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DAMAGE DETECTION BY UPDATING USING 
CORRELATION FUNCTIONS 

Farid ASMA1 

A finite element model updating method is proposed for damage detection in 
mechanical structures using frequency measurements. The cost function is made up 
of a frequency residual formulated by the gradient of a correlation function in the 
frequency domain. An optimization algorithm is proposed for the resolution of the 
numerical problem. The suggested technique is applied to simulated structures 
considering the effect of noisy measurements. The simulation tests results show the 
effectiveness of this new damage identification technique. Mathematical and 
algorithmic analyses highlight very interesting characteristics of the proposed 
optimization algorithm. The updating method thus obtained has application in 
structural damage detection and finite elements models validation. It allows also a 
structural health monitoring of large mechanical structures.  

Keywords: damage detection, model updating, frequency measurements,  
                    correlation 

1. Introduction 

Damage detection in structures drew a great attention in civil, mechanical 
and aerospace engineering. In this context, many vibration measurements based 
methods were developed.  

Genetic algorithms took a significant part in this field. These algorithms 
are able to find global minima or maxima. They can thus be usable for the 
minimization of cost functions. Larson and Zimmerman [1] developed an 
effective program using genetic algorithms. Applied for a finite element model 
updating of a six elements bar with 25 degrees of freedom, the results show a 
considerable improvement even when the modes are disturbed by experimental 
noise. Carlin and Garcia [2] used the algorithm for the detection of defects in 
mechanical structures. After comparison with other damage detection methods, 
they conclude that genetic algorithms are more powerful and avoid announcing 
defects where they do not exist. Li et al. [3] proposed another type of methods 
based on Perturbed Boundary Condition (PBC) in experimental test. The pmain 
utility of the PBC is to overcome the principal problem of the updating methods 
which is the insufficiency of information, and to improve conditioning of the 
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systems. One of the problems of this type of methods is the difficulty of 
associating measurements of the various tests in only one updating procedure, 
because if one simply increases the number of equations, the resolution of the 
system becomes more complex. Instead of using several sets of tests as for the 
PBC, Ibrahim [4] used an analytical model with multiple disturbances. Even if 
information on the structural behaviour comes from only one experimental test, 
the method increases the quantity of information obtained, and consequently helps 
to improve conditioning of equations.  

Some researchers used antiresonance frequencies with the natural 
frequencies, mode shapes, and Frequency Response Functions (FRFs) in the 
updating method [5 – 7]. Even if there is a multitude of finite element model 
updating methods, the problem remains always posed since none of them can 
correctly update the FE model of all industrial structures. There are cases 
considered to be satisfactory but their success is limited. A good outline of 
existing methods is given by Sohn et al. [8]. These methods are based on the fact 
that the defects cause usually the reduction in the rigidity of the structure which 
results in the change of the vibratory characteristics (like damping, eigen 
frequencies and eigen modes). The defects cause also the change of the 
geometrical and mechanical parameters of the structure which one finds in the 
mass, damping, stiffness and flexibility matrices. The finite element method can 
be employed for damage detection by inverse techniques or models updating. 

This work presents a new finite elements model updating method for the 
detection and the quantification of defects using a correlation function in 
frequency domain. 

2. Parametrisation of the updating method 

The dynamic behaviour of a linear mechanical structure is governed by the 
following equation 

  ( ) ( ) ( ) ( )tftKytyCtyM =++       (1) 
where M, C and K are mass, damping and stiffness real symmetric matrices which 
can be discretized as follow    
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For a harmonic excitation of pulsation ω, the particular solution of Eq. 1 is   
 ( ) fyKCjM =+ω+ω− 2                             (3) 
which we can deduce the expression of the displacement vector 

  ( ) ( ) fKCjMy
12 −

+ω+ω−=ω                    (4) 
with ω∈{ω1  ω2  .., ωS }  
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Damping is considered proportional to the mass and the stiffness  
  C = αM+ βK        
By introducing the parameterization of the structure, the global mass and 

stiffness matrices from Eq. 2 can be expressed in the following form  
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where M(e) et K(e) are mass and stiffness elementary matrices, and mi and ki are the 
updating parameters. Case where mi = ki = 1 imply that the ith element is well 
modelized and thus doesn’t comprise any defect or errors. The updating process 
consists then in quantifying parameters mi and ki to localize and quantify defects 
in the considered structure. For this purpose we use a measurement set of 
frequency response functions FRFs. 

Let y (s)(ωt)  be an incomplete measurement set of « s » frequency response 
functions. In practice FRFs are not completely measured. This problem of 
incomplete data can be solved by the extension of the experimental data or the 
reduction of the analytical model. In the method presented here, the unmeasured 
degrees of freedom are approximated by their analytical equivalents. 

3. Cost function and minimization procedure 

Before updating a finite elements model it is useful to have an idea on its 
precision. For that, correlation functions exist; they make a comparison between 
experimental measurements and values predicted by the analytical model. One of 
the first correlation methods is based on modes correlation to evaluate the errors 
modelling. Modal Assurance criterion (MAC) is the most used correlation 
function; this is defined by Allemang and Brown [9]  
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where φA is the analytical eigenvector and φX is the experimental eigenvector. 
When measurements noise is important other quantities like frequency 

response functions FRF are used. The use of FRF instead of modes is more 
effective since experimental FRFs are directly obtained in experiments whereas 
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the modes require calculations based on these measures. This passage of FRFs to 
the modes utilizes thus additional error.  

One of the principal advantages of the use of FRF is that the damping 
parameters can be corrected whereas the modal parameters are not sensitive to 
damping. The use of FRF by selecting a sufficient number of measurement points 
can attenuate the problem of incomplete measurements. This is due to the fact that 
FRFs contain the influence of all the modes. 

The objective of methods with cost function is to make a correlation 
between the measured data and those of the analytical model. For the choice of the 
cost function let us consider the various correlation functions used in frequency 
domain. They are summarized what follows in 

The Frequency Domain Assurance Criterion (FDAC) is given by Pascual 
et al. [10] 
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where HA is the analytical FRF for an analytical frequency ωA, and HX is a 
measured  FRF for a corresponding working frequency ωX. k is the excitation 
degree of freedom. 

The Frequency Response Scale Factor (FRSF) is given by Pascual et al. 
[11] 
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where [S] is the a weighting matrix. 
The FRSF gives values between - 1 and 1. The FDAC gives a quantitative 

comparison of FRFs; on the other hand the FRSF gives a qualitative comparison. 
Consequently the FRSF is not sufficient to evaluate the degree of correlation.  

The Frequency Response Assurance Criterion (FRAC) is given by Nefske 
and Sung [12]  
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j being the measurement dof and k the excitation dof. 
Fotsch and Ewins [13] proposed the Modal FRF Assurance Criterion 

(MFAC) defined by 
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where φA is the analytical eigenvector for an analytical frequency ωA. 
Put aside the FRSF, all correlation functions vary between 0 and 1, value 1 

indicates a perfect correlation and 0 indicates a bad correlation.  
FRSF does not give a good quantitative correlation and thus cannot 

quantify possible defects objectively. FDAC and FRAC are limited to the use of 
frequency response functions only.  

Some correlation functions are used in literature, Gao and Spencer [14] 
used the total modal assurance criterion (TMAC) to determine the analytical 
model to correlate for a damage localization method. Zang et al. [15] used global 
shape criterion (GSC) and global amplitude criterion (GAC) to update finite 
element model. In this present work, the method is based on the MFAC (11) 
which uses the analytical modes in addition to FRFs. The cost function which 
results is 
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The minimization of this cost function amounts minimizing the square of 
the residue 
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what is equivalent to 
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The minimization process is written then  
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4. Gradient of the cost function 

The calculation of the gradient of the cost function requires derivations of 
the analytical eigenvectors according to the updating parameters mi and ki. This 
type of calculation is developed in [16] by the following form: 

The mode vector derivative may be expressed as a linear combination of 
all eigenvectors 
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where the coefficients μkq are determined using the generalized eigenvalue and 
orthogonalisation properties of eigenvectors 
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knowing that φA are the analytical eigenvectors and λ are the analytical eigen 
values. 

In the same way, we have 
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with 
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On the other hand, for the calculation of derivations of the mass and 
stiffness matrices we use the computation formulae clarified by Asma and 
Bouazzouni [17] 

The derivation of the global mass and stiffness are 
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The FRF is expressed as 

 ( ) ( ) ( ) 121 −− +ω+ω−=ω=ω KCjMZH                    (24) 
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The derivation of this matrix is calculated by 
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Finally, the derivation of the damping stiffness matrix led to 
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5. Optimization Algorithm 

A good choice of the objective function influences the quality and the 
effectiveness of the method. The cost function must be monotonous and 
continuous compared to the updating parameters. When the cost function is well 
chosen, the optimization method plays an important part. The least squares 
method is one of the most used methods. Some methods based on genetic 
algorithms improve the updating process.  

Usually in damage detection and finite element model updating the 
optimization process is ill-conditioned and causes local entrapments. To avoid 
this, Duan et al. [18] propose a float-encoding genetic algorithm. The optimization 
algorithm used for the minimization of the cost function δ is the Gauss – Newton 
algorithm, which is an iterative algorithm with Jacobian matrix. The nonlinear 
system of N unknown and N equations is obtained by 
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The resolution by Gauss – Newton method led to an iterative system of the 
form 
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where J is the Jacobian matrix 
The system is completely constructed using equations (16) to (28). The 

convergence criterion is based on the relative difference between two successive 
m- and k-values during the iteration process; a relative value of 0.1% is acceptable 
to have a good accuracy with 5% measurement noise. To assure a numerical 
stability a relaxation coefficient is used to limit the variation of the m- and k-
values at each iteration. 

6. Simulated cases studied 

First case:  
To test the suggested method, we consider the structure of Fig. 1. Meshez 

with into 70 finite elements and 120 degrees of freedom, with E=2.1⋅1011N/m2 
and ρ =7800kg/m3. The simulating model of the structure is built by introducing 
simultaneous defects of +40% and -30% of the stiffness respectively in elements 
24 and 59 with -20% and +15% of the mass, respectively in elements 14 and 69, 
by adding 5% of random noise. Measurements are taken according to degrees of 
freedom 94, 95, 97, 98, 100, 101, 103, 104, 106, 107, 109, 110, 112, 113, 115, 
116, 118 and 119 of the structure (which are the displacement of nodes 35 to 43 in 
Fig. 1.).  

 
Fig. 1. Simulated test structure 
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Fig. 2. Mass updating results obtained 

 
Solid vertical line denotes detected mass modelling error. We can see on 

the defect ratio in Fig. 2. that the introduced errors in the 14th and 69th elements 
have been detected and quantified close to -0.2 and 0.15 respectively. Other not 
perturbed elements like 5, 11, 25, 32, 33, 37, 45, and 56 are also updated.  

We can see in the defect ratio in Fig. 3. that the introduced stiffness errors 
in elements 24 and 59 are detected and well quantified respectively 0.4 and -0.3. 
Some other elements are also considered to be corrected like 10, 17, 37, 45 and 
61.  

The obtained results represented in Figs. 2. and 3. show that the simulated 
defects are localized and quantified. Some other element are lightly updated, this 
is because these elements are geometrically close to the damaged elements, and 
probably because of the measurement noise. 

 
Fig. 3. Stiffness updating results obtained 

Second case: 

In this second example the suggested method is used to detect damages. 
We consider the structure represented in Fig. 4.  
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Fig. 4. Simulated damaged structure 

 
 This is discretized into 30 finite elements and 39 degrees of freedom. The 
simulating model of the structure is built by introducing damages 40%, 25%, and 
30% of the stiffness respectively in elements 4, 13 and 26, adding 5% of random 
noise. Measurements are taken according to degrees of freedom 7, 8, 13, 14, 16, 
17, 22, 23, 25, 26, 31 and 32 (which are the displacement of nodes 4, 6, 7, 9, 10 
and 12 in Fig. 4.). 

 
Fig. 5. Detected damages 

 
 Fig. 5. shows that introduced damages in elements 4, 13 and 26 are 
localized and well quantified. 
 In this work, a correlation is made using the Modal Assurance Criterion 
(MAC). Fig. 6. and Fig. 7. represent respectively the correlation before and after 
using the damage detection algorithm. This shows a bad correlation of the initial 
finite elements model. In fact from the 19th mode to the 35th, MAC diagonal 
values are less than 1 in Fig. 6. 
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Fig. 6. MAC correlation before using                Fig. 7. MAC correlation after using 
the damage detection algorithm   MAC correlation after using the damage  
      detection algorithm 

 
 After application of the proposed algorithm, the diagonal values of the 
MAC (Fig. 7.) are all close to 1. This shows that the corrected finite elements 
model is well correlated. 
 Finally this second example highlights the performance of the method to 
detect damages in structures.  

7. Conclusion 

A damage detection method in mechanical structures based on the 
correlation function MFAC (Modal FRF Assurance Criterion) is proposed. This 
uses the inverse technique by updating the finite element model. This method is 
expensive from the point of view of calculation but a numerical stability is 
acquired since it considers in the derivative only the eigen modes.  

The tests carried out on a simulated truss structure shows very interesting 
qualities of detection and correction in term of quantification and localization. The 
correlation function and the optimization algorithm used show good 
characteristics of stability and convergence. The updating method thus obtained 
will find its application in detection of damage and modelling errors, as for the 
validation of finite elements models. It allows also the structural health 
monitoring of large mechanical structures. 
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