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NUMERICAL AND BIFURCATIONS ANALYSIS FOR MULTI-
ORDER FRACTIONAL MODEL OF HIV INFECTION OF
CD4'T-CELLS

Mohsen ALIPOUR?, Sadia ARSHAD?, Dumitru BALEANU?

In this paper, we solve the dynamical system of HIV infection of CD4+ T-
cells within the multi-order fractional derivatives. The Bernstein operational
matrices in arbitrary interval [a,b] are applied to obtain the approximate analytical

solution of the model. In this way, the fractional differential equations are reduced
to an algebraic easily solvable system. The obtained solutions are accurate and the
method is very efficient and simple in implementation. With the help of bifurcation
analysis, we acquired the critical value of viral death rate, that is, if viral death rate
is greater than the critical value then level of virus particles starts to decline and
thus free virus will eventually eliminate and patient is cured. Further, we found the
threshold for viral infection rate analytically, which assures the stability of
uninfected equilibrium and virus will ultimately eradicate.

Keywords: HIV infection of CD4*T-cells, Operational matrices, Bernstein
polynomials, Caputo fractional derivative, Bifurcation analysis.

1. Introduction

Since the early 1980s, many mathematical models of HIV have been
developed to understand relations of HIV and the human immune system. In this
way the public health officials can better compare, plan, implement and evaluate
several programs for prevention, treatment and control of this disease. We refer
the reader to excellent review paper on differential equation models of HIV on
different phenomena [1]. Quantitative analysis of HIV-1 replication in vivo has
made significant contributions to understanding of AIDS pathogenesis and
antiretroviral treatment ([2, 3]). Detailed mathematical analysis on such models,
we refer to the survey papers [4] and [5]. In [6] a dynamic model was introduced
by dissemination of virus HIV in the bloodstream. This model contains free virus,
latently infected CD4*T-cells, actively infected CD4'T-cells and uninfected
CD4'T-cells. The cell membranes of biological organism are set in class of
models with non-integer order, since it has been proved that they have fractional-
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order electrical conductance [7]. The greatest success in the rheology was
obtained when the fractional derivatives were applied for the cell rheological
behavior [8]. Furthermore, in [9] we can see that the model of treatment of
brainstem vestibule-oculomotor neurons with fractional order gives better results
than the classical one. Also, many fractional models are used in biological
systems since they are very close to fractals [10]. Recently, many works have
done on modeling the HIV infection with integer and fractional orders of
derivatives [11-17]. In this study, we focus on the multi-order fractional of HIV
infection of CD4"T-cells as follows:

oDT(t) =s— g, T(t) + rT(t) (1_ Tm+10

max

]— kV (OT(),

sDII(R) = KV (1) T(1) — 24 1(),

DIV (1) = N I(t) ~ kY () T(H) — 1,V 1),

1)
with the following initial conditions
Tmax (r_luT +\/(r_:uT)2 +,.f,-rSJ
T 0 _ max 1
© 2r
1(0)=0, V(0)=V,, (@)

where the notations are defined as follows:
T(t) : Concentration of healthy CD4"T-cells at time t.
I(t) : Concentration of infected CD4"T-cells at time t.
V (t) : Concentration of free HIV at time t.

We note that every lysing cell releases N viral particles, so N g, is the
source for free virus. Moreover, in general we have r > and £ T, >S.

We applied the Bernstein operational matrices (BOM) to obtain the
approximate analytical solution of (1) keeping in mind that the Bernstein
polynomials (BPs) were used successfully for solving many problems in various
fields of mathematics, physics and engineering [18-22].

The structure of the paper is as follows: In Section 2, we introduced some
basic concepts of the fractional calculus and BPs. In Section 3, we presented the
operational matrix of Caputo fractional derivative by BPs in the interval [a,b]. In

Section 4, we used BOM for solving the multi-order fractional of HIV infection of
CD4"T-cells. Bifurcation analysis of HIV model is given in section 5. In section
6, the numerical simulation proved the applicability and accuracy of the presented
method. The conclusions of our work are reported in the final section.
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2. Primary concepts

Below we present some basic concepts used in this manuscript.

Definition 2.1. [23] The definition of the Riemann-Liouville fractional
integral operator and Caputo fractional derivative of order « >0 for function y(t)

are given below, namely
Jfﬂoz—i—jsﬁ—ry4y&ﬁh, a>0,t>a,

I'(e)
a Itoy(t) = y(t), (3)
Cra r(nl_a)J‘:(t—T)”al y(n)(z')dx n-l<a<n,
a Dt y(t) = "
’ (4)
(t-a)'(b—t)™"

m
Lemma 2.2. Le ﬂim(t):(_J , 1=0,1,---m are the
’ i

(b—a)"

Bernstein polynomials of degree m on interval [a,b] and
TO=[1L0-a).t-a7 ..t-a)"] Yo®=[Fon®Lon® . Brn®]
then

lI’m(t) =A -Fm ®), (5)
where A:(ai,j)if“jfl and
GO (T“j[r."‘.ij <j
A5 =1(-a)’ \i J{j-i 1,J=0,1,...,m.
0 i> ],

Proof. From the expansion of (b—x)™", we get

/}’Im(t) — (m] (t —a)i (b —r:)m*i _ (m) (t _a)i ((b—a) +m(a_t))m*i )
(b_a) | (b—a)

M2 (5" - S () 2
:g(—lw"‘[im j[T__,‘j(;%Zj i=0L..m

then, we can conclude that¥ (1) = A T_(t).OI
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For any function y e C"™"[a,b] we can approximate y(t) as follows [19]

YO = 6,0 ="V, (0.

(6)
where ¢" =[c,,C,, -+,C,, ] is obtained as

([ v, 0 ), Q=) and

{17
Quuya=[, BB n Ok =——2UL i j=01-m

(2m+1)(_ j

i+
()

Definition 2.3. We denote the operational matrix of product for vector c
based on basis ¥, (t) by C and define it as:

Y (Y, (1) =¥, (1) C.
(8)
In order to get C , we can follow the steps below.
By using (5) we obtain
¢, (), () =c"¥, )(T,0A)

=[ "W, (0, (t-a)(cT ¥, 1)),... )" (¥, (1)) | AT
{iciﬂi,m(t),ici (t—a)/i’i,m(t),...,ici (t —a)mﬂilm(t)} AT

Then, we can apply the approximation
(t-a) B, ~e ¥, @0, (,k=01...m) e, =[e , e  ....e]",

such that
;
—1m _ k+1 m m m
O 5 4 A 1 1
“ 2m+k+l 2m+k\'(2m+k )" 2m+k Y| T
i+k i+k+1 i+k+m

So, we get
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6 t-a)' A0~ (Ze ﬂ,-,ma)J -3 ,.0( 3o, |

i=0 =0

m m m T
=¥ _(t) {Zcieﬁi D e Zcieﬁi}
i=0 i=0 i-0

=W (0 [€5. 811 r o p |C=T D)V, C.
Vi
Finally, by the above results, we write
Y Y, 2, ) [V,c.V,c,....V, c]AT,

¢

therefore C is obtained.
3. BOM of Caputo fractional derivative

Now, the aim is to get the BOM of fractional derivative. Thus, we write:

D, (1) == [ (-t ralD g,
'h-a)”a dz"
__ 1 J't (t—7)"* PCUEL G
'h-a)”a dz"
= A[$D71, $Df (t-a), ..., SDf(t-a)" |’
=AWT_, (1),
where W =diag (W, W,,,...,W, ) and T are as follows:
0 j=0,...,n-1,
Wig s j=n,...,m
r(j+i-a) e

;
T,.0=]0,..0t-a)"",. ., (t-a"" | .
Now, we need to approximate (t—a) ™ (i=n,...,m) based on BPs by
applying (6). So, we get
(t-a)" ~E¥, (1),
where
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e __b-a™m . [T(-a+) Ii+l-a+) Ii+m-a+l) !

' T(i+m-a+2) 0! ’ 1! m! ’
i=n,...,m

Then, we write

n times

.
SD{"Pm(t)zAW[O,...,O,En,...,Em] @, (t).
%,_/

D(I
Finally, we conclude that
DY, () ~D, ¥, (). (9)

We denote the BOM of Caputo fractional derivative of order o by D, .

4. BOM for solving THE PROPOSED MODEL

By using (6), we apply the following approximations:
T) =T (1), I~ (1), VOV, (). (10)

Then, by taking into account (9) and (10) we obtain
SDIT(R) = §D7 (T, () =T (D, (1) ~ T'D, ¥, (1),
thﬂI(t) ~ thﬂ (TT\Pm(t)) =1 thﬂ\Pm (t)~ iT\Pﬂle(t)'

SOV () ~ 57 (VTW, (1)) =V §D/¥,, (1) ~V'D, ¥ (). a
We observe that from (10) and (11), the problems (1) and (2) are reduced
to

DY t)=sI'¥, (t)- & TT¥ 1)+ _(t)

—TL(TT\Pm(t)\Pm(t)TT+TT\Pm(t)\Pm(t)Ti)—kl\iqum(t)le(t)TT,

max

iT D/i’le (t) = kZTT\Pm (t)\Pm (t)T\7 —H iT\Pm (t),

VDY, 0= Nl W, - kT ¥, O POV -V P,

and
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Tmax (r_luT +\/(r_:uT)2 +,;4,.rsj
¥, (0)= e

2r
I"?_(0)=0, V¥ _(0)=V,.

(13)

m-+1times

.
Here 1:{1,1,...,1} , since Z,Bi (1) =1T‘Pm(t) =1. So, by the operational
— i—0 '

matrix of product in (8), we have
T'D,w, t)=s"W_(t)+(r-)T"¥, (1)

—TL(\Pm(t)T v @) %i)-k;ym(tf TV,

max

"D, () =k, ¥, () TV - 1, T, 1)

VID W, (t)=NuI"¥, ) - k¥, 0 TV - u V¥, 1),

(14)
where T is the operational matrix of product for T based on ¥_(t) . Thus we can
write

[TT D, —sl" —(r—p )" +TL(TT%T muy )+ klxiT%zjpm(t) =0,

max

(iT D, —kV A" + 4T )‘Pm(t) —0,

(\7T D, — N, " +kV T +M,V~T)‘Pm(t) —0. o
Now, by applying the Tau method [24] for (15), we obtain the following
algebraic equations:
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r

[|TD, -~ (r— )17+ - (TT%T +TTT )+ KV T j‘Pm(t),Bi'm(t) dt=0,

max

bl FTAT =T :
jo(l D, —k VT + 4 )‘Pm(t)ﬂiym(t)dtzo, i=0,..,m-1

b7t =T FTAT 7T
[; (v D, - N, +kV ™" + 4,V )\Pm(t)ﬁi,m(t)dtzo.

16

1o Finally, the equations (16) with (13) produce a system of 3m-+3 algebraic
equations and 3m-+3 variables which can be solved for T,I and V,
respectively. Finally, by making use of (10) we obtain the approximations for
T(t), I(t) and V (t).

5. Bifurcation Analysis
In this section, we explore the long term behavior of HIV model. System
(1) has two equilibrium points: the uninfected equilibrium E, =(T,. 0,0) and the

infected equilibrium E* =(T*,1%, V"), where

Timax | 2 dzr

o= 2r Tt |{T_'UT} +Tm:x

TF = L I = kZT*Iﬁ‘ = ”{[(E + {T - ﬂT}T$}me - T'T$2:|
koNpy, — k)’ #o T* (ko T* + kypt, Tomas]

The characteristic polynomial of Jacobian matrix at E; of linearized system of (1)
is given by
(A—A)%+ 4,0+ 4,)=0
ETTD
A =r—pr——— <=0

Where _— I; Az = .'I"Ij' + nri'-l TD + -“l-”; ."-J]] = qu{klrn. + -“l-'} - NIHE.R:ETL-..

It is easy to see that 4, =A4,< 0. By Routh-Hurwitz Criteria E, is stable if and

only if A, = 0 and 45 = 0. Since 4, is sum of positive elements, therefore 4, = 0.
Ay = u (kg Ty + 1) — Ny kT

( Nupk, Ty — kT,
= .“f .“l" - (u—]

= Y (“ M rr[r:]
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f'lurlbl;; kg TD - kl TL"

u
Where #
Hence, u, = u,,. implies A4; = 0 which yields uninfected equilibrium point is
asymptotically stable.
If w, =u,,, then 4; = 0.This implies i, = 0and 1; = —4, = 0. Hence uninfected
equilibrium point is stable when w, = u_ .. If u, <u_._.then 4; < 0 and we get

. Az -] AF 445

i, = 2 . Dand A3 ==
Consequently uninfected equilibrium point is unstable when x, <. as one
eigenvalue is positive in this case.

From above analysis, we deduce that, u,is a bifurcation parameter for the

uninfected steady state. Using parameter given in Table 1 and ¥ =130. we get
w2376

= 0,

For u,< 2.376, the uninfected equilibrium is unstable, for x,>2.376 this
equilibrium will become stable. Thus system (1) has a transcritical bifurcation at
u,=2.376. Figure 1 represents the effect of change in &, on population of healthy
CD4+ cells.
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by
Fig. 1. Bifurcation diagram: Effect of viral death rate on T cells.

Following the similar analysis we acquire that &, (viral infection rate) is a
bifurcation parameter which yields that system (1) is stable at £, if &,> k.., it will
lose its stability at &,= k., and it will turn out to be unstable if ,< k., where

Ny, EzTg—p i,
.r{:.?.”: — FpeZtd ""I"‘I-.

Hy
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Fig. 2. Bifurcation diagram: Effect of viral infection rate on T cells.
Viral infection rate k.., = 0.0124 for the parameter values given in Table 1 and
N = 800. Fig. 2 illustrate the fact that £, is unstable if k,< 0.0124 and it will

change its stability at k,=0.0124 and become stable if k,> 0.0124.

6. Numerical simulation

In this section, we consider the parameter values given in Table 1. We
utilize the presented method in the previous section for m=10 and for different
values of«, B,y . Also, we can see the behaviors of T(t), I(t) and V(t) for

a=1, f=y=0.9,0.951 and B=1, a=y=0.90.951 and
y=1, a=$=0.9,0.951with N =1000in figures 3-5, respectively. Also, we
display  T(t), I(t) and Vv(¢) for a=1, B=y=07,081 and

=1, a=y=07,081and y=1, = #=0.7,0.8,1with N =800 in figures 6-8,
respectively. The residuals of the obtained solutions for the problem (1) with
N =800, 1000 are plotted in figures 9-11.

Table 1.
Parameters used in the numerical simulations of model (1).
Parameter Description Value
S Source of CD4*T-cells from precursors 10 mm? dg}.'_l
L Natural death rate of CD4*T-cells 0.02 day ™"
Ly Death rate of free virus 24 dg}.‘_l
My Lytic death rate for infected cells 0.24 dg}.‘_l
r Growth rate 0.03 day
. Carrying capacity 1500 mm?
K, Rate of infection of T-cells for free virus 2 4% 107% mm’ day !
, Rate of infection for cells actively infected ox 1073 mm? da}rl
4, A blanket death term of infected cells 0.26 dg}.‘_l
N Number of virions produced by infected CD4*T-cells | Varies
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Fig. 3. Plot of T(t), I(t) and V(t) for N =1000, « =1, =y =0.9,0.95,1 and m=10.
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Fig. 4. Plot of T(t), I(t) and V (t) for N =1000, =1 a=y=0.9,0.951 and m=10.
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Fig. 5. Plot of T(t), I(t) and V(t) for N =1000, y =1, =« =0.9,0.95,1 and m=10.
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Fig. 6. Plot of T(t), I(t) and V(t) for N =800, « =1, f#=»=0.7,0.8,1 and m=10.
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N=800

0.00001 [
8.x1075 F

_ 6.x1075}
=

4.x10°5

2.x107S 1

0.0002

0.0006

Fig. 7. Plotof T(t), I(t) and V (t) for N =800, f=1, o =y =0.7,0.8,1 and M=10,
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Fig. 8. Plot of T(t), I(t) and V(t) for N =800, y =1, &= #=0.7,0.8,1 and m=10.
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Fig. 9. Plot of the residual function for the first equation in (1) withg = =y =1, m=10 and

N =800, 1000.
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Fig. 10. Plot of the residual function for the second equation in (1) with ¢ = =y =1, m=10 and

N =800, 1000.
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Fig. 11. Plot of the residual function for the third equation in (1) with ¢ = s =y =1, m=10 and
N =800, 1000.

6. Conclusions

Human immunodeficiency virus (HIV) targets the CD4+ T lymphocytes
commonly known as helper T cells. T-cells, like other lymphocytes, are formed in
the bone marrow. Young cells transfer to the thymus, where they go through
further differentiation and grown-up into immune capable T-cells. Although HIV
attacking various kinds of cells, it inflicts the most disorder on the CD4+ T -cells
by causing their destruction and decreasing the body’s capability to struggle
infection. In a clinical setting, the decline in the number of CD4+ T cells in blood
and the blood ratio of CD4+/CD8+ T cells are both point toward the disease stage.
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The number of T-cells in the blood in healthy persons is sustained comparatively
constant, with CD4+ T cells consisting of about 1000 cells/mm®.

In this work, we utilized BOM for solving the proposed multi-order
fractional of HIV infection of CD4*T-cells. This method was applied for arbitrary
interval [a,b], so we don't need to use variable changing for transfer the interval
[a,b] to [0,1]. By using BOM, we reduced the initial nonlinear problem to an
algebraic system that is easily solvable. In our model the non-local effects are
better described by varying the values of «, A, 7 . The reported numerical values of

T(t), I(t) and V (t) exhibit a strong dependence to the values of the fractional

order as it can be seen from figures 1-6. When the orders of fractional derivative
approach to 1, the classical solutions are recovered. Finally, we observe that the
results have good accuracy and the presented method is very efficient to get
approximate analytical solution of this problem.

Varying parameter values change the dynamical properties of HIV model.
With the help of bifurcation analysis, we obtained the critical value u.;;: of viral
death rate u,, that is, u; = u. cause reduction in level of virus and where as
uyr < e iIMplies diminution of CD4+ cells. Consequently, if virus lives long that
if u; is declined then there is increased depletion of uninfected CD4+ cells, on the
other hand if u; increase then virus will finally have eliminated. Viral infection
rate k, play vital role in HIV dynamics, higher rate of viral infection might
increase the reduction rate of uninfected T cells. We found the threshold k., for
viral infection rate analytically, which shows that &, = k., is a bifurcation point.
Uninfected equilibrium will become stable as &, passes this pointi.e. k; = k. and
patient is eventually cured.
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