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NUMERICAL ANALYSIS OF LUBRICATION IN THE 
PRESENCE OF POROUS DEFORMABLE LAYER, FOR 

TANGENTIAL MOTION (SLIDING) 

Christian RUSSU1 

Lucrarea prezintă rezultatele simulărilor numerice ale procesului de 
lubrificaţie în prezenţa mediilor poroase deformabile. Procesul, definit ca 
lubrificaţie în condiţii ex-poro-hidrodinamice sau lubrificaţie prin dislocaţie, se   
realizează prin comprimarea stratului poros sub acţiunea cuplei conjugate rigide şi 
expulzarea fluidului lubrifiant având ca rezultat apariţia unui câmp de presiuni 
generator de portanţă.     

 Procesul studiat este de mişcare tangenţială la suprafaţa plană poroasă 
deformabilă. Interstiţiul este considerat în 3 configuraţii geometrice: treaptă 
Rayleigh, suprafaţă înclinată convergentă şi suprafaţă sferică. Modelul numeric 
considerat a permis analizarea procesului pe un domeniu bidimensional. 

 
The paper presents the results of numerical simulations for the lubrication 

process in the presence of porous deformable layers. Defined as ex-poro-
hydrodynamic lubrication or lubrication by dislocation, the process is produced by 
the compression of the porous layer through the movement of the rigid conjugated 
pair, which generates a flow of lubricant inside the layer and, as a result, the 
generation of a pressure field with load carrying capacity. 

The present work refers to a stationary process of tangential motion at the 
plane surface of the porous deformable layer. The slider is considered in three 
different configurations: Rayleigh step, convergent surfaces and spherical surface. 
The numerical approach allows a bi-dimensional analysis.  
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Used symbols 
L , B  - length and width of the slider 

0, hh  - thickness, initial thickness of the porous deformable layer  
m, n - numbers of elements 

pp Δ,  - pressure, pressure difference 
q  - volumetric flow  
U  - tangential speed 

xΔ , yΔ - length and width of a finite differences cell 
ε ,Φ  - porosity, permeability of the porous layer 
μ  - dynamic viscosity of the fluid 
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1. Introduction 

Starting with the last decade of the second millennium a new lubrication 
mechanism was developed, based on highly compressible porous layers imbibed 
with fluids (HCPL). Studies on this type of mechanism were developed 
independently at University POLITEHNICA of Bucharest [1, 2, 3, 4, 5] and at 
City University of New York [6, 7].  

Named ex-poro-hydrodynamic (XPHD) lubrication [1], this type of 
lubrication is strongly dependent on porosity and permeability variation and 
considers the forces generated by elastic compression of the solid phase of the 
porous layer as negligible.  

Known models of XPHD sliders treat cases of lubrication through 
dislocation process in one-dimensional manner, thus neglecting the flow in 
direction normal to the motion (side flow). The present work intends to analyze a 
more realistic model accounting for side flow effects. Comparisons between 
numerical results and those predicted by previously published analytical, one-
dimensional models, are presented. 

2. The model and the numerical approach 

The general model considered in the paper can be represented by a slider 
moving on a plane surface consisting of a rigid substrate covered by a porous 
deformable layer (fig. 1). The slider “dives” into the porous layer and, by its 
movement, dislocates the lubricant found inside porous material. Three different 
shapes of sliders are considered: stepped, sloped (generating a convergent gap), 
and spherical. 

 

 
Fig. 1. Physical model. 
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b) porous deformable layer 
c) rigid substrate 
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The finite differences method based on "control volume" formulation (that 
allows for flow conservation on the cell) has been employed for numerical 
simulation. A n×m uniform grid is defined on the rectangular domain. For each 
grid point, a control volume is defined with midway points between the 
neighboring points. The general structure of a meshed domain is presented in fig. 
2. It is to be mentioned that nodes corresponding to line k are, for the Rayleigh 
step case, the nodes along the step line.  
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Fig. 2. Grid layout and control volume (cell) flow balance 
 
For any element inside the domain (represented in the upper left corner of 

fig. 2) the flow balance can be written as:  
iniijj qqqqq =+++ −+−+              (1) 

The left side member represents the flow toward the neighboring elements 
(outward flow). For porous permeable media this flow is governed by the Darcy 
Law: 

L
pAq

⋅
Δ⋅Φ⋅

=
μ

              (2) 

in which the permeability Φ  is defined using a form of Kozeny Carman equation 
[4] : 

( )2
23

1180 ε

ε

−

⋅
=Φ

d              (3) 

Applied to the given geometry of a finite differences cell, this becomes: 
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The right side member of eq. 1 defines the source term for the element. 
Generally speaking, this is the quantity of the fluid that enters or exits the cell 
through other ways than the neighboring elements – in our case as result of 
dislocation effect. The definition of this flow depends on the shape of the slider. 

For Rayleigh step, the value is 0, except for the nodes found on the line 
overlapped with the step (corresponding to the j=k line). For these nodes, we 
have: 

 ( ) Uhhxqin ⋅−⋅⋅Δ= min00ε             (5) 
For convergent surfaces model, we have the same value for each cell, 

resulting from the constant slope of the slider: 

 
n
hhUxqin

min0 −⋅Δ=             (6) 

For the spherical slider case, the value of the inside flow depends on the 
position of the element: 

( )jijiin hhUyxq ,,1 −⋅⋅Δ⋅Δ= −              (7) 
where local thickness of the porous layer is calculated using the first 2 terms of 
the Taylor series and thus approximating sphere with a paraboloid. 

( ) ( ) ( )
d

LyBxh
d
rhrhyxh aa

222 2/2/)(, −+−
+=+==          (8) 

Boundary conditions are imposed by attributing zero values for pressures 
in the nodes located at the edge of the geometrical contact surface. Additionally, 
for the spherical slider for the nodes situated in the divergent zone of the contact, 
if the calculated pressure is negative, the 0 value is attributed automatically during 
each iterative cycle. 

The problem was solved using the Gauss-Seidel iterative method with the 
control on average pressure between two successive cycles. The end iteration 
condition was that relative difference between two iterations is smaller than 10-6. 
The program was written in Pascal and run on a Pentium 4 class processor. The 
total solving time for one case varied between 30 and 170 seconds.    

3. Results 

For a qualitative assessment of the influence of the width/length ratio of 
the slider, pressure distributions are presented for Rayleigh step and convergent 
surfaces cases.  
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It can be observed that the maximum pressure is achieved for Rayleigh 
step, as expected, on the step line (fig. 3). But with the decrease of the mentioned 
ratio, the side flow becomes more and more important. Hence, from the tip effect 
found for B/L=2 ratio, we find a transition toward a side flow effect covering the 
entire surface of the contact in the case of B/L=0.5. 
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Fig. 3. Qualitative comparison of the influence of B/L ratio on normalized pressure field. 

Rayleigh step model. 
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Fig. 4. Qualitative comparison of the influence of B/L ratio on normalized pressure field. 
Convergent surfaces. 

 

For convergent surfaces (fig. 4) we notice that the decrease of the width 
also has an influence on the position of the maximum pressure. As the B/L ratio 
becomes smaller, the place of this maximum moves backward, to the trailing edge 
of the contact.  

It is to be mentioned that these values do not represent absolute pressures 
but normalized ones, obtained by division to the maximum value. For the analysis 
of the absolute values, a different kind of representation was chosen. The pressure 
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distributions found on the symmetry plane are represented against values 
calculated via analytical, one-dimensional model (figs. 5 & 6). It can be observed 
that the maximum values decrease as B/L ratio becomes smaller, going down to 
50% from the value calculated analytically, as the point where this value is 
achieved moves toward the trailing edge.             
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Fig. 5. Pressure distribution in median section.  
Rayleigh step model. Analytical vs. numerical. 
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Fig. 6. Pressure distribution in median section.  

Convergent gap model. Analytical vs. numerical. 
 
For the spherical model, we have a convergent zone of the contact 

followed by a divergent one. This limits the real active area as shown in fig. 7. It 
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can be noticed that, as the spherical slider sinks deeper into the porous layer (as a 
result of higher load or lower tangential speed), the active area gets a butterfly 
aspect, with its end retracting toward the geometrical center of the contact. 
Shallow dive and deep dive are related to the relative degree of compression of 
porous layer: 9.0/ 0min =εε  for shallow dive and 1.0/ 0min =εε  for deep dive.     

      
U

Shallow dive Medium dive Deep dive

U

Shallow dive Medium dive Deep dive  
Fig. 7. Qualitative comparison of the influence of dive depth of the slider.  

Spherical model. 
 

4. Conclusions 

Numerical results were validated through comparison to analytical,      
one-dimensional model, proving that finite differences algorithm was 
implemented correctly.  
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Fig. 8. Pressure distribution in median section, for the three considered models. 

 
A comparison between the three models considered for the same dive into 

the porous layer and speed (fig. 8) shows that, for step and convergent surfaces 



152                                                       Christian Russu  

models, both maximum values and the area of the pressure fields are similar, yet 
there is a small advantage for the Rayleigh step model.  

As for the spherical slider, this suffers mainly because of the divergent 
zone, an important part of the active area of the contact being lost. For Rayleigh 
step and convergent surfaces, the considered sliders are of square shape (B/L=1) 
with the side of the square equal to the diameter of the spherical slider.  
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