlvn- y Tnly

the m-path ideal associated to the cycle graph of length n.
Let d := ged(n, m). We consider the ideal

na = (@1, Tay1, - Tago1)41) N (T2, Taga, - Tar—1y42) N+ N (Ta, Tag, - - -, Tra), (4.3)
where r := %. Note that U}, ; = m = (z1,...,2,).
Proposition 4.4. We have that: sdepth(U,, ;) < hdepth(U], , < |t J .
Proof. According to Theorem 3.3, we have that hdepth(U’, n, ) L J Now, apply Propo-
sition 1.2. ]
Let ty := to(n,m) be the maximal integer such that tg < n — 1 and there exists a

positive integer « such that mtg = an + d. Let t > tg be an integer.
Theorem 4.5. Letn >m > 2 andt > to. We have that sdepth(J}, ,,,) < |ndd ]

Proof. By [5, Lemma 2.2], there exists a monomial w; € S such that (J} ,, : w;) = U] ,.
The conclusion follows from Lemma 4.2(2) and Proposition 4.4. O

5. Conclusion

Let n,m be two positive integers and I = (21,...,2n) N (Tpy1, ..., Lntm) be the
ideal of S = K[x1,...,Zntm]. We proved that hdepth(I) = L%J Also, we proved that

hdepth(S/I) < Ln +m4 L f2mn+ ﬂ .

More generally, let ny,ng,...,n, be some positive integers, N =nj +---+n,, S :=
Klzy,...,zy]and T = (T1,...,Zny) N N (Tpytodnp_y 415 - - - TN) C S. We proved that
hdepth(Z) < | X3 | and we conjectured that we have equality.
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