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DYNAMIC FLEXIBLE EXTENDED HARMONIC DOMAIN 

MODELING AND SIMULATION OF SWITCHED CIRCUITS  

Uriel VARGAS1, George-Cristian LAZAROIU2 

Transient analysis and simulation of switched circuits require accurate models 

that permit to reproduce dynamics as close as possible to real components. This paper 

introduces the application of a novel technique named as dynamic flexible extended 

harmonic domain (DFEHD) by simulating a switched circuit, i.e., an RLC circuit 

supplied by harmonic and interharmonic sources. The DFEHD technique is seen as 

a block-function whose input consists on the state-space system and as output the 

simulation results. The main objective of this paper is to demonstrate the simplicity of 

simulating linear time-periodic systems via the block-function DFEHD. The proposed 

case study is validated via PSCAD/EMTDC. 
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1. Introduction 

The increasing use of power electronic converters (PECs) is becoming a 

major issue due to the negative impact on power quality, i.e., PECs introduce 

distinct frequency spectrum superimposed into the fundamental frequency that may 

cause, e.g., harmonic distortion, flickering, incorrect tripping of circuit breakers, 

among others [1]-[5]. 

Linear time periodic (LTP) systems involving PECs can be modeled and 

simulated, in a straightforward manner, in time-domain (TD); however, as 

consequence of switching phenomenon, a very small time-step must be employed; 

thus, leading to a large simulation time [6]-[7]. If harmonics and interhamonics 

dynamics are of interest, the flexible extended harmonic domain (FEHD) represents 

a solid improvement as it provides a set of linear ordinary differential equations 

(ODEs) where state variables become vectors containing time-varying frequency 

coefficients [8]. This means that, besides obtaining instantaneous values, it provides 

also the corresponding frequency spectrum for those pre-selected FEHD 

frequencies [8]. 
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A major improvement, which represents the main focus of this paper, is the 

dynamic FEHD (DFEHD) [9]. DFEHD is able to achieve correct transient 

waveform of all frequency spectrum while using arbitrary time discretization for 

calculation of instantaneous waveforms. It is worth mentioning, on the other hand, 

that FEHD fails to provide accurate transient waveforms as only pre-selected 

harmonics and interharmonics are accounted for [8], not so for the DFEHD that 

actually represents the analytic solution of the LTP system [9]. 

A case study of a switched circuit, i.e., an RLC circuit supplied by harmonic 

and interharmonic sources, is presented. The calculated system model is introduced, 

in a straightforward manner, into the block-function DFEHD technique to obtain 

the simulation results. The waveforms obtained by the proposed approach are 

verified with the PSCAD/EMTDC software tool [10]. 

2. Dynamic flexible extended harmonic domain (DFEHD) basics 

This section describes the fundamental relations of the DFEHD technique. 

On one side, FEHD resolves the set of ODEs by using a numerical integration 

method and provides as outcome the dynamics of a fixed set of pre-selected 

harmonic and/or interharmonic frequencies, and the corresponding instantaneous 

waveforms [8]. On the other hand, DFEHD transforms the analytic modal solution 

for linear systems with constant coefficients to the FEHD [9]. This combination 

permits to obtain the dynamics of a more complete set of frequencies, in addition 

to the pre-selected set of harmonics and/or interharmonics.  

Another major feature of the analytic nature of DFEHD is that it permits to 

calculate any solution point along the time axis [9]. This allows to set a higher 

resolution for visualization purposes of instantaneous variables, for example, 

immediately after a step change occurs, and a lower resolution after transients 

disappear; thus, leading to substantial CPU savings.  

2.1. DFEHD mathematical representation 

Based on the linear systems theory, the analytical modal solution to a 

multiple-input multiple-output (MIMO) linear time-invariant (LTI) g-order system 

is given by: 

 
( ) 1 ( ) 1( , ) ( ) .o

o

tJ t t J t s
o o t

x t t Pe P x P e P u s ds
− − − −= +    (1) 

In (1), P is the left eigenvector matrix, J represents the diagonal eigenvalue 

matrix, xo corresponds to the initial conditions vector, and vector u contains the m 

inputs. 

The eigenvalue matrix J is split into real α and imaginary β parts, as given 

by (2) (using Matlab notation). 
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 1 1( , , ) ( , , ).g gJ diag jdiag   = +   (2) 

Note that the set β represents the natural frequencies of the system in rad/s. 

The analytic solution given by (1), which is applicable only to LTI systems, 

is extended to LTP systems via the FEHD transformation, which after some 

algebraic manipulations becomes the DFEHD relation, as given by (3). 
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or, in compact form: 
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o o FHDX t t M t t e X= +   (4) 

where: 
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In (3) to (5) we have the following definitions: m corresponds to the number 

of input sources (exponentials and DC); ωm is the angular frequency of the mth input 

source in rad/s; vector XFHD indicates the steady-state solution of the FEHD model, 

which includes only the FEHD pre-selected frequencies; the eigenvector matrix P   

is the FEHD counterparts of P; Bo,m represents a DC-component column vector 

corresponding to the mth input element within the input matrix B; and Xo is the initial 

conditions vector. 

Also in (3) to (5), 
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  (6) 

The fact that (1) is transformed using the FEHD, as in (3), it permits to 

obtain the analytic solution of the set of pre-selected frequencies in the FEHD 

model. In addition, the solution vector in (3) provides the dynamics of the natural 

frequencies of the system. This results in improved transient waveforms either for 

an instantaneous variable or for a specific selected harmonic and/or interharmonic, 

as demonstrated in [9]. 
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2.2. Time-domain instantaneous waveforms 

As for visualization purposes, each of the g solution variables in (3) is 

converted to TD as in (7), where “•” stands for the scalar product and f indicates the 

FEHD pre-selected frequencies. 
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  (7) 

The closed-form relation for the instantaneous variable corresponding to the 

single-input single-output (SISO) linear system case is obtained by applying the 

corresponding scalar product in (7) to (4), giving: 
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Relation (8) shows that the analytic solution for an instantaneous solution 

state variable of a linear system is expressed as a sum of exponentials (sinusoidal 

signals), whose frequencies are given in terms of the set of pre-selected FEHD 
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frequencies, the set of natural frequencies from the analytical modal solution, and 

the combination of these two sets. This can be observed in a clearer way if (8) is 

rewritten as (9).  
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3. Case Study: RLC circuit supplied by harmonic and interharmonic 

sources 

This case study is modeled in the FEHD and simulated using the block-

function DFEHD. The main objective is to demonstrate the simplicity of simulating 

FEHD models via the DFEHD. In this sense, the DFEHD technique is seen as a 

block-function whose input is the state-space FEHD system and as output the 

simulation results.  

Aimed to verify and validate the proposed model, which is implemented in 

Matlab using a computer i5-6200U CPU, 2.3 GHz, and 8GB RAM, the obtained 

results are compared with those given by the PSCAD/EMTDC software tool [10]. 

3.1. General description 

Consider the RLC circuit presented in Fig. 1, which is supplied by both 

harmonic and interharmonic sources. The corresponding system parameters are 

presented in Table 1. 
Table 1 

Data for RLC circuit supplied by harmonic and interharmonic sources. 

R1 0.25 Ω 

R3 0.05 Ω 

L1 3 mH 

L3 1 mH 

C2 220 μF 

ts 0.25 s 

v1 (V) 0.2 + 1.5 sin(ω1t + 90°) + 0.3 sin(ω2t + 120°) + 0.2 sin(ω3t - 20°) 

v2 (V) 0.15 sin(ω4t + 240°) + 0.05 sin(ω5t - 80°) 

i1 (A) - 0.3 + 0.25 sin(ω6t + 30°) 

ω1 2π × (50 Hz) 

ω2 2π × (100 Hz) 

ω3 2π × (150 Hz) 

ω4 2π × (75 Hz) 

ω5 2π × (40 Hz) 

ω6 2π × (2000 Hz) 
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Fig. 1. RLC circuit supplied by harmonic and interharmonic sources. 

 

Based on the reference directions in Fig. 1, the state-space representation of 

the RLC circuit is obtained in the FEHD as: 

 ( ) ( ) ( ) ,X t NX t AX t BU+ = +&   (10) 

where N represents the differentiation matrix, arranged as a block-diagonal matrix, 

and u is a step unit function. Moreover, the time-periodic elements in matrices A, 

B, C and D become re-structured Toeplitz-type matrices given by the frequency 

content of outputs, inputs, and switching functions [8], as in (11) to (14).  
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The solution vector X(t) in (10) and (13) represents an FEHD column vector 

involving the pre-selected harmonics and interharmonics in each state/part of the 
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system. It is worth mentioning that, for this case study and for sake of illustration, 

the pre-selected frequencies for the FEHD model are the ones given by the sources, 

as listed in Table 1. 

3.2. DFEHD as a block-function 

For sake of illustration, Fig. 2 presents the schematic representation of the 

proposed approach that permits to simulate and provide the frequency spectrum of 

any LTP system modeled in the FEHD. The Matlab code representing the core of 

this approach, represented as the blue rectangle in Fig. 2, can be provided upon 

request to the authors. 

In Fig. 2, the first two blocks on the left-hand-side, named as “TD” and 

“FEHD”, represent the TD and FEHD models of the LTP system under study, 

respectively. On the other hand, the third block, named “DFEHD”, represents the 

DFEHD block-function that provides as output, the analytic solution, frequency 

spectrum and instantaneous values of the LTP system under study. 

 

TD FEHD DFEHD

Pre-selected 

frequencies

Sample time of study

Initial condition
Frequency spectrum

Analytic solution

Instantaneous values

 
Fig. 2. DFEHD approach seen as a block-function. 

3.3. Simulation results 

Fig. 3 presents the instantaneous waveforms of x1 and x2, of Fig. 1, obtained 

by the proposed approach and by PSCAD/EMTDC. 

To highlight the main feature of the DFEHD, which provides the analytic 

solution, i.e., it permits to calculate any solution point, four time-windows are used. 

The first time-window, t ≤ 0.05 s, uses 500 linearly-spaced points; the second time-

window, 0.05 s ≤ t ≤ 0.25 s, uses 50 linearly-spaced points; the third time-window, 

0.25 s ≤ t ≤ 0.35 s, uses 1500 linearly-spaced points; and the fourth time-window, 

0.35 s ≤ t ≤ 0.5 s, uses 50 linearly-spaced points. These solution points are shown 

in Fig. 3 via the “o” marker. 

As observed in Fig. 3, the waveforms by the proposed DFEHD approach 

show an excellent agreement with PSCAD/EMTDC despite the arbitrary 

distribution of samples in the former. On the other hand, the higher switching 
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frequency and/or source frequency, the smaller time-step required by 

PSCAD/EMTDC, which entails to a high computational burden.  

For completeness of the paper, Fig. 4(a) presents the most representative 

frequencies of the highest distorted waveform, i.e., voltage at capacitor terminals 

x2, whilst Fig. 4(b) shows its complete frequency spectrum in a 3D plot view. 

From Fig. 4 we can observe all frequencies’ participation given by the 

sources. In addition, we can easily visualize the natural frequency, which can be 

computed in Matlab using the TD or FEHD model and for this case study results in 

391.7782 Hz. This natural frequency appears after every step change and decays 

exponentially as observed in Fig. 4. On the other hand, PSCAD/EMTDC models 

will be unable to show interharmonics accurately due to the dependency on the fast 

Fourier transform (FFT) algorithm, which in fact, is prone to incur in well-known 

errors, e. g., aliasing, spectral leakage, and Gibbs phenomenon [11]-[12]. 

 
(a) 

 
(b) 

Fig. 3. Transient waveform for RLC case study. a) Current across inductor L1. b) Voltage at 

capacitor terminals C2. 
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(a) 

 

 
(b) 

Fig. 4. Transient waveform for RLC case study. Frequency spectrum of voltage at capacitor 

terminals. a) 2D view. b) 3D view. 

4. Conclusions 

This paper has presented the DFEHD approach seen as a block-function, 

which provides, besides instantaneous values, the frequency evolution along time 

of any LTP system. This block-function has as inputs the FEHD model, initial 
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condition, and the sample period under study whilst as outputs the analytic solution, 

instantaneous TD values and the frequency spectrum.  

For simplicity of exposition, the proposed approach has been successfully 

validated via an RLC case study, where a remarkable accuracy can be observed; 

nevertheless, any LTP can be simulated, in a straightforward manner, using this 

methodology.  

Four major features of the proposed approach can be mentioned: i) the 

analytic solution of any LTP system expressed as a sum of sinusoidal signals as 

output by the proposed block-function, ii) there is no need of numerical integration 

methods, iii) time-step independency as it permits to calculate any solution point 

along the time axis, and iv) it provides a complete frequency spectrum visualization. 

Based on the aforementioned, the proposed methodology represents an 

alternative tool for evaluating or analyzing power quality in modern electrical LTP 

systems.  
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