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NUMERICAL ANALYSIS OF LUBRICATION IN THE
PRESENCE OF POROUS DEFORMABLE LAYER, FOR
TANGENTIAL MOTION (SLIDING)

Christian RUSSU*

Lucrarea prezinta rezultatele simularilor numerice ale procesului de
lubrificatie in prezenta mediilor poroase deformabile. Procesul, definit ca
lubrificatie in conditii ex-poro-hidrodinamice sau lubrificatie prin dislocatie, se
realizeazd prin comprimarea stratului poros sub actiunea cuplei conjugate rigide §i
expulzarea fluidului lubrifiant avand ca rezultat aparitia unui cdmp de presiuni
generator de portantd.

Procesul studiat este de miscare tangentiald la suprafata pland poroasd
deformabila. Interstitiul este considerat in 3 configuratii geometrice: treaptd
Rayleigh, suprafatd inclinatd convergentd si suprafatda sferica. Modelul numeric
considerat a permis analizarea procesului pe un domeniu bidimensional.

The paper presents the results of numerical simulations for the lubrication
process in the presence of porous deformable layers. Defined as ex-poro-
hydrodynamic lubrication or lubrication by dislocation, the process is produced by
the compression of the porous layer through the movement of the rigid conjugated
pair, which generates a flow of lubricant inside the layer and, as a result, the
generation of a pressure field with load carrying capacity.

The present work refers to a stationary process of tangential motion at the
plane surface of the porous deformable layer. The slider is considered in three
different configurations: Rayleigh step, convergent surfaces and spherical surface.
The numerical approach allows a bi-dimensional analysis.
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Used symbols
L, B - length and width of the slider
h, hg - thickness, initial thickness of the porous deformable layer
m, n - numbers of elements
p,Ap - pressure, pressure difference
g - volumetric flow
U - tangential speed
Ax , Ay - length and width of a finite differences cell
£,® - porosity, permeability of the porous layer
1 - dynamic viscosity of the fluid
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1. Introduction

Starting with the last decade of the second millennium a new lubrication
mechanism was developed, based on highly compressible porous layers imbibed
with fluids (HCPL). Studies on this type of mechanism were developed
independently at University POLITEHNICA of Bucharest [1, 2, 3, 4, 5] and at
City University of New York [6, 7].

Named ex-poro-hydrodynamic (XPHD) lubrication [1], this type of
lubrication is strongly dependent on porosity and permeability variation and
considers the forces generated by elastic compression of the solid phase of the
porous layer as negligible.

Known models of XPHD sliders treat cases of lubrication through
dislocation process in one-dimensional manner, thus neglecting the flow in
direction normal to the motion (side flow). The present work intends to analyze a
more realistic model accounting for side flow effects. Comparisons between
numerical results and those predicted by previously published analytical, one-
dimensional models, are presented.

2. The model and the numerical approach

The general model considered in the paper can be represented by a slider
moving on a plane surface consisting of a rigid substrate covered by a porous
deformable layer (fig. 1). The slider “dives” into the porous layer and, by its
movement, dislocates the lubricant found inside porous material. Three different
shapes of sliders are considered: stepped, sloped (generating a convergent gap),
and spherical.
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Fig. 1. Physical model.
a) slider

b) porous deformable layer
c) rigid substrate



Numerical analysis of lubrication [...] porous deformable layer, for tangential motion (sliding) 147

The finite differences method based on "control volume™ formulation (that
allows for flow conservation on the cell) has been employed for numerical
simulation. A nxm uniform grid is defined on the rectangular domain. For each
grid point, a control volume is defined with midway points between the
neighboring points. The general structure of a meshed domain is presented in fig.
2. It is to be mentioned that nodes corresponding to line k are, for the Rayleigh
step case, the nodes along the step line.
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Fig. 2. Grid layout and control volume (cell) flow balance

For any element inside the domain (represented in the upper left corner of
fig. 2) the flow balance can be written as:
q_/'+ + q_/'— + qi+ + qi— = qin (1)
The left side member represents the flow toward the neighboring elements
(outward flow). For porous permeable media this flow is governed by the Darcy
Law:
A-D-A
== 2)
u-L
in which the permeability ® is defined using a form of Kozeny Carman equation
[4] :
3 ;2
O = 'g—dz 3)
180(1-¢)
Applied to the given geometry of a finite differences cell, this becomes:
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The right side member of eq. 1 defines the source term for the element.
Generally speaking, this is the quantity of the fluid that enters or exits the cell
through other ways than the neighboring elements — in our case as result of
dislocation effect. The definition of this flow depends on the shape of the slider.

For Rayleigh step, the value is 0, except for the nodes found on the line
overlapped with the step (corresponding to the j=k line). For these nodes, we
have:

QinzAx'go'(hO_hmin)'U ()

For convergent surfaces model, we have the same value for each cell,
resulting from the constant slope of the slider:

i = -y 20 ©)

For the spherical slider case, the value of the inside flow depends on the
position of the element:

qin :Ax'Ay'U'(hi—l,j_hi,j) (7)
where local thickness of the porous layer is calculated using the first 2 terms of
the Taylor series and thus approximating sphere with a paraboloid.
(x=BI2P +(y—LI2)

(8)
d

Boundary conditions are imposed by attributing zero values for pressures
in the nodes located at the edge of the geometrical contact surface. Additionally,
for the spherical slider for the nodes situated in the divergent zone of the contact,
if the calculated pressure is negative, the 0 value is attributed automatically during
each iterative cycle.

The problem was solved using the Gauss-Seidel iterative method with the
control on average pressure between two successive cycles. The end iteration
condition was that relative difference between two iterations is smaller than 10°°.
The program was written in Pascal and run on a Pentium 4 class processor. The
total solving time for one case varied between 30 and 170 seconds.

2
h(x,y)=h(r)=h, +%=ha +

3. Results

For a qualitative assessment of the influence of the width/length ratio of
the slider, pressure distributions are presented for Rayleigh step and convergent
surfaces cases.
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It can be observed that the maximum pressure is achieved for Rayleigh
step, as expected, on the step line (fig. 3). But with the decrease of the mentioned
ratio, the side flow becomes more and more important. Hence, from the tip effect
found for B/L=2 ratio, we find a transition toward a side flow effect covering the
entire surface of the contact in the case of B/L=0.5.
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Fig. 3. Qualitative comparison of the influence of B/L ratio on normalized pressure field.
Rayleigh step model.
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Fig. 4. Qualitative comparison of the influence of B/L ratio on normalized pressure field.
Convergent surfaces.

For convergent surfaces (fig. 4) we notice that the decrease of the width
also has an influence on the position of the maximum pressure. As the B/L ratio
becomes smaller, the place of this maximum moves backward, to the trailing edge
of the contact.

It is to be mentioned that these values do not represent absolute pressures
but normalized ones, obtained by division to the maximum value. For the analysis
of the absolute values, a different kind of representation was chosen. The pressure
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distributions found on the symmetry plane are represented against values
calculated via analytical, one-dimensional model (figs. 5 & 6). It can be observed
that the maximum values decrease as B/L ratio becomes smaller, going down to
50% from the value calculated analytically, as the point where this value is
achieved moves toward the trailing edge.
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Fig. 5. Pressure distribution in median section.
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Fig. 6. Pressure distribution in median section.
Convergent gap_model. Analytical vs. numerical.

For the spherical model, we have a convergent zone of the contact
followed by a divergent one. This limits the real active area as shown in fig. 7. It
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can be noticed that, as the spherical slider sinks deeper into the porous layer (as a
result of higher load or lower tangential speed), the active area gets a butterfly
aspect, with its end retracting toward the geometrical center of the contact.
Shallow dive and deep dive are related to the relative degree of compression of
porous layer: gmin / &g = 0.9 for shallow dive and &, / €9 = 0.1 for deep dive.
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Fig. 7. Qualitative comparison of the influence of dive depth of the slider.
Spherical model.
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4, Conclusions

Numerical results were validated through comparison to analytical,
one-dimensional model, proving that finite differences algorithm was
implemented correctly.
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Fig. 8. Pressure distribution in median section, for the three considered models.

A comparison between the three models considered for the same dive into
the porous layer and speed (fig. 8) shows that, for step and convergent surfaces
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models, both maximum values and the area of the pressure fields are similar, yet
there is a small advantage for the Rayleigh step model.

As for the spherical slider, this suffers mainly because of the divergent
zone, an important part of the active area of the contact being lost. For Rayleigh
step and convergent surfaces, the considered sliders are of square shape (B/L=1)
with the side of the square equal to the diameter of the spherical slider.
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