
U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 4, 2011 ISSN 1454-234x

DESIGN OF EMBEDDED SYSTEMS ABLE TO ADAPT BOTH
SCHEDULING AND CONTROL PARAMETERS

Daniel NICULAE1, Ioan DUMITRACHE2

În această lucrare vom prezenta implementări ale sistemelor numerice de
conducere a proceselor şi vom explica problemele ce apar datorită modului de
dezvoltare independent din prisma teoriei conducerii şi a teoriei sistemelor de timp
real. Vom studia apoi efectele care vor apărea în cadrul sistemului în momentul
implementării acestora pe echipamente hardware nededicate controlului, într-un
mediu privat de resurse suplimentare, şi modul în care aceste probleme pot fi
eliminate folosind teoria de co-design.

The paper will present the implementation of numeric systems for process
control and it will explain the problems that arise from the independent way of
development of the actual control tasks – oriented to control theory away from the
real time system- oriented to operating system theory. It will then be described the
effects o running such control on an on-the-shelf resources deprived hardware
environment, and the way these can be surpassed using co-designed control theory.

Keywords: co-design, process control theory, real time operating systems

1. Introduction

In today’s world, process control is designed and implemented using
digital devices. Although once, this was reserved to large scale system such as
industrial installations and robots, today numeric control has shifted and it is more
and more used in everyday devices as household equipments, automobiles and
communication devices. All these demand a rapid and predictable running, in
order to maintain a high level of performance, and so a high customer satisfaction.

Because the digital control system is not added to a physical system but
rather embedded inside it, in the last few years the digital devices are no longer
regarded as an improvement of the device but more as part of it. The term CPS –
cyber physical system [1] - describes fully this type of paradigm. Thinking this
way a device or even a large system is designed keeping in mind that the digital
control will be an integrated part of it and so, some features will be implemented
to better cope with this.

1 Eng., SC IPA SA. Bucharest, Romania, e-mail: dniculae@gmail.com
2 Prof., Automatic Control and System Engineering Department, Automatic Control and

Computers Faculty, University POLITEHNICA of Bucharest, Romania

12 Daniel Niculae, Ioan Dumitrache

Control systems are forced to work in an environment where their
response to the external changes must be not only accurate, but also timely. To do
so they must be controlled by an entity that was designed to work in a real word
environment: the “real time operating system” -RTOS. The main features that
parts this operating system from others are their smaller size and more important
the way they regard the correctness of a result [2]. So said, a correct real time
result is not the one that has the right value but the one that also supply that value
at the correct time.

Otherwise, the RTOS behave just like a regular operating system so it can
be adapted to deal with various and multiple jobs. These characteristics are
welcome by designers because since the control system is embedded into a
product it is needed to perform as much as possible. Implementing this behaviour
is somewhat easy, jobs being assigned to software entities known as task, same as
any other operating system but keeping in mind that all tasks must respect the real
time running paradigm. To do so, a variety of real time scheduling policies had
been developed and used, according to the needs of the system some designed for
real time system and others just adapted to this kind of behaviour.

In this paper the interest is focused on the way that digital system behaves
as a control system so it will be perceived only from this point of view. The
control theory developed the methods to implement digital control. Translated to
software application these theories emerge as control tasks that need to behave
deterministic. According to control theory these tasks must run at precise
separated time intervals – the signals must be sampled according to a given
frequency, and all the computation must take place instantly – there is no delay
between reading the process values and supplying the next command. [3]

Implementing the time restriction on a task running on a real time
operating system will make the design of the scheduler difficult and in some cases
even impossible [4]. In most cases the theory demands are relaxed, in order to
obtain a system able to run. An example of this is the implementation of control
tasks on dedicated systems were the allocated resources and the design of the
entire system was done in such a way that the error induced by control tasks not
being executed exactly at regular intervals and the time spent between signal
acquisition and the new command does not affect the performances which are
expected from the system.

Lately things started to change, and given the increasing number of control
system the demand for standard platform increased. With this, the behaviours of
the control system also become more affected by the difference between the
theory and the way system are really implemented.

A new approach emerged in order to design better system with respect to
the need to implement them on cheap and reusable hardware [5]. This approach is
different from the traditional one by the design of the numeric controllers by

Design of embedded systems able to adapt both scheduling and control parameters 13

people understanding both: control theory and real time system needs and
constrains. Conventionally the numeric controllers were designed in separate
stages. One stage was: dealing with the design of real time system, which had to
implement all tasks and to allow all of them to run as specified. Other stage was to
design the models of numeric controllers more focused to obtain the best way to
control any given process. By designing the digital controller by a mixed team,
the need and constrains of both teams can be better understood and systems can be
change in order to achieve better global performance that by transferring the
burden of implementing chances to only one part of the team [6]. Even more,
systems that originally could not be created can now be implemented. This
approach is known as co-design or implementation aware design.

This paper will present how the co-design theory can eliminate the
negative effects of implementing control tasks on standard digital controllers:
• Chapter 2 presents the general way an ideal embedded control task is

implemented
• Chapter 3 presents scheduling techniques and the errors that can appear due to

schedulers.
• Chapter 4 introduces the Jitter concept, describes the jitter properties and the

jitter impact on the behaviour of the control tasks.
• Chapter 5 develops the concept of adaptive digital controller. It will be discussed

both the concept of tuning the control algorithms parameters in order to
minimize the negative impact of jitters but also the concept of decreasing the
task activation period in order to faster reject process error

2. General design of control tasks

A system control activity can be split into three basic activities: data
acquisition, computing the new command, and supply the new command to the
controlled process [6]. When all these are implemented in a task form, they can be
implemented as a single task or as separate tasks3.

The following are requested for the control task to be equivalent to the
model described in the control theory:
• The signals acquired from the process must be read at a precise time interval tk
• The acquisition period must be the same as the period T used to design the

discrete controller.
• The new command must be computed instantly after the process data are read.
• The commands must be supplied to the process with the same period tk

3 The reason for this kind of implementation lays in the need of flexibility on dealing with tasks
scheduling. Because it is not the purpose of this paper to analyze these matters we will consider
that control tasks are implemented as a single, unitary task.

14 Daniel Niculae, Ioan Dumitrache

• The delay τ between the signal acquisition and new command- if such delay is
present it must be constant for all instances.

Although the digital control system is created based on these concepts,
most of them impose too many restrictions to be implemented alongside other
tasks besides control tasks. For instance it is not possible to correctly schedule
tasks with different periods [6]. Also, if the same time delay is needed the WCET
(worst case execution time) can be used for a task, but doing so, it will keep the
processor from doing other jobs although in some cases the current computation
will be finished faster.

When implementing a digital control the following are the most used
models [3]:
• The signals are read and written with a periodic pattern equal to the design

period of the theoretical model. There are no delays between data acquisition
and command. This is the ideal case and it is the most used model, although it
imposes many restrictions and can propagates implementation errors.

• The signals are read and written with a periodic pattern equal to the design
period of the theoretical model. There is a constant delay between signal
acquisition and the new command. The delay is defined as: 0<τ<tk. This model
is used to model the delays induced by the computation time and communication
channels.

• The signals are read and written with a periodic pattern equal to the design
period of the theoretical model. The command is supplied at the same time with
the next data acquisition. In this case the delay is equal to the sampling period
τ=tk. This model can be used for an easy way to implement the controllers;
everything being governed by hardware interrupts.

The figure below holds a representation of the three cases [6]:

Fig. 1. Control tasks implementation

Design of embedded systems able to adapt both scheduling and control parameters 15

3. Scheduling process control tasks

It is important to reaffirm that control tasks will have to guarantee that at
each instance they run, they will get a constant sample period for its signals. For
this, the following must happen [4]:

• Each control task will be implemented as a periodic task. The
period will be equal to the period of the mathematical model.

• Each control task must have a deadline equal to the one assumed
when the digital controller was designed. This delay should be the
same as WCET of the task, this being the best assumption for this.

Translating the time demand to task implementation parameters, the
following relation can be used:

),,(),,(iiiiii ctDCT τ→ (1)

Where T is the model period, C (or WCET) is the execution time, D is the
deadline, t is the instance period, τ is the instance delay and c is the instance
execution time.

Fig. 2.Tasks instances and time parameters

Consider now an example of a digital controller which holds two tasks.
For this system the design of task scheduler that can meet the control theory time
demand.

Table 1
Examples1: tasks parameters
 Ti Ci Di
Task1 3 1 1
Task2 4 1 1

Task1 Repeat

sequence Task2
 0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 3 Example: control task set that cannot be scheduled to respect time execution parameters

This example showed that it is not possible to schedule the entire task set
and still comply with the control system time demands. For instance, the second

16 Daniel Niculae, Ioan Dumitrache

task is delayed one time interval at 9th time slot because task1 was running at that
time4.

Since last decade, [9] it had been stated that cyclic tasks can be scheduled
only if there is a harmonic relation. Two scenarios can be described:

a. Given a task set defined by the periods T1, T2, …,Tn (Ti equals the
sampling period chosen when the controller was designed), there
is a strict harmonic relation if following relation exist:

1,/1 −<∀∈=+ niNkkTT ii (2)

The following is an example for the harmonic relation:
Table 2

Example: harmonic task set
 Ti Ci Di
Task1 3 1 1
Task2 6 2 2

Task1 Repeat5

sequence Task2
Fig. 4. Example: harmonic task set scheduled

b. Given a task set defined by the periods T1, T2, …,Tn (Ti equals the

sampling period chosen when the controller was designed), there
is weak harmonic relation if:

niNkTkT iii <∀∈= ,/1

The following is an example for the week harmonic relation:
Table 3

Example: week harmonic task set
 Ti Ci Di
Task1 4 1 1
Task2 6 1 1

Task1 Repeat
sequence Task2

 0 1 2 3 4 5 6 7 8 9 10 11 12
Fig. 5. Example: week harmonic task set scheduled

4 It is up to us which task we delay.
5 It is clear that a 6 time unit interval would had been sufficient in this case

Design of embedded systems able to adapt both scheduling and control parameters 17

It must be added that for the weak harmonic relations it is not always
possible to have a schedule that will meet all the time demands. One example is
choosing Ci=2 and Di=Ci, inside the previous task structure.

4. Jitters

The following example is introduced to better explain jitters: of a set of
two tasks scheduled [5] according to Fig. 6:

Table 4
Example: task set

 ti C
Task2 7 2
Task1 4 2

Fig. 6.Example: scheduled task period

The two tasks presented have a totally different behaviour. The first task
has a periodic execution and a constant execution time. The second task has four
different execution intervals and it has two different execution times. If this task
will be executed as a control task using the general digital theory, it will generate
a faulty system.

Jitters will be defined as any time interval that affects the timely execution
of a task. Jitters are present in systems where high priority tasks are:

c. stopping the already working low priority tasks.

d. delay the start of low priority tasks.

According to this the following definition will be made:

• sampling jitter: any time interval that delay the task from starting at
the designated time:

})(/{ tjTtaskstarttt je Δ+=Δ∀=Δ (3)

For systems presenting sampling jitters the sampling interval for a
instance is defined as a non periodic interval tij = start(i,j+1)-

18 Daniel Niculae, Ioan Dumitrache

start(i,j)≤Ti. (i represents the task number and j represents the
instance of the ith task)

• sampling actuation jitter: any time interval that delays the end of a
started task

})(/{ tCjTtaskstoptt ja Δ++=Δ∀=Δ (4)

For systems presenting sampling actuation jitters the actuation
delay is defined as: τij=stop(i,j)- start(i,j), and τ is not a constant.

Returning to the example above it can be said that the second task is
affected by:

• sampling jitter during the first, second and fourth instance, and
only the third instance is jitter free.

• sampling actuation jitter during the second instance.

Jitters have a negative influence over the control system [5]. Implementing
control tasks without regarding jitters can sometime greatly decrease control
performances and even bring instability to an otherwise stable system.

Using a inverted pendulum as an example and the control task being
scheduled as the less important task in a non pre-emptive system the following
results:

0 1000 2000 3000 4000 5000 6000
-40

-30

-20

-10

0

10

20

30

40

50

60

Fig. 7. Example: process controlled by a control task ideal case (red), jitter affected (blue)

where the blue line represents the behaviour of the system affected by

sampling jitters and the red line represents the behaviour of an ideal system. Both
simulations had been made in the same initial conditions and same controller’s
parameters.

Design of embedded systems able to adapt both scheduling and control parameters 19

5. Implementation aware design

The previous section presented that, implementing the controllers by a

regular method on a jitter plagued system will decrease system performance. The
causes that make the jitter appear were also presented.

Keeping this in mind a new approach was created to better design control
system by making a compromise between the needs of control systems and real
time system [6]. In this way the control systems will constantly readjusting
controller parameters to cope with each situation induced by jitters and will set its
time requirements so that the operating system can schedule all tasks properly.
The operating system will, in change, create the framework, so that control tasks
will be less affected by jitters.

In order for this to happen, a mechanism is implemented to transfer to the
control tasks, the data about the state of the task status such as sampling interval
used by the next instance and the most probable execution time if not the exact
next execution time.

The control task will be also changed to cope with this approach and will
execute a changed code. An example for a changed state controller is presented
below. The controller is on line calculated at every task instance:

Classic controler
{ [yk, ‚wk] = read imputs;
uk = compute_ command(xk,..., wk, -F);
xk+1 = compute_state(xk, uk....,, Φ, Γ)
return (uk)
}

Implementation aware controler
{ [zk, wk] = read imputs;
[t, τ] = get temp data;
[Φ(t,τ), Γ(t,τ)]= compute_model (A , B, t, τ)
Fk = compute_controler (Φ(t,τ), Γ(t,τ))
uk = compute_ command (xk,,wk, -F);
xk+1 = compute_state (xk, uk,, Φ(h,τ), Γ(h,τ))
return (uk)
}

There are three great approaches to this:

Designed imposed

Fig. 8. Co-design, 1st case

The time parameters are set from the design stage and the entire digital

controller is run accordingly. This approach is used mainly for the fixed schedule

20 Daniel Niculae, Ioan Dumitrache

policy where the system is completely designed and at the run stage it will only
execute schedule instruction form a cyclic list.

The control tasks will change their parameters accordingly.

Scheduler imposed

Fig. 9. Co-design, 2nd case

During the design stage a set of parameters are „suggested” to be used by

the system. The parameters used during the system running time are changed
according to the needs of the operating system. This approach assures that
dynamic tasks will be run on the system and also that control tasks will receive
the complete information to adjust their parameters.

Controller imposed

Fig. 10. Co-design, 3rd case

The main idea behind this approach is that control tasks can access spare

computing resources whenever they need. The system still receive a set of
parameters at the design stage, parameters that are regarded as the stable state
parameters and that are used when controlled processes have a low error. The
scheduler will still dispatch the tasks according to its algorithms so that jitters will
still be present and of course compensated.

Design of embedded systems able to adapt both scheduling and control parameters 21

The control tasks can demand the increase6 of access by decreasing their
assigned execution interval. The resource will be freed if other task has a greater
need or if it is not needed by the current owner.

An example of what had been presented above can be shown using an
inverted pendulum as a control process. The process will be control by a dynamic
scheduled digital system where a set of tasks will run. The set of control tasks will
have a total of 20ms, our task being the first to run and having a execution time of
1ms.

Table 5

Example: task set
set T(ms) D(ms)
Taskctr 100 20 (1)
Task1 60 20
Task2 70 20

The digital system has the following schedule behaviour:

Fig. 11. System scheduler for the task set using the RM algoritm

The system’s answer using jitter affected controllers is:

6 According to control theory, a controller behaves better to reject an error if it has a higher
frequency rate.

22 Daniel Niculae, Ioan Dumitrache

0 1000 2000 3000 4000 5000 6000
-30

-20

-10

0

10

20

30

40

50

60

Fig. 12. Inverted pendulum response controlled by a jitter affected control task

It can be seen that although the inverted pendulum does not return

smoothly to its upright position at the end a zero error is achieved. If the controller
is implemented using a modified version, the new behaviour is:

0 1000 2000 3000 4000 5000 6000
-30

-20

-10

0

10

20

30

40

50

60

Fig. 13. Inverted pendulum response, control by a jitter afected and a modified control task

It can be seen that the overall system behaviour is much better, the system

reaching much faster the equilibrium. This situation can be assimilated to both the
first and second approach - the controller receives a set of time parameters but the
real time operating system schedules the task with jitter.

Design of embedded systems able to adapt both scheduling and control parameters 23

At last, it is presented a controller that demands the increase of its
frequency execution rate to cope with increase error:

0 1000 2000 3000 4000 5000 6000
-30

-20

-10

0

10

20

30

40

50

60

Fig. 14. Inverted pendulum response, control by a jitter afected, a modified control task and a

control task with dynamic change of execution rate

This last behaviour is better still than the one above.
To give a numeric form to our simulations the sum of absolute error for

the entire length of the simulation was computed (5s).
Table 6

Sum of the absolute process error during simulation time

 Classic
controller

Modified
controller

Dynamic
controller

System
error 2.7667 2.5145 2.3377

6. Conclusions

The implementation aware design for control system is studied for some
time but only in the last decade it started to be considered a noticeable domain.
Studies had been directed first to controller task implementation and then towards
scheduler design.

Usually this type of implementation is targeted to high usage level
processor, in order to better allocate computing resources. Reviewing the design
technology it can clearly be seen that the implementation aware design for control
tasks add extra computing time not only to the last added task but possible also to
other control tasks running on that operating system. According to the above, it is

24 Daniel Niculae, Ioan Dumitrache

not always possible to implement this type of design. Using the same reasoning it
can safely be said that before implementing such a system, an extensive study of
the time parameters inside a running controller must be carried to determine if the
advantage offered by this approach will overcome the increase in complexity
induced.

Another issue raised by this theory is the complexity of the scheduler. For
the same reason as above, a complex scheduler can also induce unnecessary
computer time. Many scientific papers propose complex solutions to obtain
optimal response in regard to one or more of the process control tasks.

Further studies must be directed towards optimizing by reducing the added
system complexity in order to obtain implementable results.

R E F E R E N C E S

[1] P. Marwedel, Embedded system design, Embedded system foundation of cyber-physical
system 2nd edition, ISBN 978-94-007-0256-1, 2011

[2] M. Dragoicea, Programarea aplicatiilor in timp-real. Teorie si practica (Real time application
programing, Theory and applications), Editura Universitara, ISBN 978-973-749-579-2,
2009

[3] I. Dumitrache, Ingineria Reglarii Automate (Automatic control system), Romania 2005
[4] Scheduling Theory, Algorithms, and Systems. Third edition Michael L. Pinedo, ISBN 978-0-

387-78934-7 Prentice Hall, 2008
[5] C. Aubrun, D. Simon, Y. Song, Co-design approaches for dependable networked control

systems; ISBN 978-1-84821-176-6, 2010
[6] M. Lluesma, A. Cervin, Jitter Evaluation of Real-Time Control Systems 2006
[7] M. Ben Gaid, A. Cela, Y. Hamam, C. Ionete, Optimal Schedueling of Control Tasks with State

Feedback Resource Allocation, American Control Conference ACC’06, Minneapolis, USA
June 2006

[8] P. Marti, R.Villa, J.M. Fuertes, G. Fohler, A Controller Design Method to Compensate for
Real-time Scheduling Inherent Jitters. Submitted to the 41th IEEE Conference on Decision
and Control, Las Vegas, USA, December 2002

[9] P. Marti, Control Performance Evaluation of Selected Methods of Feedback Scheduling of
Real-time Control Tasks, 2008

