U.P.B. Sci. Bull., Series C, Vol. 84, Iss. 2, 2022 ISSN 2286-3540

LOAD BALANCING TECHNIQUES FOR FOG COMPUTING
INTEGRATED TO D2D NETWORKS

Mustafa Khaleel HAMADANI!, Eugen BORCOCI ?

Device-to-Device (D2D) communication and Fog Computing (FC) are two
emerging paradigms proposed to overcome the increased data traffic. D2D allows a
direct connection between users in proximity without the involvement of the Base
Station. FC brings the cloud resources close to the users to reduce the
communication latency and increase computing efficiency. This work addresses the
load balancing issue in FC, and two algorithms are proposed; First Come First
Served and Max-Min. The simulation results show that the Max-Min performs better
than the FCFS in terms of the maximum completion time of all computing nodes,
Execution Time, and Throughput.

Keywords: D2D, Fog, Cloud, FCFS, Max-Min, Makespan.
1. Introduction

The high development of mobile communication technology is a reality.
Today, billions of different devices (e.g., mobile devices, autonomous vehicles,
sensors, loT, and others) with various applications such as video streaming,
vehicular applications, social networks, mobile terminal applications, and many
others are available on top of the internet. Subsequently, a tremendous amount of
data are generated and has to be processed while needing vast computing capacity,
while some of them having low latency constraints. However, mobile devices
have limited computation capacity and battery life. To address the computation
issue, there are several options, such as cloud computing, edge, and fog
computing.

Cloud computing provides virtually unlimited computation resources (i.e.,
processing power) and storage capabilities offered too many remote devices (e.g.,
mobile devices). However, the location of the centralized cloud servers located far
away from the end-users results in a high transmission latency, which can affect
the performance of the services provided to end-users [1].

Fog computing (FC) has emerged as a promising paradigm to overcome
the computation and latency issues mentioned above [2]. Fog computing extended
the cloud computing resources (e.g., computation and storage) close to the edge of
the network [3]. Fog computing is deployed as a set of servers with limited

1 PhD student, University POLITEHNICA of Bucharest, Romania, e-mail:
mkhaleel190@gmail.com
2 Prof., University POLITEHNICA of Bucharest, Romania, e-mail: eugen.borcoci@elcom.pub.ro

292 Mustafa Khaleel Hamadani, Eugen Borcoci

capabilities (e.g., CPU); these servers are installed at appropriate locations and
provide computing resource with lower delay in comparison to remote cloud
servers [4].

Device-to-Device (D2D) communication is defined as the direct
connection between devices in proximity of each other, without the involvement
of wireless infrastructure nodes (e.g., Base Station or Access Point). D2D
communication provides a lower communication latency between devices located
in the proximity of each other; therefore, D2D is considered a key enabler for
future wireless communication (e.g., in 5G technology) [5]. Examples of main
use-cases of D2D, such as sharing video content, online gaming, caching and
others, are described in [6]. Also, D2D is a powerful solution to serve vehicle-to-
vehicle (V2V) communications.

In D2D communication, the participants could be grouped into D2D
clusters (e.g., sharing similar content such as online games). Each D2D cluster has
a cluster head (CH) that communicates directly with nodes belonging to the
wireless infrastructure. The cluster head election procedure is out of the scope of
this work.

Traditionally, each D2D cluster generates service tasks (e.g., asking for
processing) that will be offloaded to the remote cloud servers. However, the
transmission latency is high, due to the remote location of the cloud servers; this
will affect the Quality of Experience (QoE) observed by the end-users. Hence,
offloading the service tasks to closer fog serves for processing, will reduce the
average computation time and improve the overall network performance.

The main contributions of this work are:

e The D2D Service task has been modeled via the expected time to
compute (ETC) model and definition of the main objectives.

e Two Tasks offloading techniques are proposed to achieve load
balancing in the fog computing nodes.

e Conduct a simulation experiment for task offloading techniques
under several performance metrics.

The paper structure is the following: The studying and
analysis of previous works are given in Section 2. Section 3 describes the
proposed system model. The problem formulation is provided in Section 4. The
tasks scheduling techniques description is contained in Section 5. The simulation
experiment results are provided in Section 6. The conclusion and a few directions
for the future work are given in Section 7.

2. Related Works

In recent years, researchers carried out research on the load balancing
problem in cloud computing technologies. A few research works covered an

Load balancing techniques for fog computing integrated to D2D networks 293

SDN-based load balancing issue in fog computing. Authors in [7] proposed a low-
latency hybrid cloud-fog network architecture for medical big data, the main
objective to optimize the processing delay for in business environment and hence,
reducing the computing load. The fog computing is deployed at the hospital at
network equipment such as routers and switches. The authors applied the Bat
algorithm to solve the optimization problem in medical big data scenarios. The
limitation of their work-oriented to medical applications and no centralized
approach (i.e., SDN) considered in the work. A Hill Climbing Load Balancing
(HCLB) technique proposed in [8], the proposed technique optimize Response
Time (RT) of the requests and minimizes the processing time as a metric for load
balancing techniques in the network. Their work is oriented to Micro Grids (MG)
network. the centralised approach (i.e., SDN) does not consider in their proposed
technique. The work in [9] proposed a simple Tabu Search method for optimal
load balancing between cloud and fog nodes under resource constraints. Their
simulation results improved memory usage and minimized computational costs.
Another work related to the optimal service placement issue with considering the
application load distribution in edge computing environment proposed in [10].
The proposed technique trade-off between the minimization service request
deadline and the service migrations. Similar to the above works, the centralised
approach does not adapt in their work. Finally, a comparison between load
balancing algorithms proposed in literature such as Round Robin (RR), Throttled,
Particle Swarm Optimization (PSO) and Active VM Load Balancing Algorithm
(AVMLB) provided in [11]. The simulation results show that The AVMLB
outperforms all mentioned.

After studying and analysing the previous research works and additionally
based works in [12] and [13], we proposed the SDN-based load balancing for Fog
nodes oriented to the Device-to-Device network. the proposed techniques based
on dynamic centralised load balancing approach, when the SDN controllers
responsible for monitoring and controlling the fog nodes and due to global
network knowledge; two load balancing algorithms running on the top of SDN
architecture to distribute the workload (e.g., video, online games) among the fog
nodes. The objective of the intorduced algorithms is to ensure that all fog nodes
approximately handle an equal amount of workload (i.e., all fog nodes equally
balanced). several of performance metrics including a maximum completion time
of all computing nodes, Execution Time, and Throughput.

3. System Model

In this paper it is assumed that the control logic for the edge part of the
overall system is based on Software Defined Networking (SDN) concepts. The
system architecture comprises three types of functional entities (we can call them

294 Mustafa Khaleel Hamadani, Eugen Borcoci

layers): Infrastructure layer (it consists of D2D clusters and Base Stations), Fog
Nodes layer, Control layer, as illustrated in Fig.1. The “SDN controllers” is
actually an architectural control plane. The other entities/layers (Infrastructure,
Fog Nodes, and CRS) contain both data and control functions.

The infrastructure contains the D2D clusters and Base Stations (BS). The
BSs manage the D2D clusters and provide cellular connections to D2D users. The
BSs are connected to the Fog nodes networks via high-speed connections (e.g.,
channels on optical fiber). The D2D clusters will be formed by considering a
special criterion, e.g., based on similar content (e.g., online gaming). Each cluster
has a Cluster Head (CH); however, the Cluster head election procedure is out of
the scope of this work. The CH is responsible for offloading computation-
intensive tasks to the fog nodes network through a BS. After processing, it
distributes the computation results received from Fog nodes, among the cluster
members.

Cloud Servers
Control Traffic \

N S N N O
o Data Traffic N ’

e

/ SDN Controllers \

/

(%)

Control Layer

Fog Nodes Layer

Infrastructure Layer

\ /\—(—J%(_/

00 B0 |

U f‘ D20 Cluster
Fig. 1 The System Architecture

The Fog nodes (FN) layer consists of several nodes that provide fog
services (e.g., computation and storage) to the D2D clusters. Futher, a single D2D
cluster can be connected to one Fog node via the the Base Station. The FNs are
connected to elements of the above layers (i.e., SDN controllers and Cloud
Servers), as shown in Fig.1.

The control plane in this architecture can be based on Software Defined
Networking (SDN) technology. Via OpenFlow control protocol, the fog nodes
receive the behavior rules from SDN controllers. Additionally, information such
as the current load, the number of tasks in processing, and waiting status will be
transferred to the SDN controllers and Cloud Servers in order that the latter can

Load balancing techniques for fog computing integrated to D2D networks 295

achieve global information knowledge. The &, . represents the communication
latency between the fog nodes and the SDN controllers.

The SDN Control plane consists of several SDN controllers that interact
with the FNs through OpenFlow protocol for setting the rules to control the fog
nodes network. The SDN controller builds a global knowledge view of the
network based on the status information received from the Fog nodes. Hence, an
optimal load balancing strategy could be formulated by the SDN controller based
on the global network view.

Finally, the remote cloud servers (RCS) layer comprises several data
centers that provide almost unlimited computation and storage capabilities to
various applications.

The system architecture shown in Fig.1 could be represented as a weighted
undirected graph G = (V, E), where V is the set of nodes and V = {F,5,C}. The
Fog nodes set is represented as F = { fi, ..., f.n }; S represent the SDN controllers
where 5 = {sy,s;,..,5;}, and C is cloud remote servers set where
€ ={cy s uc.}. E = {e,,} represents the set of edges between two nodes and
e, denotes the link between two nodes a and b.

Each fog node consists of n Virtual Machines (VM); The set of VMs is denoted
by N = {VM,, VM,, ...,VM,}. Each particular virtual machine VM, (VM, € N)
has limited capability of computing resources such as CPU, memory, and storage
capacity [14]. Each VM, belonging to the set is described by the following
attributes [15]:

VM!, — {L!Mr'{d ’VMFJ"’IIPS } (l)

where VM,"® denotes a unique identifier of the VM, and Va1, ™ is the

processing capability of VM,,. In the rest of the text the processing capability of
VM, will be also shortly denoted as F..

The D2D clusters {D,,D,,...,D;} generate computational service tasks
denoted as {4.4,,....4;}, and the service tasks are submitted to the fog nodes
network, and no service migration is considered in this work. Each services task
Ay (A € Service Tasks) can be described following a model taken from [15]:

‘;Lk — {Akfdrlklangrh } 2)

Where,
2,'® is a service task unique identifier of the service tasks 4.

296 Mustafa Khaleel Hamadani, Eugen Borcoci

1,159 is the size of the service task 4,, stated as a number of requests
per second.
The ETC concept introduced in [9] is used to describe the service task model for
D2D clusters. The ETC can be represented as a matrix (of execution times) given
that specific task can be assigned to a particular VM as illustrated in formula (3).
So, the execution times is the expected time to complete a task 4, on VM, as
illustrated in (4).

ETCyy ETCy; - ETCyy
ETCyy ETC,, - ETCyy,

ETC = |ETC3, ETC3y - ETCay @)
ETCR.J. ETCR.: e ETCE'_.W

where ETC, , defined the expected time to compute a task 4, on VM,
The ETC,,,, could be calculated as follow:

Length

P,

(4)

ETCy, =

In ETC matrix, the row i indicates a specific service task (4;) and the
column k represent a specific virtual machine VM,. For example, ETC,,
expressed the required time to complete a task 4, on VM,, ETC,, expressed the
required time to complete a task A, on VM, , and so on.

The purpose of this work is to find an optimal mapping of service tasks to
VM s such that the workload is approximately equal among all the nodes; thus,
load balancing is achieved.

4. Optimization Problem Formulation

The load balancing problem can be described as finding an optimal
assigning of service task k on virtual machine v to satisfy one or more objectives;
the most objective studied in the literature is the makespan (M5), which is defined
as maximum execution time in any node [16]. The execution time (ET) of all VM
can be determine as in equation (5).

i W
ETiw = szm, ETCys ()
E=1lv=1

Load balancing techniques for fog computing integrated to D2D networks 297

Where (k € Service Tasks, and 1< k<1i) and (v €w, and and
1<wv<w) and x,., equal 1 when a service task is allocated to a specific VM
and otherwise x, , = 0.

Hence, the makespan (MS) can be computed as:

MS = maximum (ETy,) Q)

Finally, the load balancing problem for fog computing can be formulated
as:

minimize (MS5) (7

Finally, the load balancing problem for fog computing can be described as
is finding an optimal mapping between the service tasks and VM s that minimizes
the maximum execution time (i.e., makespan), as shown in 5. Thus, in the next
section, two tasks scheduling techniques are proposed to solve the (7).

5. Load Balancing Techniques

This section gives an overview of the common scheduling techniques to
solve 7, namely, First Come First Serve (FCFS) and Max-Min algorithms. The
working of these algorithms gives as follow:

e First Come First Served (FCFS) is the simple and basic tasks
scheduling technique in which the tasks that arrived first are
executed first, and the second task has to wait until the execution
of the first tasks is completed [17]. This algorithm has less
complexity than other scheduling techniques. However, FCFS
suffer from high waiting time and does not consider other
characteristics such as tasks priority.

¢ In the Max-Min technique, the expected completion time of service
tasks is calculated, and the service task that has maximum expected
completion time is chosen and assigned to the corresponding VM.
The main advantage of Max-Min is efficient resource utilization.
Further, one of the drawbacks of this algorithm is the high waiting
time for tasks with small and medium completion times.

Algorithm 1 The Pseudo code of Max-Min algorithm

Input: number of Service tasks, number of VMs.

298 Mustafa Khaleel Hamadani, Eugen Borcoci

Output: Minimum completion time of service tasks.

Begin
Step 1: Add the Serive tasks to a list.
Step 2: Comput the completion time for each service tasks.
Step 3: Assgin a service task with maximum completion time to VMs with
minumm competion time.
Step 4: Update the Service tasks list.
Step 5: Repest Step 1 to 4 until all service tasks in the list have been
assigned.
End of the algorithm.

6. Simulation Results

This section performed simulation experiments to study the proposed
algorithms mentioned above; several metrics included the makespan (MS),
resource utilization, and execution time. We considered CloudSim as a simulation
tool [18] for this work. The simulation scenario assumed that the number of D2D
clusters varied from 100 to 1000 (e.g., 100, 200, 300, etc.), and these clusters
generate a service task with a length of about 2500 requests per second.
Moreover, the number of fog nodes is about 10 nodes and each node and the
number of virtual machines varied from 10, 15, and 20. Table 1 shown the

simulation parameters used in this work.
Table 1 Simulation Parameters

Simulation Parameters Description
Number of D2D Clusters 100, 200, 300, and 1000
Number of Fog Nodes 10 Nodes
Virtual Machines 10, 15, 20
Service Tasks Size 2500 request per second
Virtual Machine Process Power 1000 MIFS

The performance metrics that considered given as follow:

e The Makespan represents the completion of all the service tasks
execution in the system. The smaller value of the makespan is
desirable.

e The Execution Time is the time that taken by the service task to
complete. The lowest value, the better performance of the
algorithm.

e Throughput is defined as the number of service tasks executed
during a unit of time (e.g., second). The higher throughput is also
desirable, and the throughput can be determined as follow:

Load balancing techniques for fog computing integrated to D2D networks 299

i
Throughput = ——— ®)
makespan

Where i represented the number of services tasks.

Fig.2 shown the behavior of FCFS and Max-Min algorithms; the Max-Min
provided a lower value of makespan compared to FCFS. For example, when the
number of D2D clusters equals 500 clusters, the value of makespan equal to 0.02
seconds (Max-Min), and FCFS about 0.03 seconds (FCFS).

014 The MakeSpan Time (Differenet D2D Clusters)
. T T T T

=== FCFS-MS
il MaxMin-MS

0.12

=4 o

o =} e

D I+ Y
T T

The MakeSpan in Second

o
o
5

0.02

1 | 1 1
100 200 300 400 500 600 700 800 900 1000
The Density of D2D Clusters

Fig. 2 The Makespan for Different D2D Clusters

The Max-Min provides a lower service task execution time, where FCFS
has higher execution, as illustrated in Fig.3. Thus, poor performance of FCFS
technique. For example, where the number of D2D Clusters equals 500; the FCFS
needs about 0.07 seconds to execute a service task where the Max-Min takes
about 0.05 seconds for service task execution.

300 Mustafa Khaleel Hamadani, Eugen Borcoci

The Execution Time (Differenet D2D Clusters)
T T T T

0.14 T T

T
=== FCFS-Execution Time
el [axMin-Execution Time

The Execution Time in Second

100 200 300 400 500 600 700 800 900 1000
The Density of D2D Clusters

Fig. 3 The Execution Time for Different D2D Clusters

As illustrated in Fig.4, the Max-Min perform better than the FCFS
algorithm in term of throughput.

5 The Throughput (Differenet D2D Clusters)
T T T

T T T T
=== FCFS-Throughput
= \axMin-Throughput

30

L]
el

Throughput (The Service Tasks/Second)
& 8
T

o
T

5 L 1 1 L 1
100 200 300 400 500 600 700 800 900 1000
The Density of D2D Clusters

Fig. 4 The Throughput for Different D2D Clusters

Load balancing techniques for fog computing integrated to D2D networks 301

For example, when the number of D2D cluster equal 500, the value of
throughput equal to 20 services per second, and in case of FCFS; the throughput
equal 14 tasks per second

7. Conclusion and Future Work

In this work, we have studied various load balancing techniques for fog
computing. From the simulation results, we observed that overall the Max-Min
algorithm performs better than the FCFS algorithm. As we notice from Fig.2, the
Max-Min provides a lower makespan value; when the number of D2D clusters is
equal to 500, the value of makespan with Max-Min algorithm is equal to 0.02
seconds where the FCFS gives the makespan value above 0.03 second.

The FCFS algorithm has poor performance in terms of the execution time,
as has been noticed in Fig.3, where the number of D2D Clusters is equal to 500;
the FCFS executes a service task within 0.07 seconds and in the case of Max-Min,
equal to 0.05 seconds.

The Max-Min algorithm provides higher throughput than the FCFS, as
seen in Fig.4, at 500 D2D clusters; the throughput value is equal to 20 service
tasks in the case of the Max-Min algorithm, and with FCFS, the throughput equal
about 14 service tasks per second. In general, the Max-Min performs better than
the FCFS under mentioned performance metrics. In future work, a meta-heuristic
approach will be considered for load balancing; other performance metrics such as
resource utilization and the degree of Imbalance will be considered in the
algorithm design.

REFERENCES

[1] A. N. Toosi, R. N. Calheiros, and R. Buyya, “Interconnected cloud computing
environments: Challenges, taxonomy, and survey,” ACM Comput. Surv. CSUR, vol. 47,
no. 1, pp. 1-47, 2014.

[2] D. Wang, Z. Liu, X. Wang, and Y. Lan, “Mobility-aware task offloading and migration
schemes in fog computing networks,” IEEE Access, vol. 7, pp. 43356-43368, 2019.

[3] S. Antonio, “Cisco delivers vision of fog computing to accelerate value from billions of
connected devices,” Cisco San Franc. CA USA, 2014.

[4] L. Liu, Z. Chang, and X. Guo, “Socially aware dynamic computation offloading scheme for
fog computing system with energy harvesting devices,” IEEE Internet Things J., vol. 5, no.
3, pp- 1869-1879, 2018.

[5] U. N. Kar and D. K. Sanyal, “An overview of device-to-device communication in cellular
networks,” ICT Express, vol. 4, no. 4, pp. 203-208, 2018.

[6] S. Jayakumar and S. Nandakumar, “A review on resource allocation techniques in D2D
communication for 5G and B5G technology,” Peer--Peer Netw. Appl., vol. 14, no. 1, pp.
243-269, 2021.

[71 J. Yang, “Low-latency cloud-fog network architecture and its load balancing strategy for
medical big data,” J. Ambient Intell. Humaniz. Comput., pp. 1-10, 2020.

302

Mustafa Khaleel Hamadani, Eugen Borcoci

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

M. Zahid, N. Javaid, K. Ansar, K. Hassan, M. K. Khan, and M. Wagqas, “Hill climbing load
balancing algorithm on fog computing,” in International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing, 2018, pp. 238-251.

N. Téllez, M. Jimeno, A. Salazar, and E. Nino-Ruiz, “A tabu search method for load
balancing in fog computing,” Int J Artif Intell, vol. 16, no. 2, 2018.

A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de Castro, “Dynamic Service
Placement and Load Distribution in Edge Computing,” in 2020 16th International
Conference on Network and Service Management (CNSM), 2020, pp. 1-9.

S. H. Abbasi, N. Javaid, M. H. Ashraf, M. Mehmood, M. Naeem, and M. Rehman, “Load
stabilizing in fog computing environment using load balancing algorithm,” in International
Conference on Broadband and Wireless Computing, Communication and Applications,
2018, pp. 737-750.

C. Shi, Z. Ren, and X. He, “Research on load balancing for software defined cloud-fog
network in real-time mobile face recognition,” in International Conference on
Communicatins and Networking in China, 2016, pp. 121-131.

|. Strumberger, M. Tuba, N. Bacanin, and E. Tuba, “Cloudlet scheduling by hybridized
monarch butterfly optimization algorithm,” J. Sens. Actuator Netw., vol. 8, no. 3, p. 44,
20109.

I. Attiya and X. Zhang, “D-choices scheduling: a randomized load balancing algorithm for
scheduling in the cloud,” J. Comput. Theor. Nanosci., vol. 14, no. 9, pp. 4183-4190, 2017.
I. Strumberger, M. Tuba, N. Bacanin, and E. Tuba, “Cloudlet scheduling by hybridized
monarch butterfly optimization algorithm,” J. Sens. Actuator Netw., vol. 8, no. 3, p. 44,
2019.

B. Sahoo, “Dynamic load balancing strategies in heterogeneous distributed system,” PhD
Thesis, 2013.

I. M. Ibrahim, “Task scheduling algorithms in cloud computing: A review,” Turk. J.
Comput. Math. Educ. TURCOMAT, vol. 12, no. 4, pp. 1041-1053, 2021.

R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya, “CloudSim: a
toolkit for modeling and simulation of cloud computing environments and evaluation of
resource provisioning algorithms,” Softw. Pract. Exp., vol. 41, no. 1, pp. 23-50, 2011.

