
U.P.B. Sci. Bull., Series C, Vol. 84, Iss. 2, 2022 ISSN 2286-3540

LOAD BALANCING TECHNIQUES FOR FOG COMPUTING

INTEGRATED TO D2D NETWORKS

Mustafa Khaleel HAMADANI1, Eugen BORCOCI 2

Device-to-Device (D2D) communication and Fog Computing (FC) are two

emerging paradigms proposed to overcome the increased data traffic. D2D allows a

direct connection between users in proximity without the involvement of the Base

Station. FC brings the cloud resources close to the users to reduce the

communication latency and increase computing efficiency. This work addresses the

load balancing issue in FC, and two algorithms are proposed; First Come First

Served and Max-Min. The simulation results show that the Max-Min performs better

than the FCFS in terms of the maximum completion time of all computing nodes,

Execution Time, and Throughput.

Keywords: D2D, Fog, Cloud, FCFS, Max-Min, Makespan.

1. Introduction

The high development of mobile communication technology is a reality.

Today, billions of different devices (e.g., mobile devices, autonomous vehicles,

sensors, IoT, and others) with various applications such as video streaming,

vehicular applications, social networks, mobile terminal applications, and many

others are available on top of the internet. Subsequently, a tremendous amount of

data are generated and has to be processed while needing vast computing capacity,

while some of them having low latency constraints. However, mobile devices

have limited computation capacity and battery life. To address the computation

issue, there are several options, such as cloud computing, edge, and fog

computing.

Cloud computing provides virtually unlimited computation resources (i.e.,

processing power) and storage capabilities offered too many remote devices (e.g.,

mobile devices). However, the location of the centralized cloud servers located far

away from the end-users results in a high transmission latency, which can affect

the performance of the services provided to end-users [1].

Fog computing (FC) has emerged as a promising paradigm to overcome

the computation and latency issues mentioned above [2]. Fog computing extended

the cloud computing resources (e.g., computation and storage) close to the edge of

the network [3]. Fog computing is deployed as a set of servers with limited

1 PhD student, University POLITEHNICA of Bucharest, Romania, e-mail:

mkhaleel190@gmail.com
2 Prof., University POLITEHNICA of Bucharest, Romania, e-mail: eugen.borcoci@elcom.pub.ro

292 Mustafa Khaleel Hamadani, Eugen Borcoci

capabilities (e.g., CPU); these servers are installed at appropriate locations and

provide computing resource with lower delay in comparison to remote cloud

servers [4].

Device-to-Device (D2D) communication is defined as the direct

connection between devices in proximity of each other, without the involvement

of wireless infrastructure nodes (e.g., Base Station or Access Point). D2D

communication provides a lower communication latency between devices located

in the proximity of each other; therefore, D2D is considered a key enabler for

future wireless communication (e.g., in 5G technology) [5]. Examples of main

use-cases of D2D, such as sharing video content, online gaming, caching and

others, are described in [6]. Also, D2D is a powerful solution to serve vehicle-to-

vehicle (V2V) communications.

In D2D communication, the participants could be grouped into D2D

clusters (e.g., sharing similar content such as online games). Each D2D cluster has

a cluster head (CH) that communicates directly with nodes belonging to the

wireless infrastructure. The cluster head election procedure is out of the scope of

this work.

Traditionally, each D2D cluster generates service tasks (e.g., asking for

processing) that will be offloaded to the remote cloud servers. However, the

transmission latency is high, due to the remote location of the cloud servers; this

will affect the Quality of Experience (QoE) observed by the end-users. Hence,

offloading the service tasks to closer fog serves for processing, will reduce the

average computation time and improve the overall network performance.

The main contributions of this work are:

• The D2D Service task has been modeled via the expected time to

compute (ETC) model and definition of the main objectives.

• Two Tasks offloading techniques are proposed to achieve load

balancing in the fog computing nodes.

• Conduct a simulation experiment for task offloading techniques

under several performance metrics.

The paper structure is the following: The studying and

analysis of previous works are given in Section 2. Section 3 describes the

proposed system model. The problem formulation is provided in Section 4. The

tasks scheduling techniques description is contained in Section 5. The simulation

experiment results are provided in Section 6. The conclusion and a few directions

for the future work are given in Section 7.

2. Related Works

In recent years, researchers carried out research on the load balancing

problem in cloud computing technologies. A few research works covered an

Load balancing techniques for fog computing integrated to D2D networks 293

SDN-based load balancing issue in fog computing. Authors in [7] proposed a low-

latency hybrid cloud-fog network architecture for medical big data, the main

objective to optimize the processing delay for in business environment and hence,

reducing the computing load. The fog computing is deployed at the hospital at

network equipment such as routers and switches. The authors applied the Bat

algorithm to solve the optimization problem in medical big data scenarios. The

limitation of their work-oriented to medical applications and no centralized

approach (i.e., SDN) considered in the work. A Hill Climbing Load Balancing

(HCLB) technique proposed in [8], the proposed technique optimize Response

Time (RT) of the requests and minimizes the processing time as a metric for load

balancing techniques in the network. Their work is oriented to Micro Grids (MG)

network. the centralised approach (i.e., SDN) does not consider in their proposed

technique. The work in [9] proposed a simple Tabu Search method for optimal

load balancing between cloud and fog nodes under resource constraints. Their

simulation results improved memory usage and minimized computational costs.

Another work related to the optimal service placement issue with considering the

application load distribution in edge computing environment proposed in [10].

The proposed technique trade-off between the minimization service request

deadline and the service migrations. Similar to the above works, the centralised

approach does not adapt in their work. Finally, a comparison between load

balancing algorithms proposed in literature such as Round Robin (RR), Throttled,

Particle Swarm Optimization (PSO) and Active VM Load Balancing Algorithm

(AVMLB) provided in [11]. The simulation results show that The AVMLB

outperforms all mentioned.

After studying and analysing the previous research works and additionally

based works in [12] and [13], we proposed the SDN-based load balancing for Fog

nodes oriented to the Device-to-Device network. the proposed techniques based

on dynamic centralised load balancing approach, when the SDN controllers

responsible for monitoring and controlling the fog nodes and due to global

network knowledge; two load balancing algorithms running on the top of SDN

architecture to distribute the workload (e.g., video, online games) among the fog

nodes. The objective of the intorduced algorithms is to ensure that all fog nodes

approximately handle an equal amount of workload (i.e., all fog nodes equally

balanced). several of performance metrics including a maximum completion time

of all computing nodes, Execution Time, and Throughput.

3. System Model

In this paper it is assumed that the control logic for the edge part of the

overall system is based on Software Defined Networking (SDN) concepts. The

system architecture comprises three types of functional entities (we can call them

294 Mustafa Khaleel Hamadani, Eugen Borcoci

layers): Infrastructure layer (it consists of D2D clusters and Base Stations), Fog

Nodes layer, Control layer, as illustrated in Fig.1. The “SDN controllers” is

actually an architectural control plane. The other entities/layers (Infrastructure,

Fog Nodes, and CRS) contain both data and control functions.

The infrastructure contains the D2D clusters and Base Stations (BS). The

BSs manage the D2D clusters and provide cellular connections to D2D users. The

BSs are connected to the Fog nodes networks via high-speed connections (e.g.,

channels on optical fiber). The D2D clusters will be formed by considering a

special criterion, e.g., based on similar content (e.g., online gaming). Each cluster

has a Cluster Head (CH); however, the Cluster head election procedure is out of

the scope of this work. The CH is responsible for offloading computation-

intensive tasks to the fog nodes network through a BS. After processing, it

distributes the computation results received from Fog nodes, among the cluster

members.

Fig. 1 The System Architecture

The Fog nodes (FN) layer consists of several nodes that provide fog

services (e.g., computation and storage) to the D2D clusters. Futher, a single D2D

cluster can be connected to one Fog node via the the Base Station. The FNs are

connected to elements of the above layers (i.e., SDN controllers and Cloud

Servers), as shown in Fig.1.

The control plane in this architecture can be based on Software Defined

Networking (SDN) technology. Via OpenFlow control protocol, the fog nodes

receive the behavior rules from SDN controllers. Additionally, information such

as the current load, the number of tasks in processing, and waiting status will be

transferred to the SDN controllers and Cloud Servers in order that the latter can

Load balancing techniques for fog computing integrated to D2D networks 295

achieve global information knowledge. The represents the communication

latency between the fog nodes and the SDN controllers.

The SDN Control plane consists of several SDN controllers that interact

with the FNs through OpenFlow protocol for setting the rules to control the fog

nodes network. The SDN controller builds a global knowledge view of the

network based on the status information received from the Fog nodes. Hence, an

optimal load balancing strategy could be formulated by the SDN controller based

on the global network view.

Finally, the remote cloud servers (RCS) layer comprises several data

centers that provide almost unlimited computation and storage capabilities to

various applications.

The system architecture shown in Fig.1 could be represented as a weighted

undirected graph , where is the set of nodes and . The

Fog nodes set is represented as , …, }; represent the SDN controllers

where , and is cloud remote servers set where

. represents the set of edges between two nodes and

 denotes the link between two nodes and .

Each fog node consists of Virtual Machines (VM); The set of VMs is denoted

by , . Each particular virtual machine ()

has limited capability of computing resources such as CPU, memory, and storage

capacity [14]. Each belonging to the set is described by the following

attributes [15]:

(1)

where denotes a unique identifier of the and is the

processing capability of . In the rest of the text the processing capability of

 will be also shortly denoted as

The D2D clusters generate computational service tasks

denoted as { }, and the service tasks are submitted to the fog nodes

network, and no service migration is considered in this work. Each services task

 (Service Tasks) can be described following a model taken from [15]:

(2)

Where,

 is a service task unique identifier of the service tasks .

296 Mustafa Khaleel Hamadani, Eugen Borcoci

 is the size of the service task , stated as a number of requests

per second.

The ETC concept introduced in [9] is used to describe the service task model for

D2D clusters. The can be represented as a matrix (of execution times) given

that specific task can be assigned to a particular as illustrated in formula (3).

So, the execution times is the expected time to complete a task on as

illustrated in (4).

(3)

where defined the expected time to compute a task on .

The could be calculated as follow:

(4)

In matrix, the row i indicates a specific service task () and the

column k represent a specific virtual machine For example,

expressed the required time to complete a task on , expressed the

required time to complete a task on , and so on.

The purpose of this work is to find an optimal mapping of service tasks to

 such that the workload is approximately equal among all the nodes; thus,

load balancing is achieved.

4. Optimization Problem Formulation

The load balancing problem can be described as finding an optimal

assigning of service task on virtual machine to satisfy one or more objectives;

the most objective studied in the literature is the makespan (), which is defined

as maximum execution time in any node [16]. The execution time () of all

can be determine as in equation (5).

(5)

Load balancing techniques for fog computing integrated to D2D networks 297

Where (Service Tasks, and) and (, and and

), and equal 1 when a service task is allocated to a specific

and otherwise

Hence, the makespan () can be computed as:

(6)

Finally, the load balancing problem for fog computing can be formulated

as:

(7)

Finally, the load balancing problem for fog computing can be described as

is finding an optimal mapping between the service tasks and that minimizes

the maximum execution time (i.e., makespan), as shown in 5. Thus, in the next

section, two tasks scheduling techniques are proposed to solve the (7).

5. Load Balancing Techniques

This section gives an overview of the common scheduling techniques to

solve 7, namely, First Come First Serve (FCFS) and Max-Min algorithms. The

working of these algorithms gives as follow:

• First Come First Served (FCFS) is the simple and basic tasks

scheduling technique in which the tasks that arrived first are

executed first, and the second task has to wait until the execution

of the first tasks is completed [17]. This algorithm has less

complexity than other scheduling techniques. However, FCFS

suffer from high waiting time and does not consider other

characteristics such as tasks priority.

• In the Max-Min technique, the expected completion time of service

tasks is calculated, and the service task that has maximum expected

completion time is chosen and assigned to the corresponding .

The main advantage of Max-Min is efficient resource utilization.

Further, one of the drawbacks of this algorithm is the high waiting

time for tasks with small and medium completion times.

Algorithm 1 The Pseudo code of Max-Min algorithm

Input: number of Service tasks, number of VMs.

298 Mustafa Khaleel Hamadani, Eugen Borcoci

Output: Minimum completion time of service tasks.

Begin

Step 1: Add the Serive tasks to a list.

Step 2: Comput the completion time for each service tasks.

Step 3: Assgin a service task with maximum completion time to VMs with

minumm competion time.

Step 4: Update the Service tasks list.

Step 5: Repest Step 1 to 4 until all service tasks in the list have been

assigned.

End of the algorithm.

6. Simulation Results

This section performed simulation experiments to study the proposed

algorithms mentioned above; several metrics included the makespan (MS),

resource utilization, and execution time. We considered CloudSim as a simulation

tool [18] for this work. The simulation scenario assumed that the number of D2D

clusters varied from 100 to 1000 (e.g., 100, 200, 300, etc.), and these clusters

generate a service task with a length of about 2500 requests per second.

Moreover, the number of fog nodes is about 10 nodes and each node and the

number of virtual machines varied from 10, 15, and 20. Table 1 shown the

simulation parameters used in this work.
Table 1 Simulation Parameters

Simulation Parameters Description

Number of D2D Clusters 100, 200, 300, and 1000

Number of Fog Nodes 10 Nodes

Virtual Machines 10, 15, 20

Service Tasks Size 2500 request per second

Virtual Machine Process Power 1000

The performance metrics that considered given as follow:

• The Makespan represents the completion of all the service tasks

execution in the system. The smaller value of the makespan is

desirable.

• The Execution Time is the time that taken by the service task to

complete. The lowest value, the better performance of the

algorithm.

• Throughput is defined as the number of service tasks executed

during a unit of time (e.g., second). The higher throughput is also

desirable, and the throughput can be determined as follow:

Load balancing techniques for fog computing integrated to D2D networks 299

(8)

Where represented the number of services tasks.

Fig.2 shown the behavior of FCFS and Max-Min algorithms; the Max-Min

provided a lower value of makespan compared to FCFS. For example, when the

number of D2D clusters equals 500 clusters, the value of makespan equal to 0.02

seconds (Max-Min), and FCFS about 0.03 seconds (FCFS).

Fig. 2 The Makespan for Different D2D Clusters

The Max-Min provides a lower service task execution time, where FCFS

has higher execution, as illustrated in Fig.3. Thus, poor performance of FCFS

technique. For example, where the number of D2D Clusters equals 500; the FCFS

needs about 0.07 seconds to execute a service task where the Max-Min takes

about 0.05 seconds for service task execution.

300 Mustafa Khaleel Hamadani, Eugen Borcoci

Fig. 3 The Execution Time for Different D2D Clusters

As illustrated in Fig.4, the Max-Min perform better than the FCFS

algorithm in term of throughput.

Fig. 4 The Throughput for Different D2D Clusters

Load balancing techniques for fog computing integrated to D2D networks 301

For example, when the number of D2D cluster equal 500, the value of

throughput equal to 20 services per second, and in case of FCFS; the throughput

equal 14 tasks per second

7. Conclusion and Future Work

In this work, we have studied various load balancing techniques for fog

computing. From the simulation results, we observed that overall the Max-Min

algorithm performs better than the FCFS algorithm. As we notice from Fig.2, the

Max-Min provides a lower makespan value; when the number of D2D clusters is

equal to 500, the value of makespan with Max-Min algorithm is equal to 0.02

seconds where the FCFS gives the makespan value above 0.03 second.

The FCFS algorithm has poor performance in terms of the execution time,

as has been noticed in Fig.3, where the number of D2D Clusters is equal to 500;

the FCFS executes a service task within 0.07 seconds and in the case of Max-Min,

equal to 0.05 seconds.

The Max-Min algorithm provides higher throughput than the FCFS, as

seen in Fig.4, at 500 D2D clusters; the throughput value is equal to 20 service

tasks in the case of the Max-Min algorithm, and with FCFS, the throughput equal

about 14 service tasks per second. In general, the Max-Min performs better than

the FCFS under mentioned performance metrics. In future work, a meta-heuristic

approach will be considered for load balancing; other performance metrics such as

resource utilization and the degree of Imbalance will be considered in the

algorithm design.

R E F E R E N C E S

[1] A. N. Toosi, R. N. Calheiros, and R. Buyya, “Interconnected cloud computing

environments: Challenges, taxonomy, and survey,” ACM Comput. Surv. CSUR, vol. 47,

no. 1, pp. 1–47, 2014.

[2] D. Wang, Z. Liu, X. Wang, and Y. Lan, “Mobility-aware task offloading and migration

schemes in fog computing networks,” IEEE Access, vol. 7, pp. 43356–43368, 2019.

[3] S. Antonio, “Cisco delivers vision of fog computing to accelerate value from billions of

connected devices,” Cisco San Franc. CA USA, 2014.

[4] L. Liu, Z. Chang, and X. Guo, “Socially aware dynamic computation offloading scheme for

fog computing system with energy harvesting devices,” IEEE Internet Things J., vol. 5, no.

3, pp. 1869–1879, 2018.

[5] U. N. Kar and D. K. Sanyal, “An overview of device-to-device communication in cellular

networks,” ICT Express, vol. 4, no. 4, pp. 203–208, 2018.

[6] S. Jayakumar and S. Nandakumar, “A review on resource allocation techniques in D2D

communication for 5G and B5G technology,” Peer--Peer Netw. Appl., vol. 14, no. 1, pp.

243–269, 2021.

[7] J. Yang, “Low-latency cloud-fog network architecture and its load balancing strategy for

medical big data,” J. Ambient Intell. Humaniz. Comput., pp. 1–10, 2020.

302 Mustafa Khaleel Hamadani, Eugen Borcoci

[8] M. Zahid, N. Javaid, K. Ansar, K. Hassan, M. K. Khan, and M. Waqas, “Hill climbing load

balancing algorithm on fog computing,” in International Conference on P2P, Parallel, Grid,

Cloud and Internet Computing, 2018, pp. 238–251.

[9] N. Téllez, M. Jimeno, A. Salazar, and E. Nino-Ruiz, “A tabu search method for load

balancing in fog computing,” Int J Artif Intell, vol. 16, no. 2, 2018.

[10] A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de Castro, “Dynamic Service

Placement and Load Distribution in Edge Computing,” in 2020 16th International

Conference on Network and Service Management (CNSM), 2020, pp. 1–9.

[11] S. H. Abbasi, N. Javaid, M. H. Ashraf, M. Mehmood, M. Naeem, and M. Rehman, “Load

stabilizing in fog computing environment using load balancing algorithm,” in International

Conference on Broadband and Wireless Computing, Communication and Applications,

2018, pp. 737–750.

[12] C. Shi, Z. Ren, and X. He, “Research on load balancing for software defined cloud-fog

network in real-time mobile face recognition,” in International Conference on

Communicatins and Networking in China, 2016, pp. 121–131.

[13] I. Strumberger, M. Tuba, N. Bacanin, and E. Tuba, “Cloudlet scheduling by hybridized

monarch butterfly optimization algorithm,” J. Sens. Actuator Netw., vol. 8, no. 3, p. 44,

2019.

[14] I. Attiya and X. Zhang, “D-choices scheduling: a randomized load balancing algorithm for

scheduling in the cloud,” J. Comput. Theor. Nanosci., vol. 14, no. 9, pp. 4183–4190, 2017.

[15] I. Strumberger, M. Tuba, N. Bacanin, and E. Tuba, “Cloudlet scheduling by hybridized

monarch butterfly optimization algorithm,” J. Sens. Actuator Netw., vol. 8, no. 3, p. 44,

2019.

[16] B. Sahoo, “Dynamic load balancing strategies in heterogeneous distributed system,” PhD

Thesis, 2013.

[17] I. M. Ibrahim, “Task scheduling algorithms in cloud computing: A review,” Turk. J.

Comput. Math. Educ. TURCOMAT, vol. 12, no. 4, pp. 1041–1053, 2021.

[18] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya, “CloudSim: a

toolkit for modeling and simulation of cloud computing environments and evaluation of

resource provisioning algorithms,” Softw. Pract. Exp., vol. 41, no. 1, pp. 23–50, 2011.

