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NUMERICAL AND BIFURCATIONS ANALYSIS FOR MULTI-

ORDER FRACTIONAL MODEL OF HIV INFECTION OF 

CD4+T-CELLS 

Mohsen ALIPOUR1, Sadia ARSHAD2, Dumitru BALEANU3 

In this paper, we solve the dynamical system of HIV infection of CD4+ T-

cells within the multi-order fractional derivatives. The Bernstein operational 

matrices in arbitrary interval  ,a b
 
are applied to obtain the approximate analytical 

solution of the model. In this way, the fractional differential equations are reduced 

to an algebraic easily solvable system. The obtained solutions are accurate and the 

method is very efficient and simple in implementation. With the help of bifurcation 

analysis, we acquired the critical value of viral death rate, that is, if viral death rate 

is greater than the critical value then level of virus particles starts to decline and 

thus free virus will eventually eliminate and patient is cured. Further, we found the 

threshold for viral infection rate analytically, which assures the stability of 

uninfected equilibrium and virus will ultimately eradicate. 

Keywords: HIV infection of CD4+T-cells, Operational matrices, Bernstein 

polynomials, Caputo fractional derivative, Bifurcation analysis. 

1. Introduction 

            Since the early 1980s, many mathematical models of HIV have been 

developed to understand relations of HIV and the human immune system. In this 

way the public health officials can better compare, plan, implement and evaluate 

several programs for prevention, treatment and control of this disease. We refer 

the reader to excellent review paper on differential equation models of HIV on 

different phenomena [1]. Quantitative analysis of HIV-1 replication in vivo has 

made significant contributions to understanding of AIDS pathogenesis and 

antiretroviral treatment ([2, 3]). Detailed mathematical analysis on such models, 

we refer to the survey papers [4] and [5]. In [6] a dynamic model was introduced 

by dissemination of virus HIV in the bloodstream. This model contains free virus, 

latently infected CD4+T-cells, actively infected CD4+T-cells and uninfected 

CD4+T-cells. The cell membranes of biological organism are set in class of 

models with non-integer order, since it has been proved that they have fractional-
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order electrical conductance [7].  The greatest success in the rheology was 

obtained when the fractional derivatives were applied for the cell rheological 

behavior [8]. Furthermore, in [9] we can see that the model of treatment of 

brainstem vestibule-oculomotor neurons with fractional order gives better results 

than the classical one. Also, many fractional models are used in biological 

systems since they are very close to fractals [10]. Recently, many works have 

done on modeling the HIV infection with integer and fractional orders of 

derivatives [11-17]. In this study, we focus on the multi-order fractional of HIV 

infection of CD4+T-cells as follows: 
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where the notations are defined as follows: 

( )t : Concentration of healthy CD4+T-cells at time t . 

( )t : Concentration of infected CD4+T-cells at time t . 

( )V t : Concentration of free HIV at time t .  

We note that every lysing cell releases N  viral particles, so bN   is the 

source for free virus. Moreover, in general we have  Tr   and maxT s   .   

We applied the Bernstein operational matrices (BOM) to obtain the 

approximate analytical solution of (1) keeping in mind that the Bernstein 

polynomials (BPs) were used successfully for solving many problems in various 

fields of mathematics, physics and engineering [18-22]. 

The structure of the paper is as follows: In Section 2, we introduced some 

basic concepts of the fractional calculus and BPs. In Section 3, we presented the 

operational matrix of Caputo fractional derivative by BPs in the interval  ,a b . In 

Section 4, we used BOM for solving the multi-order fractional of HIV infection of 

CD4+T-cells. Bifurcation analysis of HIV model is given in section 5. In section 

6, the numerical simulation proved the applicability and accuracy of the presented 

method. The conclusions of our work are reported in the final section.  
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2. Primary concepts 

Below we present some basic concepts used in this manuscript. 

 

Definition 2.1. [23] The definition of the Riemann-Liouville fractional 

integral operator and Caputo fractional derivative of order 0  for function ( )y t  

are given below, namely 
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For any function  1 ,my C a b  we can approximate ( )y t  as follows [19] 
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Definition 2.3. We denote the operational matrix of product for vector c  

based on basis ( )m t  by Ĉ and define it as: 
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 therefore Ĉ  is obtained. 

3. BOM of Caputo fractional derivative 

Now, the aim is to get the BOM of fractional derivative. Thus, we write: 
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We denote the BOM of Caputo fractional derivative of order   by D . 

4. BOM for solving THE PROPOSED MODEL 

By using (6), we apply the following approximations: 
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Now, by applying the Tau method [24] for (15), we obtain the following 

algebraic equations: 
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Finally, the equations (16) with (13) produce a system of 3 3m  algebraic 

equations and 3 3m  variables which can be solved for ,    and V , 

respectively. Finally, by making use of (10) we obtain the approximations for 

( ) , ( )t t    and ( )V t . 

5. Bifurcation Analysis 

In this section, we explore the long term behavior of HIV model. System 

(1) has two equilibrium points: the uninfected equilibrium  and the 

infected equilibrium , where 

 

. 

The characteristic polynomial of Jacobian matrix at  of linearized system of (1) 

is given by                         

                                                

where  ;  ;  

It is easy to see that < 0. By Routh-Hurwitz Criteria  is stable if and 

only if  and . Since  is sum of positive elements, therefore  
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Where  

Hence,  implies which yields uninfected equilibrium point is 

asymptotically stable. 

If , then This implies  Hence uninfected 

equilibrium point is stable when  . If then   and we get 

. 

Consequently uninfected equilibrium point is unstable when  as one 

eigenvalue is positive in this case. 

From above analysis, we deduce that, is a bifurcation parameter for the 

uninfected steady state. Using parameter given in Table 1 and  we get  

. 

For < 2.376, the uninfected equilibrium is unstable, for >2.376 this 

equilibrium will become stable. Thus system (1) has a transcritical bifurcation at 

=2.376. Figure 1 represents the effect of change in  on population of healthy 

CD4+ cells.  

Fig. 1. Bifurcation diagram: Effect of viral death rate on T cells. 

 

Following the similar analysis we acquire that  (viral infection rate) is a 

bifurcation parameter which yields that system (1) is stable at  if > , it will 

lose its stability at =  and it will turn out to be unstable if < , where 

. 
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Fig. 2. Bifurcation diagram: Effect of viral infection rate on T cells. 

Viral infection rate for the parameter values given in Table 1 and 

  Fig. 2 illustrate the fact that  is unstable if < 0.0124 and it will 

change its stability at =  and become stable if > 0.0124. 

6. Numerical simulation 

In this section, we consider the parameter values given in Table 1. We 

utilize the presented method in the previous section for  10m   and for different 

values of , ,   . Also, we can see the behaviors of  ( ) , ( )t t    and ( )V t  for 

1, 0.9,0.95,1      and 1, 0.9,0.95,1      and 

1, 0.9,0.95,1     with 1000N  in figures 3-5, respectively. Also, we 

display ( ) , ( )t t    and ( )V t  for 1, 0.7,0.8,1      and 

1, 0.7,0.8,1      and 1, 0.7,0.8,1     with 800N   in figures 6-8, 

respectively. The residuals of the obtained solutions for the problem (1) with 

800, 1000N   are plotted in figures 9-11.  

Table 1.  

Parameters used in the numerical simulations of  model (1). 

Parameter Description Value 
s  Source of  CD4+T-cells from precursors  10  

 

T  Natural death rate of  CD4+T-cells 0.02  

 
Death rate of free virus 2.4  

            
 

Lytic death rate for infected cells 0.24  

r  Growth rate 0.03  

max  Carrying capacity 1500  

1k   Rate of infection of T-cells for free virus 2.4   

2k  Rate of infection for cells actively infected 2   

I  A blanket death term of infected cells 0.26  

N  Number of virions produced by infected CD4+T-cells Varies 
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Fig. 3. Plot of  ( ) , ( )t t     and ( )V t  for 1000, 1, 0.9,0.95,1N         and 10m  . 

 
Fig. 4. Plot of  ( ) , ( )t t     and ( )V t  for 1000, 1, 0.9,0.95,1N         and 10m  . 
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Fig. 5. Plot of  ( ) , ( )t t     and ( )V t  for 1000, 1, 0.9,0.95,1N         and 10m  . 

 
Fig. 6. Plot of  ( ) , ( )t t     and ( )V t  for 800, 1, 0.7,0.8,1N         and 10m  . 
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Fig. 7. Plot of  ( ) , ( )t t     and ( )V t  for 800, 1, 0.7,0.8,1N         and 10m  . 

 
Fig. 8. Plot of  ( ) , ( )t t     and ( )V t  for 800, 1, 0.7,0.8,1N         and 10m  . 
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Fig. 9. Plot of the residual function for the first equation in (1) with 1, 10m       and 

800, 1000.N   

 
Fig. 10. Plot of the residual function for the second equation in (1) with 1, 10m       and 

800, 1000.N   

 
Fig. 11. Plot of the residual function for the third equation in (1) with 1, 10m       and 

800, 1000.N   

6. Conclusions 

            Human immunodeficiency virus (HIV) targets the CD4+ T lymphocytes 

commonly known as helper T cells. T-cells, like other lymphocytes, are formed in 

the bone marrow. Young cells transfer to the thymus, where they go through 

further differentiation and grown-up into immune capable T-cells. Although HIV 

attacking various kinds of cells, it inflicts the most disorder on the CD4+ T -cells 

by causing their destruction and decreasing the body’s capability to struggle 

infection. In a clinical setting, the decline in the number of CD4+ T cells in blood 

and the blood ratio of CD4+/CD8+ T cells are both point toward the disease stage. 
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The number of T-cells in the blood in healthy persons is sustained comparatively 

constant, with CD4+ T cells consisting of about 1000 cells/ . 

In this work, we utilized BOM for solving the proposed multi-order 

fractional of HIV infection of CD4+T-cells. This method was applied for arbitrary 

interval [a,b], so we don't need to use variable changing for transfer the interval 

[a,b] to [0,1]. By using BOM, we reduced the initial nonlinear problem to an 

algebraic system that is easily solvable. In our model the non-local effects are 

better described by varying the values of , ,   . The reported numerical values of 

( ) , ( )t t   and ( )V t  exhibit a strong dependence to the values of the fractional 

order as it can be seen from figures 1-6. When the orders of fractional derivative 

approach to 1, the classical solutions are recovered. Finally, we observe that the 

results have good accuracy and the presented method is very efficient to get 

approximate analytical solution of this problem.  

          Varying parameter values change the dynamical properties of HIV model. 

With the help of bifurcation analysis, we obtained the critical value    of viral 

death rate , that is,  cause reduction in level of virus and where as 

 implies diminution of CD4+ cells. Consequently, if virus lives long that 

if  is declined then there is increased depletion of uninfected CD4+ cells, on the 

other hand if  increase then virus will finally have eliminated. Viral infection 

rate  play vital role in HIV dynamics, higher rate of viral infection might 

increase the reduction rate of uninfected T cells. We found the threshold  for 

viral infection rate analytically, which shows that  is a bifurcation point. 

Uninfected equilibrium will become stable as  passes this point i.e.  and 

patient is eventually cured. 
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