
U.P.B. Sci. Bull., Series A, Vol. 87, Iss. 4, 2025                                                ISSN 1223-7027 

TSENG SPLITTING ALGORITHM FOR MONOTONE 
INCLUSION AND VARIATIONAL INEQUALITY PROBLEMS 

 
 Jin-Lin GUAN1*, Yan TANG2, Zhongbing XIE3 

This paper aims to investigate a new forward-backward algorithm for solving 
a pseudomonotone variational inequality problem and a monotone inclusion 
problem in real Hilbert spaces. Under very mild conditions, we prove a weak 
convergence theorem for the proposed algorithm by using projection technique and 
self-adaptive step sizes. The results improve and extend the corresponding ones 
announced by some others in the earlier and recent literature. 
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1. Introduction  
Throughout this paper, let H be a real Hilbert spaces with inner product ⟨⋅,⋅

⟩, and C be a nonempty closed convex subset of H. Fix(T) is denoted as the set of 
fixed points of a nonlinear mapping T. We use xn → x and 𝑥𝑥𝑛𝑛 ⇀ 𝑥𝑥 to indicate the 
strong convergence and the weak convergence of the sequence{xn} to x, 
respectively. 

First, we recall some notations which are needed in sequel. A mapping F : 
H → H is called 
(a) monotone if 

⟨𝐹𝐹𝐹𝐹 − 𝐹𝐹𝐹𝐹, 𝑥𝑥 − 𝑦𝑦⟩ ≥ 0,    ∀𝑥𝑥,𝑦𝑦 ∈ 𝐻𝐻, 
(b) pseudomonotone if 

⟨𝐹𝐹𝐹𝐹,𝑦𝑦 − 𝑥𝑥⟩ ≥ 0 ⇒ ⟨𝐹𝐹𝐹𝐹,𝑦𝑦 − 𝑥𝑥⟩ ≥ 0,    ∀𝑥𝑥,𝑦𝑦 ∈ 𝐻𝐻, 
(c) η-strongly monotone if there exists η > 0 such that 

⟨𝐹𝐹𝐹𝐹 − 𝐹𝐹𝐹𝐹, 𝑥𝑥 − 𝑦𝑦⟩ ≥ 𝜂𝜂‖𝑥𝑥 − 𝑦𝑦‖2,    ∀𝑥𝑥,𝑦𝑦 ∈ 𝐻𝐻, 
(d) L-Lipschitz continuous if there is L > 0 such that 
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‖𝐹𝐹𝐹𝐹 − 𝐹𝐹𝐹𝐹‖ ≤ 𝐿𝐿‖𝑥𝑥 − 𝑦𝑦‖,    ∀𝑥𝑥,𝑦𝑦 ∈ 𝐻𝐻. 
It is easy to see that (c) ⇒ (a) ⇒ (b), but the converse is not true. 

A multi-valued mapping B : D(B) ⊆ H → 2H is called monotone if, for all 
x, y ∈ D(B), u∈ Bx and v∈ By such that 

⟨x-y, u-v⟩≥0. 
A monotone mapping B is maximal if the Graph(B) is not properly 

contained in the graph of any other monotone mapping. It is well known that a 
monotone mapping B is maximal if and only if for (𝑥𝑥,𝑢𝑢) ∈ 𝐷𝐷(𝐵𝐵) × 𝐻𝐻, ⟨𝑥𝑥 −
𝑦𝑦,𝑢𝑢 − 𝑣𝑣⟩ ≥ 0 for every(y, v)∈Graph(B) implies that u∈Bx. 

For every point x∈H, there exists a unique nearest point in C denoted by 
PCx such that 

ǁx-PCxǁ ≤ ǁx-yǁ,   ∀y∈C. 
PC is called the metric projection of H onto C. It is known that PC is 

nonexpansive mapping and satisfies the following inequalities: 
⟨x-PCx, y-PCx⟩≤ 0,   ∀x∈H, y∈C. 

Given a nonlinear mapping F : H→H, the variational inequality prob- 
lem (VIP) is to find u ∈ C such that 

⟨Fu, v-u⟩≥0,   ∀v∈C,                                    (1) 
the set of solutions of the VIP (1) is denoted by VI(C, F ).There are several 
different approaches towards solving this problem infinite dimensional and 
infinite dimensional spaces; see e.g., [1, 2, 3]. 

The monotone inclusion problem (MIP) is to find x∈H such that 
0 ∈ (𝐴𝐴 + 𝐵𝐵)𝑥𝑥,                                          (2) 

where A : H→H is a single-valued mapping and B: H →2H is a set-valued 
mapping. The solution set of MIP (2) is denoted by Ω:= (A+B)−1(0). The 
monotone inclusion problem has already been used in convex minimization 
problems, variational inequalities and equilibrium problems, and is also at the 
core of the modeling of machine learning, signal processing and image 
restoration, see [4, 5, 6]. 

In 1979, Lions et al. [7] introduced the forward-backward algorithm for 
MIP (2) by the following way 

                     𝑥𝑥𝑛𝑛+1 = (𝐼𝐼 + 𝜆𝜆𝑛𝑛𝐵𝐵)−1(𝐼𝐼 − 𝜆𝜆𝑛𝑛𝐴𝐴)𝑥𝑥𝑛𝑛,                            (3) 
where the mapping A, B are 1/L-co-coercive and maximally monotone, 
respectively, (I−λnA) is called a forward operator and (I+λnB)−1 is a backward 
operator. 

Based on the forward-backward algorithm (3), Tseng [8] proposes a mod- 
ified algorithm which is known as Tseng splitting algorithm: 

  𝑦𝑦𝑛𝑛 = (𝐼𝐼 + 𝜆𝜆𝑛𝑛𝐵𝐵)−1(𝐼𝐼 − 𝜆𝜆𝑛𝑛𝐴𝐴)𝑥𝑥𝑛𝑛, 
xn+1=yn-λn(Ayn-Axn),                                          (4) 
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where A is L-lipschitz continuous and λn∈(0, 1/L). Under some mild restrictions  
on the parameters, they obtained a strong convergence theorem. The Tseng 
splitting algorithm has been widely studied in recent years, since many real-world 
problems such as signal processing and image reconstruction can be cast as the 
modeling, and many iterative algorithms and existence results based on Tseng 
splitting algorithm for the MIP have been studied; see e.g., [9, 10, 11]. 

Inertial method was fistly introduced by Alvarez et al. [12] which is 
designed as the following scheme: 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 + 𝛿𝛿𝑛𝑛(𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛−1), 
this procedure is a good tool to speeding up the convergence rate of algorithms. 
As a result, many researchers have studied all kind of algorithms by utilizing 
inertial methods for solving VIP (1) and MIP (2), see e.g., [13, 14, 15]. 

In 2018, Yang et al. [16] proposed the following inertial algorithm for the 
VIP (1): 

yn=xn+δn(xn-xn-1), 
xn+1=PC(xn-λnFyn), 

where F : C → H is monotone. Under some mild restrictions on the parame- ters, 
they obtained a weak convergence theorem. 

Very recently, Inkrong et al. [17] studied a double inertial forward- 
backward algorithm for MIP (2), and they design the following scheme:  

wn=un+αn(un-un-1)+βn(un-1-un-2), 
yn=(I+δnG)-1(I-δnF)wn,
un+1=yn-δn(Fyn-Fwn), 

where 

δn+1=�
min{

μ�wn-yn�
�Fwn-Fyn�

,δn+ζn},�Fwn-Fyn�≠0,

δn+ζn ,  otherwise;
As a result, they proved a weak convergence of the algorithm above under 

appropriate assumptions on the parameters. 
Motivated and inspired by the results above, we introduce a new Tseng 

splitting algorithm for solving a pseudomonotone variational inequality problem 
and a monotone inclusion problem. Under some suitable assumptions, a weak 
convergence of the proposed algorithm is proved by using projection technique 
and self-adaptive step sizes. 

2. Preliminaries
In this section, we first recall some lemmas which are needed in sequel.

Lemma 2.1. ([18]) Let H be a real Hilbert space. Then the following inequality 
holds: 
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(𝑖𝑖) ǁtx+(1-t)yǁ2=tǁxǁ2+(1-t)ǁyǁ2-t(1-t)ǁx-yǁ2,   ∀t∈[0,1], x, y∈H; 
(ii) ǁx±yǁ2=ǁxǁ2±2⟨x , y⟩+ǁyǁ2,   ∀x, y∈H. 
Lemma 2.2. ([19]) Assuming A : H → H is L-Lipschitz and monotone, and B : H 
→ 2H is a maximally monotone operator, it follows that the operator A+B is also 
maximally monotone. 
Lemma 2.3. ([20]) Let A : H → H be a mapping and B : H → 2H be a maximally 
monotone mapping. Define Tλ := (I + λB)−1(I−λA) for λ>0. Then Fix(Tλ)={x : Tλx 
=x}=(A+B)−1(0). 
Lemma 2.4. ([21]) Assume that C is a closed and convex subset of a real Hilbert 
space H. Let operator F : H → H be continuous and pseudomonotone. Then, x∗is 
a solution of VIP (1) if and only if ⟨𝐹𝐹𝐹𝐹, 𝑥𝑥 − 𝑥𝑥∗⟩ ≥ 0,∀𝑥𝑥 ∈ 𝐶𝐶. 
Lemma 2.5. ([22]) Let {ϕn}, {δn} and {αn} be sequences in [0, +∞) such that 

⟨𝐹𝐹𝐹𝐹, 𝑥𝑥 − 𝑥𝑥∗⟩ ≥ 0,∀𝑥𝑥 ∈ 𝐶𝐶. 
and there exists a real number α with 0 ≤ αn ≤ α < 1 for all n ∈ ℕ. Then the  
following hold:  
(i) ∑ [∞

n=1 φn-φn-1]+<∞ where [t]+:= max { t,0}; 
(ii) there exists φ*∈[0,+∞) such that lim

n→∞
φn =φ*. 

Lemma 2.6. ([23]) Let {ψn},{φn} and {bn} be nonnegative sequences that satisfy 
ψn+1≤ (1+bn)ψn+ϕn,  n≥1. 

If  ∑ bn
∞
n=1 <+∞ and ∑ ϕn

∞
n=1 <+∞ , then limn→∞ ψn exists. 

Lemma 2.7. ([24]) Let Ω be a subset of H and {un} be a sequence in H that satisfy 
the following: 
(i) for every u ∈Ω, lim

n→∞
ǁ un-uǁ exists; 

(ii) each weak-cluster point of the sequence {un} is in Ω. Then {un} converges 
weakly to an element in Ω. 
Lemma 2.8. ([17]) Let ϕ−1, ϕ0 ≥ 0 and {ϕn}, {αn} and {βn} be sequences of 
nonnegative real numbers that satisfy the following conditions: 

φn+1≤ (1+αn)φn+(αn+βn)φn-1+βnφn-2,  n∈N. 
Then φn+1≤K∏ (n

j=1 1+2αj+2βj), where K = max{ϕ−1, ϕ0, ϕ1}. Furthermore, 
if  ∑ αn

∞
n=1 <+∞ and ∑ βn

∞
n=1 <+∞ , then {ϕn} is bounded.   

 
3. Main results 
 
In this section, we introduce a new forward-backward algorithm with 

double inertial step for finding a common solution of a pseudomonotone vari- 
ational inequality problem and a monotone inclusion problem in real Hilbert 
spaces. Subsequently, we give the main results about our algorithm. We firstly 
give the following assumptions: 
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(C1) The mappings A : H → H is L1-Lipschitz continuous and monotone 
and B : H → 2H is maximally monotone. 

(C2) PC is the metric projection of H, F : H → H is pseudo-monotone and 
L2-Lipschitz continuous with L2 > 0. 

(C3) The common solution set of the VIP (1) and MIP (2) is nonempty, 
that is, Ω ∩VI (C, F) ≠ ∅. 

Algorithm 1 Given µ, ρ∈(0, 1), α1, β1, λ1, ξ1, τ1, θ1 >0 and choose three 
arbitrary initial guesses u−1, u0, u1∈H. For n∈N, let {un} be a sequence of H 
generated by the following steps:   

Step 1 Choose αn, βn and compute 
wn=un+αn(un-un-1)+βn(un-1-un-2), 

yn=(I+λnB)-1(I-λnA)wn, 
where 

λn+1=�min{
μ�wn-yn�
�Awn-Ayn�

,λn+τn},�Awn-Ayn�≠0,

λn+τn                           ,  otherwise,
 

 
Step 2 Calculate 

zn=PC(wn-ξnFwn), 
where 

ξn+1=�min{
ρ‖un-zn‖
‖Fun-Fzn‖

, ξn},‖Fun-Fzn‖≠0,

 ξn                           ,  otherwise,
 

Step 3 Compute 
un+1=θn[yn-λn(Ayn-Awn)]+(1-θn)[zn-ξn(Fzn-Fwn)]. 

Set n := n+1 and return to Step 1. 
where {αn}, {βn}, {λn}, {ξn}, {τn} and {θn} are parameters and the following 
conditions hold: 
(i) αn, βn>0,∑ αn

∞
n=1 <∞,∑ βn

∞
n=1 <∞,∑ τn

∞
n=1 <∞; 

(ii) 0< θ < θn< 1
1+σ

, σ∈(0,+∞). 
(iii)  
Lemma 3.1. The sequences {λn} and {ξn} from Algorithm 1 satisfy the following 
properties: 
(1) {λn} is bounded with {λn}⊂[min{μ/L1 , λ1}, λ1+ Γ] and there exists λ > 
0 such that limn→∞ λn =λ ∈[min{μ/L1 , λ1}, λ1+ Γ], where Γ=∑ τn

∞
n=1 . 

(2) There exists ξ > 0 such that limn→∞ ξn = ξ  and ξn ≥ min{ρ/L2 , ξ1}. 
Proof. (1) First, by the definition of {λn}, if Awn ≠Ayn, we have  
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μǁwn-ynǁ
ǁAwn-Aynǁ

≥
μǁwn-ynǁ
L1ǁwn-ynǁ

=
μ
L1

, 

which implies 

λn+1= min {
μǁwn-ynǁ

ǁAwn-Aynǁ
, λn+τn}≥ min {

μ
L1

, λn}, 

By induction, we obtain 
λn≥ min { μ

L1
, λn-1}≥ min { μ

L1
, min { μ

L1
, λn-2}}≥ ⋯≥ min { μ

L1
, λ1}.        (5) 

SinceΓ =∑ τn
∞
n=1 , we have 

λn+1≤ λn+τn ≤ λ1+∑ τn
∞
n=1 =λ1+Γ.                                (6) 

In view of (5) and (6), we obtain  
min {

μ
L1

, λ1} ≤ λn ≤ λ1+Γ, 

which implies {λn} is bounded. Setting [λn+1−λn]− := max{0, λn−λn+1}and [λn+1− 
λn]+ := max{0, λn+1−λn}, we deduce that 

λn+1 − λn = [λn+1 − λn]+ − [λn+1−λn]− , 
by induction, we derive 

λn+1-λ1=� [
n

i=1

λi+1-λi]+-� [
n

i=1

λi+1-λi]- . 

Since {λn} is bounded and ∑ [∞
n=1 λn+1-λn]+<∑ τn

∞
n=1 =Γ , we have 

∑ [∞
n=1 λn+1-λn]- is convergent. Thus,  λn < λ1+Γ. In addition, we note that 

λn+1 ≤ λn+τn= λn+0 (λn+1-λn) +τn. 
By using Lemma 2.5 in the inequality above, there exists λ ∈[min{μ/L1 , 

λ1}, λ1+ Γ ] such that limn→∞ λn = λ. 
(2) It follows from the definition of {ξn+1} that 0 ≤ ξn+1 ≤ ξn, which implies 

that there exists ξ >0 such that limn→∞ ξn= ξ. Since F is L2-Lipschitz continuous, 
we get   

ǁFwn-Fynǁ≤ L2ǁwn-ynǁ, 
which implies 

ρǁun-znǁ
ǁFwn-Fynǁ

≥
ρ
L2

 if Fwn≠Fyn, 

it follows that ξn ≥ min { ξ1, ρ
L2

}  and ξ ≥ min { ξ1, ρ
L2

}. This completes the proof. 
 

Lemma 3.2. Assume that the sequence {un} is generated by Algorithm 1. Then for 
all p∈Ω ∩ V I(C, F ), the following assertions hold: 

(1) ǁyn-λn(Ayn-Awn)-pǁ2 ≤ ǁwn-pǁ2-(1- μ2λn
2

λn+1
2 )ǁwn-ynǁ2. 



Tseng splitting algorithm for monotone inclusion and variational inequality problems       155 

(2) ǁzn-ξn(Fzn-Fwn)-pǁ2 ≤ ǁwn-pǁ2-(1- ρ2ξn
2

ξn+1
2 )ǁzn-wnǁ2. 

Proof. (1) First, we note that 
 

ǁyn-λn(Ayn-Awn)-pǁ2                                                  
= ǁyn-pǁ2+λn

2ǁAyn-Awnǁ2-2λn⟨yn-p,Ayn-Awn⟩ 
= ǁyn-wnǁ2+ǁwn-pǁ2+2⟨yn-wn,wn-p⟩               

+λn
2ǁAyn-Awnǁ2-2λn⟨yn-p,Ayn-Awn⟩         

= ǁyn-wnǁ2+ǁwn-pǁ2-2⟨yn-wn, yn-wn⟩+2⟨yn-wn, yn-p⟩         
+λn

2ǁAyn-Awnǁ2-2λn⟨yn-p, Ayn-Awn⟩       
= ǁwn-pǁ2-ǁyn-wnǁ2+2⟨yn-wn, yn-p⟩               

+λn
2ǁAyn-Awnǁ2-2λn⟨yn-p, Ayn-Awn⟩       
= ǁwn-pǁ2-ǁyn-wnǁ2-2⟨yn-p, wn-yn-λn(Awn-Ayn)⟩                   

+λn
2ǁAyn-Awnǁ2,                                                                (7) 

from the definition of {λn}, one has 

ǁAyn-Awnǁ2 ≤ μ2

λn+1
2 ǁyn-wnǁ2.                                  (8) 

In addition, since A is monotone, we have 
⟨Ayn-Ap, yn-p⟩≥0.                                     (9) 

Moreover, since B is maximally monotone and yn=(I+λnB)−1(I−λnA)wn , we 
deduce that 

wn-yn-λnAwn

λn
∈Byn, 

thus 
wn-yn-λnAwn

λn
+Ayn∈(A+B)yn. 

It follows from the monotonicity of A, B and Lemma 2.2 that A+B is maximally 
monotone. Since p∈ Ω ∩V I(C, F)⊂Ω, we deduce 0∈(A+B)p and −Ap∈Bp. We get 
from the maximal monotonicity of B that 

⟨
wn-yn-λnAwn

λn
+Ap, yn-p⟩≥0, 

which together with (9), implies that  

⟨
wn-yn-λnAwn

λn
+Ayn, yn-p⟩≥0, 

that is, 
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⟨wn-yn-λn(Awn-Ayn), yn-p⟩≥0.                       (10) 
It follows from (7), (8) and (10) that 

ǁyn-λn(Ayn-Awn)-pǁ2≤ǁwn-pǁ2-(1-
μ2λn

2

λn+1
2 )ǁwn-ynǁ2. 

(2) First, we claim 
ǁFzn-Fwnǁ ≤ ρ

ξn+1
ǁzn-wnǁ.                                    (11) 

Indeed, if Fzn = Fwn, then (11) holds clearly. Otherwise, from the definition of 
{ξn+1}, we have 

ξn+1=  min {
ρǁzn-wnǁ

ǁFzn-Fwnǁ
, ξn} ≤ 

ρǁzn-wnǁ
ǁFzn-Fwnǁ

, 

which implies  
ǁFzn-Fwnǁ ≤ 

ρ
ξn+1

ǁzn-wnǁ. 

Next, we observe that 
             ǁzn-ξn(Fzn-Fwn)-pǁ2                                                                                   

=ǁzn-pǁ2+ξn
2ǁFzn-Fwnǁ2-2ξn⟨zn-p,Fzn-Fwn⟩                            

=ǁwn-pǁ2+ǁzn-wnǁ2+2⟨zn-wn,wn-p⟩                                          
 +ξn

2ǁFzn-Fwnǁ2-2ξn⟨zn-p,Fzn-Fwn⟩                                       
=ǁwn-pǁ2+ǁzn-wnǁ2-2⟨zn-wn,zn-wn⟩+2⟨zn-wn,zn-p⟩           

  +ξn
2ǁFzn-Fwnǁ2-2ξn⟨zn-p,Fzn-Fwn⟩                                        

=ǁwn-pǁ2-ǁzn-wnǁ2+2⟨zn-wn,zn-p⟩                                            
                 +ξn

2ǁFzn-Fwnǁ2-2ξn⟨zn-p,Fzn-Fwn⟩.                                              (12) 
 
Since zn =PC (wn − ξnFwn), by the property of projection, we deduce  

⟨zn-wn+ξnFwn, zn-p⟩=⟨PC(wn-ξnFwn)-(wn-ξnFwn), PC(wn-ξnFwn)-p⟩≤0, 
that is, 

⟨zn-wn, zn-p⟩≤-ξn⟨Fwn, zn-p⟩.                            (13) 
By p∈V I(C, F), we get ⟨Fp, yn-p⟩≥0. It follows from the pseudomono- tonicity of 
F that ⟨Fzn, zn-p⟩≥0, this together with (11), (12) and (13), yields that 

ǁzn-ξn(Fzn-Fwn)-pǁ2                                                          
=ǁwn-pǁ2-ǁzn-wnǁ2+2⟨zn-wn, zn-p⟩               
+ξn

2ǁFzn-Fwnǁ2-2ξn⟨zn-p, Fzn-Fwn⟩         
≤ǁwn-pǁ2-ǁzn-wnǁ2-2ξn⟨Fwn, zn-p⟩               

      +
𝜌𝜌2𝜉𝜉𝑛𝑛2

𝜉𝜉𝑛𝑛+12 ‖𝑤𝑤𝑛𝑛 − 𝑧𝑧𝑛𝑛‖2 − 2𝜉𝜉𝑛𝑛⟨𝑧𝑧𝑛𝑛 − 𝑝𝑝,𝐹𝐹𝑧𝑧𝑛𝑛 − 𝐹𝐹𝑤𝑤𝑛𝑛⟩ 
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=ǁwn-pǁ2-(1-
ρ2ξn

2

ξn+1
2 )ǁwn-znǁ2-2ξn⟨zn-p, Fzn⟩ 

≤ǁwn-pǁ2-(1-
ρ2ξn

2

ξn+1
2 )ǁwn-znǁ2.                              

This completes the proof. 
 

Theorem 3.1. Assume that the sequence {un} is generated by Algorithm 1. 
Assume that assumptions (C1)-(C3) and conditions (i), (ii) hold. Then {un} 
converges weakly to a point in Ω ∩ V I(C, F ). 
Proof. Take p∈Ω ∩VI(C, F ). It follows from the definition of yn that (I-
λnA)wn∈(I+λnB)yn . Since B is maximally monotone, there exists 𝑣𝑣𝑛𝑛 ∈ 𝐵𝐵𝑦𝑦𝑛𝑛   
with (I-λnA)wn=yn+λnvn, that is, 

vn= 1
λn

(wn-yn-λnAwn).                                     (14) 
Moreover, we have 0∈ (A+B)p and Ayn+vn∈(A+B)yn. By the monotonicity of A, B 
and Lemma 2.2, we have A+B is maximally monotone, which implies that 

⟨𝐴𝐴𝑦𝑦𝑛𝑛 + 𝑣𝑣𝑛𝑛 ,𝑦𝑦𝑛𝑛 − 𝑝𝑝⟩ ≥ 0.                                      (15) 
In view of (14) and (15), we have 

1
λn
⟨wn-yn-λnAwn+λnAyn, yn-p⟩≥0. 

In addition, by using Lemma 3.2, we obtain   
 

 ǁun+1-pǁ2=ǁθn[yn-λn(Ayn-Awn)]+(1-θn)[zn-ξn(Fzn-Fwn)]-pǁ2              
         =ǁθn[yn-λn(Ayn-Awn)-p]+(1-θn)[zn-ξn(Fzn-Fwn)-p]ǁ2 
       ≤θnǁyn-λn(Ayn-Awn)-pǁ2+(1-θn)ǁzn-ξn(Fzn-Fwn)-pǁ2 

≤θn(ǁwn-pǁ2-(1-
μ2λn

2

λn+1
2 )ǁwn-ynǁ2)                             

+(1-θn)(ǁwn-pǁ2-(1-
ρ2ξn

2

ξn+1
2 )ǁzn-wnǁ2)                 

=ǁwn-pǁ2-θn(1- μ2λn
2

λn+1
2 )ǁwn-ynǁ2-(1-θn)(1- ρ2ξn

2

ξn+1
2 )ǁzn-wnǁ2            (16) 

On the other hand, we observe that 
       ‖𝑤𝑤𝑛𝑛 − 𝑝𝑝‖ = ‖𝑢𝑢𝑛𝑛 + 𝛼𝛼𝑛𝑛(𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1) + 𝛽𝛽𝑛𝑛(𝑢𝑢𝑛𝑛−1 − 𝑢𝑢𝑛𝑛−2) − 𝑝𝑝‖ 

≤ ‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖ + 𝛼𝛼𝑛𝑛‖𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1‖ + 𝛽𝛽𝑛𝑛‖𝑢𝑢𝑛𝑛−1 − 𝑢𝑢𝑛𝑛−2‖.     (17) 
From Lemma 3.1, there exist λ, ξ such that lim

n→∞
λn =λ,  lim

n→∞
ξn =ξ, it follows that   

lim
n→∞

( 1- μ2λn
2

λn+1
2 )=1-μ2>0 and lim

n→∞
( 1- ρ2ξn

2

ξn+1
2 )=1-ρ2>0. Thus, there is n0∈ℕ such that  
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1- μ2λn
2

λn+1
2 >0 and 1- ρ2ξn

2

ξn+1
2 >0 , ∀n ≥ n0,which together with (16) and (17), implies 

that, for n ≥ n0, 
ǁun+1-pǁ≤ǁwn-pǁ                                                                

≤ǁun-pǁ+αnǁun-un-1ǁ+βnǁun-1-un-2ǁ        
                     ≤ǁun-pǁ+αn(ǁun-pǁ+ǁun-1-pǁ)+βn(ǁun-1-pǁ+ǁun-2-pǁ)  

=(1+αn)ǁun-pǁ+(αn+βn)ǁun-1-pǁ+βnǁun-2-pǁ.                   (18) 
Using Lemma 2.8, we obtain 

ǁun+1-pǁ ≤ K� (
n

j=1

1+2αj+2βj),  n≥n0, 

and ǁun-pǁ is bounded, where K= max { ǁun0-2-pǁ, ǁun0-1-pǁ, ǁun0-pǁ}. 
Next, we prove that un converges weakly to a point in Ω∩VI(C, F) . 

It follows from condition (i) that ∑ αn
∞
n=1 ǁun-un-1ǁ<+∞ and ∑ 𝛽𝛽𝑛𝑛∞

𝑛𝑛=1 ‖𝑢𝑢𝑛𝑛−1 −
𝑢𝑢𝑛𝑛−2‖ < +∞ . Set ψn:= ǁun-pǁ, ϕn:= αnǁun-un-1ǁ+βnǁun-1-un-2ǁ . Then, we have 
∑ ϕn

∞
n=1 <∞. From (18), we get 

ǁun+1-pǁ ≤ ǁun-pǁ+αnǁun-un-1ǁ+βnǁun-1-un-2ǁ, 
That is,  

ψn+1 ≤ ψn+ϕn. 
 

Applying Lemma 2.6 in the inequality above, we deduce that lim
n→∞

ψnexists, i.e., 
lim
n→∞

ǁ un-pǁ exists. 
Now, we note that 
ǁwn-pǁ2 = ǁun+αn(un-un-1)+βn(un-1-un-2)-pǁ2                                      

= ǁ(un-p)+αn(un-un-1)+βn(un-1-un-2)ǁ2                      
= ǁ(un-p)+αn(un-un-1)ǁ2+βn

2ǁun-1-un-2ǁ2                      
+2⟨un-p+αn(un-un-1), βn(un-1-un-2)⟩           

= ǁun-pǁ2+αn
2ǁun-un-1ǁ2+2⟨un-p, αn(un-un-1)⟩      

              +βn
2ǁun-1-un-2ǁ2+2⟨un-p+αn(un-un-1), βn(un-1-un-2)⟩ 

= ǁun-pǁ2+αn
2ǁun-un-1ǁ2+2⟨un-p, αn(un-un-1)          

+βn
2ǁun-1-un-2ǁ2+2⟨un-p, βn(un-1-un-2)⟩       

+2⟨αn(un-un-1), βn(un-1-un-2)⟩                     
≤ ǁun-pǁ2+αn

2ǁun-un-1ǁ2+2αnǁun-pǁǁun-un-1ǁ             
+βn

2ǁun-1-un-2ǁ2+2βnǁun-pǁǁun-1-un-2ǁ               
                 +2αnβnǁun-un-1ǁǁun-1-un-2ǁ.                                                  (19) 

Substituting (19) into (16), we deduce 
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ǁun+1-pǁ2 ≤ ǁun-pǁ2+αn
2ǁun-un-1ǁ2+2αnǁun-pǁǁun-un-1ǁ                                 

                       +βn
2ǁun-1-un-2ǁ2+2βnǁun-pǁǁun-1-un-2ǁ+2αnβnǁun-un-1ǁǁun-1-un-2ǁ 

-θn(1-
μ2λn

2

λn+1
2 )ǁwn-ynǁ2-(1-θn)(1-

ρ2ξn
2

ξn+1
2 )ǁzn-wnǁ2,      

which means that 

θn(1-
μ2λn

2

λn+1
2 )ǁwn-ynǁ2+(1-θn)(1-

ρ2ξn
2

ξn+1
2 )ǁzn-wnǁ2                                            

≤ (ǁun-pǁ2-ǁun+1-pǁ2)+αn
2ǁun-un-1ǁ2+βn

2ǁun-1-un-2ǁ2+2αnǁun-pǁǁun-un-1ǁ 
+2βnǁun-pǁǁun-1-un-2ǁ+2αnβnǁun-un-1ǁǁun-1-un-2ǁ.                               (20) 

Meanwhile, since lim
n→∞

ǁ un-pǁ exists. It follows from conditions (i), (ii) and (20) 
that 

lim
n→∞

ǁwn-ynǁ= lim
n→∞

ǁzn-wnǁ=0.                                     (21) 

In addition, notice that 
  ǁwn-unǁ = ǁun+αn(un-un-1)+βn(un-1-un-2)-unǁ 

  ≤ αnǁun-un-1ǁ+βnǁun-1-un-2ǁ, 
by condition (i), we deduce that 

lim
n→∞

ǁwn-unǁ=0. 
Let (s, t)∈Graph(A+B), which implies that t-As∈Bs. For {nk}⊂{n}, we get 

ynk
= (I+λnkB)-1(I-λnkA)wnk , which means (I-λnkA)wnk∈(I+λnkB)ynk

. It follows that 
1

λnk
(wnk-ynk

-λnkAwnk)∈Bynk
.  Since B is maximally monotone, we obtain that 

⟨s-ynk
, t-As-

1
λnk

(wnk-ynk
-λnkAwnk)⟩≥0. 

and hence  

⟨s-ynk
, t⟩≥ ⟨s-ynk

, As+
1

λnk

(wnk-ynk
-λnkAwnk)⟩                                         

= ⟨s-ynk
, As-Awnk⟩+⟨s-ynk

,
1

λnk

(wnk-ynk
)⟩         

                        = ⟨s-ynk
, As-Aynk

⟩+⟨s-ynk
, Aynk

-Awnk⟩+⟨s-ynk
, 

1
λnk

(wnk-ynk
)⟩ 

            ≥ ⟨s-ynk
, Aynk

-Awnk⟩+⟨s-ynk
, 1

λnk
(wnk-ynk

)⟩.                        (22) 

 
In light of (21) and the Lipschitz continuity of A, we deduce 

lim
k→∞

ǁ Awnk-Aynk
ǁ = 0. Let p� be a weak cluster point of {un}. Since {un} is bounded, 

there is a subsequence {uni}  of {un}  such that uni⇀p� . Furthermore, yni
⇀p� . It 
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follows from (22) that ⟨s-p�, t⟩≥0. Thus, by the maximal monotonicity of A+B, we 
have 0∈(A+B)(p�), that is p�∈(A+B)-1(0). 

On the other hand, let 
 

f (x)= � F(x)+NC (x) , x∈C,
               ∅       ,  x∈H\C, 

 
where NC is the normal cone of C at x∈C. Obviously, f is maximal monotone and 
f-1(0) = VI (C, F). If (x, r)∈Graph ( f ), since r∈f (x) = F(x)+NC (x), we have 
r-F(x) ∈NC(x), which leads to 

⟨r-F(x), x-v⟩≥0,  ∀v∈C.                                    (23) 
Note that zn = PC(wn − ξnFwn), we obtain 

⟨wn-ξnFwn-zn, zn-x⟩≥0,  ∀x∈C. 
that is, 

⟨ zn-wn
ξn

+Fwn, x-zn⟩≥0,  ∀x∈C.                            (24) 

Since lim
n→∞

ǁ zn-wnǁ = 0, applying (23) with {zkj}j=0
∞  , we have 

⟨r-F(x), x-zkj⟩≥0,  ∀x∈C.                                   (25) 
In view of (24) and (25), we get 
 

⟨r, x-zkj⟩≥ ⟨Fx, x-zkj⟩                                                              

≥ ⟨Fx, x-zkj⟩-⟨
zkj-wkj

ξkj

+Fwkj, x-zkj⟩    

= ⟨Fx-Fwkj, x-zkj⟩-⟨
zkj-wkj

ξkj

, x-zkj⟩    

                                = ⟨Fx-Fzkj, x-zkj⟩+⟨Fzkj-Fwkj, x-zkj⟩-⟨
zkj-wkj

ξkj

, x-zkj⟩ 

≥ ⟨Fzkj-Fwkj,x-zkj⟩-⟨
zkj-wkj

ξkj

, x-zkj⟩. 

Thus, ⟨r, x-zkj⟩≥ 0. Let j→∞, we obtain ⟨r, x-p�⟩≥ 0. Since f is maximal monotone, 
we deduce that p�∈f-1(0) = VI (C, F).Therefore, p�∈Ω ∩VI (C, F). By Lemma 2.7, 
{un} converges weakly to a point of Ω ∩VI (C, F). This completes the proof. 

 
Remark 3.1. Compared with Theorem 3.1 of Inkrong et al. [17], our Theorem 3.1 
extends, improves and develops it in the following aspects: 
(i) Our iterative scheme is more general than it in [17]. Especially, an 
extragradient algorithm is added to construct our iteration process, which is not 
applied in [17]. 
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(ii) The result in [17] can only be applied to solve a monotone inclusion problem, 
while our result can be applied to solve a pseudomonotone variational inequality 
problem and a monotone inclusion problem, which makes our result more 
applicable and valid. 
 

4. Conclusions 

In this paper, we introduce a new double inertial forward-backward 
algorithm with adaptive step size that does not depend on the knowledge of the 
Lipschitz constant and norms of the nonlinear operators to approximating a 
common solution of a monotone inclusion problem and a pseudomonotone 
variational inequality problem. Under some suitable assumptions on the 
parameters, we prove a weak convergence of our algorithm by using inertial 
technique, self-adaptive step sizes, and the properties of pseudomonotone 
mapping and monotone mapping. 
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