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THE PROBLEM OF TIME IN SPECIFYING INPUT DATA
FOR THE CORRELATION LAYER FROM THE MODEL OF
EMERGENCY WARNING SYSTEMS

Nicolae-Dorel CONSTANTINESCU!

Aceast articol trateaza problema marcajului temporal al alertelor in
sistemele de avertizare pentru situatii de urgentd. Pentru o bund corelare, trebuie sa
se cunoascd corect informatia temporald a alertelor. O serie de tehnici sunt
considerate si se prezintd o solutie bazata pe implementarea stampilelor de timp
Lamport, in concordanta cu standardele de alertare existente.

This article addresses the issue of temporal markup of the alerts in the
Emergency Warning Systems. For a correct correlation, must know the accurate
time information of alerts. A number of techniques are considered and a solution is
presented, based on the implementation of Lamport timestamps, in accordance with
existing alerting standards.

Keywords: alerting, warning, alerting systems, warning systems, order, time,
Lamport, emergerncy warning systems (EWS)

1. Introduction

The problem of time is perhaps the most complex problem that the human
thinking tries to comprehend and to solve. It is being studied by many disciplines
in the field of knowledge, from the humanistic sciences, like philosophy,
continuing with the natural sciences, like physics, and ending with today's areas of
technological development, such as computer science.

Recently defined as "a persistently stubborn illusion" (Einstein) or "an
abstraction at which we arrive through the changes of things" (Mach), so as a
measure of change, has been shown that the concept of time makes sense only
when intrinsically linked with the notion of space. Contemporary technological
advances, such as launching GPS satellites on orbit, validated in practice the
theoretical discoveries made by Einstein in the early 1900s. However, it’s a hard
challenge for current thinking, which is the one according to, today’s systems
were and are still being designed, not to rely on the human perception of time,
closer to what Isaac Newton postulated in 1689 (and subsequent proved
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incorrect), namely the absolute time, true and mathematical, of itself and from its
own nature, flowing equably without relation to anything external.

In a previous paper we introduced, in the model of Emergency Warning
Systems (EWS), the so-called Correlation Layer [1]. The correlation may take
place within a system, at the sensor network level, or in the aggregate of warning
systems, so that they can synchronize alerts and create prerequisites for the
seamless functioning as a system of warning systems. Contributions of this article
are the motivation of study along with the specific formulation for the problem of
time of alerts in EWS, the evaluation of different ways to solve the problem, the
proposal to complement the standards for emergency warning with a logical clock
element and the implementation of an effective software solution. This article is
further organized as follows: in section 2 considerations about related work are
given, in section 3 the temporal dimension of alerts in warning systems is
outlined, paragraph 4 presents a number of approaches to the problem of time in
distributed systems and extracts a solution for alerting systems for emergency,
paragraph 5 briefly describes the application implemented, in paragraph 6 a test
for the application, on an alerting scenario, is made, paragraph 7 presents the
matrixClock element proposed for inclusion in alerting standards and paragraph 8
draws the conclusions and outlines the ways to go forward.

2. Related work

Time is a decisive issue in case of emergencies, so the problem of time
naturally arises in the study of EWS. Besides, time and timing are important in
any computer system and, more so, in any distributed system, and EWS includes
features of both mentioned systems. Problems like congestion, communication
links failure, human response or other difficult conditions bring technical
challenges for systems used in emergency management. On one hand,
considerations regarding time may refer to the available warning time provided by
warning systems. That time window depends on the dynamics of events [2] and
gives people the change to take preventive actions. For example, the warning time
that can be obtained by an earthquake warning system in Bucharest is 25-30 s
maximum [3]. At the other end there are warning systems for slow-onset events,
such as global warming, where several years are available to take preventive
actions. On the other hand, time, as well as place of occurrence represents basic
information about emergency events, so it has to be manipulated in a suitable
manner, by distributed, real-time and geographical (GIS) systems and databases.
In [4], valuable considerations about real time databases, including scheduling,
resource reservation or data consistency issues are given. The dynamic of events
is considered in [5], in context of geographical information systems, emphasising
on real-time data, as it enable emergency operators to accurately act in
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emergencies. Providing solutions for the problem of time in EWS is somehow a
new challenge and we base our work on knowledge of distributed systems, a field
well covered with rich literature, for example [6].

3. The order and time of the events in the correlation process context

In order to perform its tasks, the correlation system must, among others,
know the correct order of events. When an event detected by a sensor X happens
before another event detected by a sensor Y, it is necessary that time signatures
for the corresponding alert messages, which are sent to the correlation system, to
reflect that order. Because the system where messages are exchanged is a
distributed one, where messages originate from various sources, a new problem
that arises it to correctly establish the temporal precedence of events. It is possible
for a sensor X to associate an event A a timestamp later than the one that a sensor
Y associates to another event B, however the event A to occur before event B
(perhaps simply because the clock of X is later than the clock of Y). Among the
obvious solutions, one can state synchronization with precise time servers and the
use of the time moment immediately before the emission of alert, as reference
time. But let’s not forget that in discussion here are emergencies, when problems
like delay, delay variation or network congestion must be paid attention. It can
happen for some messages to arrive late, others to arrive out-of-order and others
to not arrive at all, which would cause real problems for the correlation phase.
Time problem in distributed systems is not new and has been intensively studied.
Regarding warning systems for emergencies and, in particular, the correlation of
alerts, certain issues should be taken into account before attempting to formulate a
solution. Thus, for the correlation process it is less important to know the standard
time an event occurred, but of major importance is the order of events’
occurrence. The correlation process, implicitly the ordering of events, should also
perform in situations of network congestion, involving a minimum required
communication resources, especially in critical moments. At the same time, the
idea of a central time server does not seem very good, having in mind its
availability and integrity during the crisis.

4. The problem of finding the time of alerts in emergency warning
systems

4.1 General context of the time problem

The problem of determining the time of the alerts in warning systems for
emergencies is an application or a particular case of the problem of determining
the time in distributed systems.

The first issue that needs to be discussed is on the nature of clocks used.
Thus, a boundary line is given by the choice between using physical clocks and
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using logical clocks. Physical clocks are the ones well known (with further
improvements), which measure the Newtonian time, and logical clocks,
introduced by Lamport, are numbers related to events taking place in various
processes of the system, where the numbers are interpreted as moments in which
the events occurred. More specifically, for every process Pi, a clock Ci is defined,
as a function that associates a number Ci(a) to every event a of that process. If an
event a occurs before another event b, then it must happen at an earlier time then
b. This condition is called The clock condition and formally is written as follows:
if a occurs before b, than: Ci(a) < Ci(b). For the system of clocks to meet the
condition, the processes must obey the following three implementation rules: (1)
Every process Pi increments its Ci between any two successive events; (2.a) If an
event a is the sending of a message m by process Pi, then the message m contains
the timestamp 7m = Ci(a). (2.b) After receiving a message m, the process Pi sets
Ci as the maximum of current value and 7m incremented by one unit [7].

A second nuance is related to the physical principles given by the theory
of relativity. It is shown that time and space are inextricably linked; Aow time
passes is linked to where we relate. The systems in discussion, those for
emergency warning, are located on Earth, a geoid of rotation around its axis,
orbiting the Sun and having gravitational field. The systems are connected by
extended networks with variable delays. Speed and gravity affects the time
passing. The differences are really small and do not require frequency adjustment
mechanisms (as in a satellite launched into orbit), but a cautious, “safe” approach
to the problem of time, which takes into account, and minimizes the influence of
these phenomena, is welcomed.

Having assessed the type of clock and the laws by which it works, another
problem is the synchronization and keeping synchronized the system of clocks.
Clocks synchronization problem in distributed systems is not new. It was shown
that in a distributed system with n processes connected by a network topology,
communicating through messages, clocks cannot be synchronized with an

e(l— l)
accuracy better than 1 where is ¢ the uncertainty in message delivery
time delay or the inverse of the difference between minimum and maximum
possible delay [8]. The above result specifies, in probabilistic terms, a lower limit
for how close the indications of two clocks, subjects to a synchronization
algorithm, can be, at the same moment of real time. Another result provides the
maximum degree of simultaneity that can be achieved in a network, namely the
difference in real time at which the two processes reach the same value of their
clocks. This is more than half of the uncertainty in the delay of messaging transfer
[9]. It was also shown that the synchronization between processes can be achieved
only if less than one third of them work badly (in the sense of Byzantine faults,
when system components fail in arbitrary ways, not just by crashing, but by
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incorrect processing of requests, the corruption of local state, producing
inconsistent and incoherent results).

Thus, in terms of timing, let’s initially note the possibility of internal and
external synchronization of systems’ clocks. A set of clocks is internally
synchronized if at each point of real time the distance between the actual values of
two correct clocks is bounded by an a priori specified constant called maximum
internal deviation and each clock is operating on a linear envelope of real time
(maintaining certain uniformity). A clock is externally synchronized if at each
point of real time the difference between its value and the actual time is bounded
by an a priori specified constant called maximum external deviation [10].

Clock synchronization can be achieved globally, for the entire system, or
only locally, for some regions. For economic reasons, sometimes the second
option may be preferred.

When the synchronization method ensures the bounding of deviation in a
certain domain, it is called deterministic, and when there is a not null probability
(possibly determined as value or limits) that the deviation exceeds a certain
threshold, the synchronization method is called stochastic.

Synchronization can be achieved before the occurrence of events, which is
called a priori synchronization or later, after the events were registered, making a
posteriori synchronization.

4.2 Particular requirements. Design decisions. Extracting a solution

As mentioned above, what we pursue is an alerting process of high quality.
Poor warning and, consequently, failure of it, is translated by high costs paid by
society. Alert correlation process aims to adjust certain parameters from the
expression of the cost function, intending to decrease its value. Further, for a good
correlation, it is necessary for the temporal dimension of alerts to be known, as
accurately as possible. In addition, warning activity itself must be done in timely
manner.

A solution to the problem detailed above, in the context of emergency
alerting, has to meet several conditions that cumulatively complement
requirements for solving the time problem: compatibility with currently existing
alerting standards, compatibility with communication protocols, compatibility
with a wide range of hardware and software running on top of it. Prior to
formulating a solution, certain design decisions have to be taken. Thus, the
participating nodes in the process of alerting are supposed to be computer
machines, prepared for networking, by existing protocols. The layer at which the
solution is implemented (from the OSI reference model) is Application Layer, and
the language used for implementation is Java, because it is supported on a wide
range of hardware platforms. The solution is based on the use of Lamport clocks,
with the additions that a node stores its knowledge about the values of clocks for
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the whole system (vector timestamps), as well as knowledge about the values of
other vector timestamps, as they are known to be retained by other nodes in the
system (resulting in matrix timestamps). An event (alert in our case) is associated
a particular timestamp on which one can determine the order of occurrence.

We believe that this is the right approach, one that correctly opens the way
for solving the problem in question, for several reasons:

- the solution is decentralized, does not require certain main components,
resulting in better scalability;

- the agents are similar units that can be standardized;

- the solution is consistent with the alerting standards;

- the solution is consistent with the “cautious approach” of the time,
regarding the principles of the theory of relativity;

- implementation is built on open software technology and supported by a
wide range of hardware platforms.

5. Application structure

The application is built from several classes, as follows:

AlertNode - the class where the node’s matrix logical clock is instantiated
and which contains the function main() that launches the client and server threads.
At program launch we specify into the command line the node identifier, the total
number of nodes in the system and port that the server will listen on.

AlertServerThread - class that implements the server capable to receive
alerts, by a communication protocol established with the alert clients. For each
connection it creates a dedicated thread, so it can serve many customers
simultaneously.

AlertProtocol - is class that implements the communication protocol
between the alerting server and client. This class contains readAlert method
through which CAPHandler class is instantiated, and further, with its help, the
XML Common Alerting Protocol (CAP) alert, sent by the client, is parsed. Also,
when the alert is received, the receiveAction method of the matrix clock is called,
which implements the logic applied to clock upon receipt of an alert.

CAPHandler - is the class that handles parsing CAP alert sent to the
server.

MatrixClock - is class that implements the matrix logical clock.

AlertClientThread - is the class through which alerts are sent to the server.
After a short initial handshaking, the client was invited by the pair server thread to
send the alert. This one puts it on line and if the alert is received correctly, a
confirmation message, containing the identifier of the last received alert, is sent,
along with an invitation to send a new alert; if the alert was not received properly
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(condition currently achieved only if the console was introduced other message
that the one requested by the protocol), server requests alert’s retransmission. The
client transmits only CAP formed alerts.

6. Showing an operating example

Consider the alert scenario in the next figure. Ellipses represent alerting
network nodes, each with a unique identifier. The rectangle above nodes is the
port number on which it listens. The arrows represent the direction and way of
transmission of alerts, and the numbers on them, the sequence in which alerts are
sent. On each of these nodes a software agent is running, having the dual function
of client and server for alerting. Alerting is done in connection oriented mode,
using TCP stream sockets. A socket is uniquely identified by an IP address (node
address) and port (through which data is directed to their intended application).
Each server waits for connections on the specified port. In order to do testing on a
single machine, we consider nodes to differentiate by port that the server listens
on.

Fig. 2. Alerting scenario

When a node has an alert to send to another node, on the client thread, the
application tries to connect to destination node. When the server receives the
connection request, it fires a separate thread that deals with the request and
receives the alert, all of that while remaining in a state of listening and capable to
accept other connections. As to the transmitter, in the current form of the solution,
it can send a single alert at a time. Launching the client is done form the command
line, by writing at the console the address and port to which will send the alert,
then the messages corresponding to the established alerting protocol. Alert
generation is done automatically, focusing on the issue of interest here, namely
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the timestamp. Additionally, a unique alert identifier is generated, identifier
composed of the identifier of the node and another identifier unique on the
machine (GUID). Warning message is encoded in CAP (Common Alerting
Protocol) format. In a production version, the client must wait no longer for
commands from the user, it can periodically query a database in which the sensors
put their records, and based on internal logic it can decide what nodes should be
alerted. In the figure below one can see the values of the matrix clocks of nodes in
the system, at different times, according to the first steps of the alert scenario
described above. At the end of the process, the clocks have the values next to the
heads of the arrows.

1,0,0,0,0) (2,0,0,0,0
(0,0,0,0,0) (0,0,0,0,0 gggggg
£0,0,0,0,0) 0,0,0,0,0 =550
(0,0,0,0,0) (0,0,0,0,0 o
£0,0,0,0,0) £0,0,0,0,0 (25205
Id=0 @
£0,0,0,0,0) 01 (2,0,0,0,01 £2,0,0,0,00 (2,0,00,00
£0,1,0,0,0) ) (2,4,200) (2,5,2,0,00 (2,6,2,2,0)
(0,0,0,0,0) 0y £0,0,2,0,00 0,0,2,0,0) (0,0,2,0,0%
£0,0,0,0,0) ) (0,0,0,0,0) (0,0,0,0,00 (0,0,0,2,00
0,0,0,0,0) 0) (00,0000 (0,0,00,0) {0,0,0,0,0)
Id=1 4
(0,0 (2,0,0,0,0)
(0,0 (2,4,2,0,0) (2,0,00,0)
(0,0 (24,300 (2,520,
(0,0 (0,0,0,0,0) (2,5,50,3)
(0,0 (0,0,0,0,0) (0,0,00,0)
(2,520,3)
Id=z2
£0,0,0,0,0) -
(0,0,0,0,0) (0,0,0,0,0%
(0,0,0,0,0) 0,0,0,0,0)
(0,0,0,1,0) £0,0,0,0,00
(0,0,0,0,0) 0,0,0,2,0)
Ia=73 < i €0,0,0,0,00
(0,0,0,0,0)
(0,0,0,0,0) (2,0,0,0,0) (2,0,00,0)
£0,0,0,0,00 (2,5,2,00) (2,5,20,0)
(0,0,0,0,0) 02,0, €0,0,2,0,00
0,0,0,0,1) £0,0,0,0,03 (0,0,0,0,00
25202 -+ (25203

Id=4 -

Fig. 3. the flow of alerts and the matrix clocks of the nodes

In the window below, one can see the client window and examples of the
messages exchanged in the system:

mmand Prompt - java -jar ocuments and Settings\Dorel\My DocumentsiNetBeansPr

—8e3h-913h95c543a8< ide :i.el‘)(sender)i(/sender)(mu
"2 88808 < In>1n id b2 4 2 8 </In><{In id=""
Z1n> A @88 {/In>/matrixCl

BB AAA < <ln id A a
20P08; 2428@; 24300; DOB0R; BEAOG;

:no
: Bye.
Connection...
Running AlertClient... Enter hostname and port of the pair to be alerted. separal
ted by space.
localhost 4884
Opening Connection...
Server: Hello. Do you have an alert for me?
- I have an alert.
: Yes. I have an alert.
: Send the alert.
flert is ready to be read.
Client: Alert is ready to he read.
Server: Success. Have another? Last received alert had ID: 1icHBBhle-7474-4ad3-a
d?d-19f28hdeBf97. CAP ge: <alert xmlns="http:/ uwww.inci - i
if i d3-ad?d-19f ?8hdeBf 97</ident
atrixClock size=""5">{ln i "2 8888 {/In>1ln _id
>3 8288 </ 1In>1n id="3">8 8 B 8 B {/In>{1ln id="4">8 B B @ @ {/ln><{/matrixCl
ock><{/alert>. Current clock: Z00B8; 25200; BOZ00; BAEOA; 25282;

Fig. 4. Client console
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The server sends back the client the request message received from it and
the message resulting from processing that request. If the alert was received
successfully, the latter is composed of the identifier of the last received alert, the
CAP message that carried it and the current matrix clock. In a production version,
only the identifier may be kept, in order to make confirmation of alert receipt.
Serverul trimite fnapoi clientului mesajul cerere primit de la acesta si mesajul
rezultat in urma procesarii cererii.

7. Complementing the standards with matrixclock element

The proposed solution introduces into the structure of alerting messages
the element matrixClock.

matrixChock

EMERGEHCY MESSAGE .
1 size

.

In

id

Fig. 5. The DOM of the element matrixClock
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema'">
<xs:element name="matrixClock'>
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" ref="In"/>
</xs:sequence>
<xs:attribute name="size" use="'required" type="'xs:integer'/>
</xs:complexType>
</xs:element>
<xs:element name="In">
<xs:complexType mixed=""true">
<xs:attribute name="id" use="required" type="Xxs:integer"/>
</xs:complexType>
</xs:element>
</xs:schema>

Fig. 6. XML Schema of the element matrixClock
8. Conclusion and further development

In this article we motivated by a simple cost analysis the need to correlate
alerts in warning systems for emergencies, we deduced the necessity of knowing
the correct order of alerts and we implemented a solution for this, based on an
Lamport type algorithm, introducing the element matrix clock in the structure of
alerting protocols.
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Further additions, designed to enhance the effectiveness of the mechanism,
may be made. We can introduce a fault detection component against the
Byzantine errors (which will be located in the algorithm at a message receipt).
Thus, knowing that a node n was aware of the system's timestamps, can
additionally verify at the receiver that it had properly assigned timestamp (e.g. by
checking that each secondary vector of the matrix is smaller than the main vector
— the one corresponding to the current node) . It is correct that after a period a
node has not responded, to invalidate the corresponding line in the matrix (since it
is unlikely to be up to date), using an additional column in the matrix named
valid. Each alert message can be signed with the private key of the transmitter and
at the receiver to verify its authenticity with the public key. It might also,
adaptively to frequency at which nodes exchange messages, if within a specified
interval a process did not make send/receive operations, to exchange specific
messages exclusively serving to update the clock.
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