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GENERALIZED RATIONNAL EFFICIENCY IN
MULTIOBJECTIVE PROGRAMMING

A. Mahmodinejad1, D. Foroutannia2

A problem that sometimes occurs in multiobjective optimization
is the existence of a large set of Pareto-optimal solutions. Hence the deci-
sion making based on selecting a unique preferred solution becomes difficult.
Considering models with rational B-efficiency relieves some of the burden
from the decision maker by shrinking the solution set. This paper focuses
on solving multiobjective optimization problems by introducing the concept
of rational B-efficiency. In this paper, first some theoretical and practical
aspects of rationally B-efficient solutions are discussed. Then an algorithm
to generate a subset of Pareto-optimal solutions is presented which aims to
offer a limited number of representative solutions to the decision maker.
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1. Introduction

The field of multiobjective programming has grown considerably in dif-
ferent directions in the setting of optimality conditions and duality theory
since the 1980s. It has been enriched by the applications of various types of
generalizations of convexity theory and many authors have worked in this field
and contributed to the results and literature available. Pitea and Postolache,
for example, recently introduced the concept of quasiinvexity in a geometric
framework, see [12-15].

Several multiobjective optimization approaches exist that generate finite
sets of Pareto optimal solutions, which can be overwhelming to the decision
maker in the task of selecting the most appropriate solution to implement. The
classical preference based methods are categorized as a priori methods, a pos-
teriori methods, and interactive methods. A priori methods use decision maker
preferences to bias the search of optimal solutions towards a preferred region,
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for example by changing the definition of dominance [10, 21], by weighting dif-
ferently the objectives [19], by assigning reference values (goals) and priority
levels to the objectives [20], by assuming a utility function describing the deci-
sion maker behaviour and interest in the alternative solutions [9]. A posteriori
methods aim to generate a representative set of Pareto optimal solutions and
the decision maker chooses the best one among them ([1], [11], [18], [4], [22]).
Interactive methods allow the decision maker to guide the search by alternat-
ing optimization and preference articulation iteratively ([2], [7], [17], [9], [16]).
In this paper, we focus on a priori techniques for attaining the decision maker
preferences.

The paper is organized as follows. In Section 2, terminology is intro-
duced and basic concepts are defined. The concept of rational B-efficiency is
introduced in Section 3. Then, to make it practical, rational B-efficiency is de-
fined in terms of vector inequalities. In Section 4, an algorithm is presented to
generate a subset of Pareto-optimal solutions. Next, two numerical examples
are provided to confirm the method. Finally, Section 5 concludes the paper.

2. Terminology

Throughout this article the following notations are used. Let Rm be
the Euclidean vector space and y′, y′′ ∈ Rm. y′ 5 y′′ denotes y′i ≤ y′′i for all
i = 1, 2, · · · ,m. y′ < y′′ denotes y′i < y′′i for all i = 1, 2, · · · ,m. y′ ≤ y′′ denotes
y′ 5 y′′ but y′ ̸= y′′.

Consider a decision problem defined as an optimization problem with
m objective functions. For simplification we assume, without loss of gener-
ality, that the objective functions are to be minimized. The problem can be
formulated as follows:

min (f1(x), f2(x), · · · , fm(x)) ,
subject to x ∈ X (1)

where x denotes a vector of decision variables selected from the feasible set X
and f(x) = (f1(x), f2(x), · · · , fm(x)) is a vector function that maps the feasible
set X into the objective (criterion) space Rm. We refer to the elements of the
objective space as outcome vectors. An outcome vector y is attainable if it
expresses outcomes of a feasible solution, i.e., y = f(x) for some x ∈ X. The
set of all attainable outcome vectors will be denoted by Y = f(X).

In single objective minimization problems, we compare the objective val-
ues at different feasible decisions to select the best decision. Decisions are
ranked according to the objective values at those decisions and the decision re-
sulting in the least smallest objective value is the most preferred decision. Sim-
ilarly, to make the multiobjective optimization model operational, one needs
to assume some solution concept specifying what it means to minimize mul-
tiobjective functions. The solution concepts are defined by the properties of
the corresponding preference model. We assume that solution concepts depend
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only on the evaluation of the outcome vectors while not taking into account any
other solution properties not represented within the outcome vectors. Thus,
we can limit our considerations to the preference model in the objective space
Y . In the following, some basic concepts and definitions of preference relations
are reviewed from [8].

Definition 2.1. Let y′, y′′ ∈ Rm and let ≼ be a relation of weak preference
defined on Rm × Rm. The corresponding relations of strict preference ≺ and
indifference ≃ are defined as follows:

y′ ≺ y′′ ⇔ (y′ ≼ y′′and not y′′ ≼ y′), (2)

y′ ≃ y′′ ⇔ (y′ ≼ y′′and y′′ ≼ y′). (3)

Definition 2.2. Preference relations satisfying the following axioms are called
rational preference relations:
1. Reflexivity: for all y ∈ Rm: y ≼ y.
2. Transitivity: for all y′, y′′, y′′′ ∈ Rm: y′ ≼ y′′ and y′′ ≼ y′′′ ⇒ y′ ≼ y′′′.
3. Strict monotonicity: for all y ∈ Rm: y − ϵei ≺ y for ϵ > 0 where ei denotes
the ith unit vector in Rm.

The rational preference relations allow us to formalize the Pareto-optimal
solution concept with the following definitions.

Definition 2.3. The outcome vector y′ ∈ Y rationally dominates y′′ ∈ Y iff
y′ ≺ y′′ for all rational preference relations ≼.

An outcome vector y is rationally nondominated if and only if there
does not exist another outcome vector y′ such that y′ rationally dominates
y. Analogously, a feasible solution x ∈ X is an efficient or Pareto-optimal
solution of the multiobjective problem (1) if and only if y = f(x) is rationally
nondominated.

3. Rational B-efficiency

In this section, we will introduce a rational B-dominance relation to gen-
erate rationally B-efficient solutions. The following definitions are necessary
notion for the solution concepts of interest in this paper.

Definition 3.1. Let A = {1, 2, · · · ,m} be the index set of objective functions

f = (f1, f2, · · · , fm),

and n be a positive integer such that n ≤ m. A collection B = {Bk ⊂ A : k =
1, 2, · · · , n} is called a partition of A if

∪n
k=1Bk = A and Bi ∩ Bj = ∅ for all

i ̸= j, where i, j ∈ {1, 2, · · · , n} and Bk is index set of objective functions in
class k.
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Let y ∈ Y andB = {B1, B2, · · · , Bn} be a partition of the set {1, 2, · · · ,m},
we define

SB(y) =

(∑
j∈B1

yj,
∑
j∈B2

yj, · · · ,
∑
j∈Bn

yj

)
.

Definition 3.2. Suppose that y′, y′′ ∈ Y are two outcome vectors, we say that
y′ rationally B-dominates y′′, iff SB(y

′) ≺ SB(y
′′) for all rational preference

relations ≼, and that denoted by y′ ≺Br y
′′.

Definition 3.3. Suppose that y′, y′′ ∈ Y are two outcome vectors, we say
that y′ is rationally B-nondominated, iff there does not exit y′′ such that y′′

rationally B-dominates y′.

Definition 3.4. We say that feasible solution x ∈ X is a rationally B-
efficient solution of the multiobjective problem (1), iff y = f(x) is rationally
B-nondominated.

Similar to the relation of rational B-dominance, we can define the relation
of rational B-indifference, ≃Br, and the relation of rational weak B-dominance,
≼Br. We say that y′ ≃Br y

′′ iff SB(y
′) ≃ SB(y

′′) for all rational preference re-
lations ≼, and also y′ ≼Br y′′ iff SB(y

′) ≼ SB(y
′′) for all rational preference

relations ≼. The relations ≺Br, ≃Br and ≼Br satisfy conditions (2-3). More-
over, relation ≼Br holds the properties of reflexivity, transitivity and strict
monotonicity, thus it is a rational preference relation.
To make it practical, rational B-efficiency is defined in terms of vector inequal-
ities. In order to do that, we define a certain preference relation.

Definition 3.5. Suppose that y′, y′′ ∈ Y are two outcome vectors. We define
the relation ≤Bir as follows:

y′ ≤Bir y
′′ ⇔ SB(y

′) 5 SB(y
′′). (4)

Also, we can define the relations <Bir and =Bir as follows:

y′ <Bir y
′′ ⇔ (y′ ≤Bir y

′′and not y′′ ≤Bir y
′),

y′ =Bir y
′′ ⇔ (y′ ≤Bir y

′′and y′′ ≤Bir y
′).

It is clear that the preference relation ≤Bir, satisfies reflexivity, transitivity
and monotonicity. This means that, the relation (4) is a rational preference
relation. Note that when Bk = {k} for all k = 1, 2, · · · ,m, the relation ≤Bir

becomes the relation Pareto.
In the following, we will discuss the relationship between two preference

≼Br and ≤Bir.

Theorem 3.1. Suppose that y′, y′′ ∈ Y are two outcome vectors. We have

y′ ≼Br y
′′ ⇔ y′ ≤Bir y

′′,

y′ ≺Br y
′′ ⇔ y′ <Bir y

′′.
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Proof. We only prove the first statement, the other statement is proved
similarly. Obviously, the relation ≼Br implies ≤Bir, because the relation ≤Br

is a rational preference relation. Conversely, Suppose that y′ ≤Bir y
′′. So∑

j∈Bk

y′j ≤
∑
j∈Bk

y′′j ,

for k = 1, 2, · · · , n. If ϵj =
∑

j∈Bk
y′′j −

∑
j∈Bk

y′j, due to property of strictly
monotonic, we have

SB(y
′) =

(∑
j∈B1

y′′j − ϵ1,
∑
j∈B2

y′′j − ϵ2, · · · ,
∑
j∈Bn

y′′j − ϵn

)

≼

(∑
j∈B1

y′′j ,
∑
j∈B2

y′′j , · · · ,
∑
j∈Bn

y′′j

)
= SB(y

′′) (5)

for any rational preference relation ≼. Thus y′ ≼Br y
′′. �

By applying Theorem 3.1 and Definition 3.5, we have the following statement.

Corollary 3.1. Suppose that y′, y′′ ∈ Y are two outcome vectors. We have

y′ ≼Br y
′′ ⇔ SB(y

′) 5 SB(y
′′),

y′ ≺Br y
′′ ⇔ SB(y

′) ≤ SB(y
′′).

Remark 3.1. If Bk = {k} for all k = 1, 2, · · · ,m, we have Proposition 1.1
from [8].

Note that Corollary 3.1 permits one to express rational B-efficiency for
problem (1) in terms of the standard efficiency for the multiobjective problem
with objectives SB(f(x)),

min{SB(f(x)) : x ∈ X}. (6)

Engau and Wiecek [3] are proposed Pareto-optimal solutions of the multiob-
jective problem (6) to coordinate efficient solutions of subproblems.

Corollary 3.2. Feasible solution x ∈ X is a rationally B-efficient solution of
the multiobjective problem (1), if and only if it is an efficient solution of the
multiobjective problem (6).

Proof. Let x be a rationally B-efficient solution of the multiobjective
problem (1) and suppose that x is not an efficient solution of the multiobjective
problem (6). Then a feasible vector x′ must exist such that SB(f(x

′)) ≤
SB(f(x)) or f(x′) ≺Br f(x) due to corollary 3.1. Hence, f(x′) rationally B-
dominates f(x), which contradicts the rational B-efficiency of x. By the same
method the after is trivial. �

Note that if x is a rationally B-efficient solution of multiobjective problem
(1), then it is also Pareto-optimal solution for this problem. Therefore, to
reduce Pareto-optimal solutions, we can use rationally B-efficient solutions.
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4. Reduce rationally B-efficient solutions

In this section with integration classes, we introduce an algorithm to gen-
erate a subset of rationally efficient solutions which aims to provide a limited
number of representative solutions to the decision maker.

Definition 4.1. Let E = {E1, E2, · · · , En} be a partition of {1, 2, · · · ,m} and
I = {I1, I2, · · · , It} be a partition of {1, 2, · · · , n}. The generated partition
B = {B1, B2, · · · , Bt} by E and I of {1, 2, · · · ,m} is defined by

Bk =
∪
j∈Ik

Ej (k = 1, 2, · · · , t),

where Ik is index set classes in partition E should be integrated for class k in
partition B.

Example 4.1. Suppose that E1 = {1, 2}, E2 = {3}, E3 = {4}, I1 = {1, 2}
and I2 = {3}, The generated partition by E and I is B1 = E1 ∪ E2 = {1, 2, 3}
and B2 = E3 = {4}.

In order to compare outcome vectors with preference relation ≤Bir, we
can use the linear cumulative map SE with preference relation ≤Iir.

Theorem 4.1. Let E, I and B be as Definition 4.1. For any two outcome
vectors y′, y′′ ∈ Y , we have

y′ <Bir y
′′ ⇔ SE(y

′) <Iir SE(y
′′).

Proof. Since Bk =
∪

j∈Ik Ej, for all k = 1, 2, · · · , t, we have

y′ <Bir y
′′ ⇔

∑
i∈Bk

y′i ≤
∑
i∈Bk

y′′i , (k = 1, 2, · · · , t)

⇔
∑

i∈∪j∈Ik
Ej

y′i ≤
∑

i∈∪j∈Ik
Ej

y′′i

⇔
∑
i∈Ik

∑
j∈Ei

y′j ≤
∑
i∈Ik

∑
j∈Ei

y′′j

⇔ SE(y
′) <Iir SE(y

′′).

�
In the following, we will investigate the relationship between preference

relations ≤Eir and ≤Bir.

Theorem 4.2. Let E, I and B be as Definition 4.1. For any two outcome
vectors y′, y′′ ∈ Y , if y′ <Eir y

′′ then y′ <Bir y
′′.

The condition Bk =
∪

j∈Ik Ej is necessary to the above theorem. Since

for example, if E1 = {1, 2}, E2 = {3}, B1 = {1}, B2 = {2, 3}, y′ = (5.5, 4.5, 4)
and y′′ = (5, 5, 4.5). We have SE(y

′) = (10, 4), SE(y
′′) = (10, 4.5), SB(y

′) =
(5.5, 8.5) and SB(y

′′) = (5, 9.5). Hence y′ <Eir y
′′ but y′ ≮Bir y

′′.
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Remark 4.1. If Ej = {j} for all j = 1, 2, · · · ,m then for each partition B

y′ ≤p y
′′ ⇒ y′ <Bir y

′′,

for any two outcome vectors y′, y′′ ∈ Y .

Following example shows that the converse of the above remark is not
true in general.

Example 4.2. Let B1 = {1, 2}, B2 = {3, 4}, y′ = (4, 1, 3, 2) and y′′ =
(5, 1, 2, 3). We have SB(y

′) = (5, 5) and SB(y
′′) = (6, 5), hence y′ <Bir y′′

But y′ � y′′.

Below, we will investigate the relationship between rationally B-efficient
solutions and rationally E-efficient solutions.

Theorem 4.3. Let E, I and B be as Definition 4.1, also let y ∈ Y be a
outcome vector. If y is rationally B-nondominated, then it is rationally E-
nondominated.

Proof. Suppose that y is not rationally E-nondominated. Then there
exists a vector y′ ∈ Y such that y′ ≺Er y, so y′ <Eir y due to Theorem 3.1. By
applying Theorem 4.2, we deduce that y′ <Bir y. This means that y′ ≺Br y,
by Theorem 3.1. �

Corollary 4.1. Let E, I and B be as Definition 4.1 and let x ∈ X be a feasible
solution. If x is a rationally B-efficient solution of multiobjective problem (1),
then it is a rationally E-efficient solution of problem (1).

This result suggests that the set of rationally B-efficient solutions is
contained within the set of rationally E-efficient solutions. In particular if
Ej = {j} for j = 1, 2, · · · ,m, then the set of rationally B-efficient solutions
is contained within the set of rationally efficient solutions. By using Corollary
3.2, we can rewrite Corollary 4.1 as follows:

Corollary 4.2. Let E, I and B be as Definition 4.1. Also, let x be an efficient
solution of the multiobjective problem (6), then it is an efficient solution of the
multiobjective problem

min{SE(f(x)) : x ∈ X}. (7)

According to Corollary 4.1 and Corollary 3.2, an algorithm is offered
to generate rationally B-efficient solutions, whereby is reduced rationally B-
efficient solutions of the multiobjective problem (1).

Algorithm 4.1.
Step 1: Determine a partition E = {E1, E2, · · · , En} of {1, 2, · · · ,m} according
to the decision maker.
Step 2: put t = 1.
Step 3: Consider the partition I, where I1 = {1, 2, · · · , t}, I2 = {t + 1}, · · · ,
In−t+1 = {n}.
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Step 4: Calculate the partition B, where Bk =
∪

j∈Ik Ej for k = 1, 2, · · · , n −
t+ 1.
Step 5: Solve the multiobjective problem (6).
Step 6: If the decision maker chooses the desired solution, stop.
Step 7: Otherwise put t = t+ 1, if t > n stop, the model does not answer.
Step 8: Otherwise, go to Step 3.

In the first iteration of Algorithm 4.1 rationally E-efficient solutions are
computed, then these solutions are gradually reduced by rationally B-efficient
solutions, in the next iterations. In particular, if Ej = {j} for all j = 1, 2, ...,m,
then Pareto-optimal solutions are computed in the first iteration of this algo-
rithm.

In the following example, we investigate the effectiveness of rational B-
dominance relation to generate the rationally B-efficient solutions which is
subset of Pareto-optimal solutions. For this purpose, a large number of ran-
dom solutions are generated for scalable test function. From this large set of
solutions, efficient solutions or equivalently, the nondominated solutions with
respect to Pareto and rational B-dominance are calculated.

Example 4.3. The test problem considered is the F1[5],

min
x∈R2

y = {f1(x), f2(x), f3(x), f4(x), f5(x), f6(x)}

f1(x) = x2
1 + (x2 + 1)2

f2(x) = (x1 − 0.5)2 + (x2 + 0.5)2

f3(x) = (x1 − 1)2 + x2
2

f4(x) = (x1 + 1)2 + x2
2

f5(x) = (x1 − 0.5)2 + (x2 − 0.5)2

f6(x) = x2
1 + (x2 − 1)2

x1, x2 ∈ [−1, 1].

In Figure 1 from 5000 random solutions, 2873 solutions (blue point)
are rationally nondominated. 2537 solutions (green pentagram) are rationally
B-nondominated, which are obtained by assuming B1 = {1, 2}, B2 = {3},
B3 = {4}, B4 = {5} and B5 = {6}, in the first iteration of the algorithm. 1887
solutions (yellow square) are rationally B-nondominated, which are obtained
by assuming B1 = {1, 2, 3}, B2 = {4}, B3 = {5} and B4 = {6}, in the
second iteration of the algorithm. In the third iteration of the algorithm, 623
solutions (red diamond) are rationally B-nondominated, which are obtained
by assuming B1 = {1, 2, 3, 4}, B2 = {5} and B3 = {6}. 167 solutions (cyan
circle) are rationally B-nondominated, which in the fourth iteration of the
algorithm are obtained by assuming B1 = {1, 2, 3, 4, 5} and B2 = {6} and
one solution (black star) is rationally B-nondominated, which is obtained by
B1 = {1, 2, 3, 4, 5, 6}, in the fifth iteration of the algorithm.
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Figure 1. The Pareto and rational B-dominance fronts (ob-
jective space) for the F1 problem (2 variables and 6 objectives)
with E1 = {1, 2}, E2 = {3}, E3 = {4}, E4 = {5} and E5 = {6}.

To illustrate the importance of choosing E, example 4.3 is solved again
with E1 = {1, 2}, E2 = {3, 4} and E3 = {5, 6}, which it is shown in Figure 2.

In Figure 2 from 5000 random solutions, 2923 solutions (blue point) are
rationally nondominated. 447 solutions (green pentagram) are rationally B-
nondominated, which are obtained by assuming B1 = {1, 2}, B2 = {3, 4},
and B3 = {5, 6}, in the first iteration of the algorithm. 151 solutions (yellow
star) are rationally B-nondominated, which are obtained by assuming B1 =
{1, 2, 3, 4} and B2 = {5, 6}, in the second iteration of the algorithm. Finally,
one solution (red diamond) is rationally B-nondominated, which is obtained
by assuming B1 = {1, 2, 3, 4, 5, 6} in the third iteration of the algorithm.

5. Conclusion

In this paper, we introduced a new multiobjective optimization problem
and obtained rationally B-efficient solutions of the original problem by seeking
efficient solutions of this new problem. The concept of rational B-efficiency is
obtained by rational preference relations on a certain cumulative vector. We
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Figure 2. The Pareto and rational B-dominance fronts (ob-
jective space) for the F1 problem (2 variables and 6 objectives)
with E1 = {1, 2}, E2 = {3, 4} and E3 = {5, 6}.

examined the relationship between rationally B-efficient solutions and ratio-
nally E-efficient solutions, and we also proved that rationally B-nondominated
points can be found as rationally nondominated points. Moreover, two exper-
iments were carried out on randomly generated solutions in order to better
compare the rational dominance and rational B-dominance. These experi-
ments indicated that the size of the rational B-nondominated solution set is
considerably smaller than the size of the rational nondominated solution set.
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