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THE PROBLEM OF TIME IN SPECIFYING INPUT DATA 
FOR THE CORRELATION LAYER FROM THE MODEL OF 

EMERGENCY WARNING SYSTEMS 

Nicolae-Dorel CONSTANTINESCU1 

Aceast articol tratează problema marcajului temporal al alertelor în 
sistemele de avertizare pentru situatii de urgenţă. Pentru o bună corelare, trebuie să 
se cunoască corect informaţia temporală a alertelor. O serie de tehnici sunt 
considerate şi se prezintă o soluţie bazată pe implementarea ştampilelor de timp 
Lamport, în concordanţă cu standardele de alertare existente. 

This article addresses the issue of temporal markup of the alerts in the 
Emergency Warning Systems. For a correct correlation, must know the accurate 
time information of alerts. A number of techniques are considered and a solution is 
presented, based on the implementation of Lamport timestamps, in accordance with 
existing alerting standards.  

Keywords: alerting, warning, alerting systems, warning systems, order, time, 
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1. Introduction 

The problem of time is perhaps the most complex problem that the human 
thinking tries to comprehend and to solve. It is being studied by many disciplines 
in the field of knowledge, from the humanistic sciences, like philosophy, 
continuing with the natural sciences, like physics, and ending with today's areas of 
technological development, such as computer science. 

Recently defined as "a persistently stubborn illusion" (Einstein) or "an 
abstraction at which we arrive through the changes of things" (Mach), so as a 
measure of change, has been shown that the concept of time makes sense only 
when intrinsically linked with the notion of space. Contemporary technological 
advances, such as launching GPS satellites on orbit, validated in practice the 
theoretical discoveries made by Einstein in the early 1900s. However, it’s a hard 
challenge for current thinking, which is the one according to, today’s systems 
were and are still being designed, not to rely on the human perception of time, 
closer to what Isaac Newton postulated in 1689 (and subsequent proved 

                                                            
1 PhD student, Dept. of Automatic Control, University POLITEHNICA of Bucharest, Romania, e-

mail: dorel_nic@yahoo.com 



66                                                          Nicolae-Dorel Constantinescu 

incorrect), namely the absolute time, true and mathematical, of itself and from its 
own nature, flowing equably without relation to anything external. 

In a previous paper we introduced, in the model of Emergency Warning 
Systems (EWS), the so-called Correlation Layer [1]. The correlation may take 
place within a system, at the sensor network level, or in the aggregate of warning 
systems, so that they can synchronize alerts and create prerequisites for the 
seamless functioning as a system of warning systems. Contributions of this article 
are the motivation of study along with the specific formulation for the problem of 
time of alerts in EWS, the evaluation of different ways to solve the problem, the 
proposal to complement the standards for emergency warning with a logical clock 
element and the implementation of an effective software solution. This article is 
further organized as follows: in section 2 considerations about related work are 
given, in section 3 the temporal dimension of alerts in warning systems is 
outlined, paragraph 4 presents a number of approaches to the problem of time in 
distributed systems and extracts a solution for alerting systems for emergency, 
paragraph 5 briefly describes the application implemented, in paragraph 6 a test 
for the application, on an alerting scenario, is made, paragraph 7 presents the 
matrixClock element proposed for inclusion in alerting standards and paragraph 8 
draws the conclusions and outlines the ways to go forward.  

2. Related work 

Time is a decisive issue in case of emergencies, so the problem of time 
naturally arises in the study of EWS. Besides, time and timing are important in 
any computer system and, more so, in any distributed system, and EWS includes 
features of both mentioned systems. Problems like congestion, communication 
links failure, human response or other difficult conditions bring technical 
challenges for systems used in emergency management. On one hand, 
considerations regarding time may refer to the available warning time provided by 
warning systems. That time window depends on the dynamics of events [2] and 
gives people the change to take preventive actions. For example, the warning time 
that can be obtained by an earthquake warning system in Bucharest is 25-30 s 
maximum [3]. At the other end there are warning systems for slow-onset events, 
such as global warming, where several years are available to take preventive 
actions. On the other hand, time, as well as place of occurrence represents basic 
information about emergency events, so it has to be manipulated in a suitable 
manner, by distributed, real-time and geographical (GIS) systems and databases. 
In [4], valuable considerations about real time databases, including scheduling, 
resource reservation or data consistency issues are given. The dynamic of events 
is considered in [5], in context of geographical information systems, emphasising 
on real-time data, as it enable emergency operators to accurately act in 
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emergencies. Providing solutions for the problem of time in EWS is somehow a 
new challenge and we base our work on knowledge of distributed systems, a field 
well covered with rich literature, for example [6]. 

3. The order and time of the events in the correlation process context 

In order to perform its tasks, the correlation system must, among others, 
know the correct order of events. When an event detected by a sensor X happens 
before another event detected by a sensor Y, it is necessary that time signatures 
for the corresponding alert messages, which are sent to the correlation system, to 
reflect that order. Because the system where messages are exchanged is a 
distributed one, where messages originate from various sources, a new problem 
that arises it to correctly establish the temporal precedence of events. It is possible 
for a sensor X to associate an event A a timestamp later than the one that a sensor 
Y associates to another event B, however the event A to occur before event B 
(perhaps simply because the clock of X is later than the clock of Y). Among the 
obvious solutions, one can state synchronization with precise time servers and the 
use of the time moment immediately before the emission of alert, as reference 
time. But let’s not forget that in discussion here are emergencies, when problems 
like delay, delay variation or network congestion must be paid attention. It can 
happen for some messages to arrive late, others to arrive out-of-order and others 
to not arrive at all, which would cause real problems for the correlation phase. 
Time problem in distributed systems is not new and has been intensively studied. 
Regarding warning systems for emergencies and, in particular, the correlation of 
alerts, certain issues should be taken into account before attempting to formulate a 
solution. Thus, for the correlation process it is less important to know the standard 
time an event occurred, but of major importance is the order of events’ 
occurrence. The correlation process, implicitly the ordering of events, should also 
perform in situations of network congestion, involving a minimum required 
communication resources, especially in critical moments. At the same time, the 
idea of a central time server does not seem very good, having in mind its 
availability and integrity during the crisis. 

4. The problem of finding the time of alerts in emergency warning 
systems 

4.1 General context of the time problem 
The problem of determining the time of the alerts in warning systems for 

emergencies is an application or a particular case of the problem of determining 
the time in distributed systems. 

The first issue that needs to be discussed is on the nature of clocks used. 
Thus, a boundary line is given by the choice between using physical clocks and 
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using logical clocks. Physical clocks are the ones well known (with further 
improvements), which measure the Newtonian time, and logical clocks, 
introduced by Lamport, are numbers related to events taking place in various 
processes of the system, where the numbers are interpreted as moments in which 
the events occurred. More specifically, for every process Pi, a clock Ci is defined, 
as a function that associates a number Ci(a) to every event a of that process. If an 
event a occurs before another event b, then it must happen at an earlier time then 
b. This condition is called The clock condition and formally is written as follows: 
if a occurs before b, than: Ci(a) < Ci(b). For the system of clocks to meet the 
condition, the processes must obey the following three implementation rules: (1) 
Every process Pi increments its Ci between any two successive events; (2.a) If an 
event a is the sending of a message m by process Pi, then the message m contains 
the timestamp Tm = Ci(a). (2.b) After receiving a message m, the process Pi sets 
Ci as the maximum of current value and Tm incremented by one unit [7]. 

A second nuance is related to the physical principles given by the theory 
of relativity. It is shown that time and space are inextricably linked; how time 
passes is linked to where we relate. The systems in discussion, those for 
emergency warning, are located on Earth, a geoid of rotation around its axis, 
orbiting the Sun and having gravitational field. The systems are connected by 
extended networks with variable delays. Speed and gravity affects the time 
passing. The differences are really small and do not require frequency adjustment 
mechanisms (as in a satellite launched into orbit), but a cautious, “safe” approach 
to the problem of time, which takes into account, and minimizes the influence of 
these phenomena, is welcomed. 

Having assessed the type of clock and the laws by which it works, another 
problem is the synchronization and keeping synchronized the system of clocks. 
Clocks synchronization problem in distributed systems is not new. It was shown 
that in a distributed system with n processes connected by a network topology, 
communicating through messages, clocks cannot be synchronized with an 

accuracy better than 
)11(

n
−ε

, where is ε  the uncertainty in message delivery 
time delay or the inverse of the difference between minimum and maximum 
possible delay [8]. The above result specifies, in probabilistic terms, a lower limit 
for how close the indications of two clocks, subjects to a synchronization 
algorithm, can be, at the same moment of real time. Another result provides the 
maximum degree of simultaneity that can be achieved in a network, namely the 
difference in real time at which the two processes reach the same value of their 
clocks. This is more than half of the uncertainty in the delay of messaging transfer 
[9]. It was also shown that the synchronization between processes can be achieved 
only if less than one third of them work badly (in the sense of Byzantine faults, 
when system components fail in arbitrary ways, not just by crashing, but by 
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incorrect processing of requests, the corruption of local state, producing 
inconsistent and incoherent results). 

Thus, in terms of timing, let’s initially note the possibility of internal and 
external synchronization of systems’ clocks. A set of clocks is internally 
synchronized if at each point of real time the distance between the actual values of 
two correct clocks is bounded by an a priori specified constant called maximum 
internal deviation and each clock is operating on a linear envelope of real time 
(maintaining certain uniformity). A clock is externally synchronized if at each 
point of real time the difference between its value and the actual time is bounded 
by an a priori specified constant called maximum external deviation [10]. 

Clock synchronization can be achieved globally, for the entire system, or 
only locally, for some regions. For economic reasons, sometimes the second 
option may be preferred. 

When the synchronization method ensures the bounding of deviation in a 
certain domain, it is called deterministic, and when there is a not null probability 
(possibly determined as value or limits) that the deviation exceeds a certain 
threshold, the synchronization method is called stochastic. 

Synchronization can be achieved before the occurrence of events, which is 
called a priori synchronization or later, after the events were registered, making a 
posteriori synchronization. 

 
4.2 Particular requirements. Design decisions. Extracting a solution 
As mentioned above, what we pursue is an alerting process of high quality. 

Poor warning and, consequently, failure of it, is translated by high costs paid by 
society. Alert correlation process aims to adjust certain parameters from the 
expression of the cost function, intending to decrease its value. Further, for a good 
correlation, it is necessary for the temporal dimension of alerts to be known, as 
accurately as possible. In addition, warning activity itself must be done in timely 
manner. 

A solution to the problem detailed above, in the context of emergency 
alerting, has to meet several conditions that cumulatively complement 
requirements for solving the time problem: compatibility with currently existing 
alerting standards, compatibility with communication protocols, compatibility 
with a wide range of hardware and software running on top of it. Prior to 
formulating a solution, certain design decisions have to be taken. Thus, the 
participating nodes in the process of alerting are supposed to be computer 
machines, prepared for networking, by existing protocols. The layer at which the 
solution is implemented (from the OSI reference model) is Application Layer, and 
the language used for implementation is Java, because it is supported on a wide 
range of hardware platforms. The solution is based on the use of Lamport clocks, 
with the additions that a node stores its knowledge about the values of clocks for 
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the whole system (vector timestamps), as well as knowledge about the values of 
other vector timestamps, as they are known to be retained by other nodes in the 
system (resulting in matrix timestamps). An event (alert in our case) is associated 
a particular timestamp on which one can determine the order of occurrence. 

We believe that this is the right approach, one that correctly opens the way 
for solving the problem in question, for several reasons: 

 
- the solution is decentralized, does not require certain main components, 

resulting in better scalability; 
- the agents are similar units that can be standardized; 
- the solution is consistent with the alerting standards; 
- the solution is consistent with the “cautious approach” of the time, 

regarding the principles of the theory of relativity; 
- implementation is built on open software technology and supported by a 

wide range of hardware platforms. 

5. Application structure 

The application is built from several classes, as follows: 
AlertNode - the class where the node’s matrix logical clock is instantiated 

and which contains the function main() that launches the client and server threads. 
At program launch we specify into the command line the node identifier, the total 
number of nodes in the system and port that the server will listen on. 

AlertServerThread - class that implements the server capable to receive 
alerts, by a communication protocol established with the alert clients. For each 
connection it creates a dedicated thread, so it can serve many customers 
simultaneously. 

AlertProtocol - is class that implements the communication protocol 
between the alerting server and client. This class contains readAlert method 
through which CAPHandler class is instantiated, and further, with its help, the 
XML Common Alerting Protocol (CAP) alert, sent by the client, is parsed. Also, 
when the alert is received, the receiveAction method of the matrix clock is called, 
which implements the logic applied to clock upon receipt of an alert. 

CAPHandler - is the class that handles parsing CAP alert sent to the 
server. 

MatrixClock - is class that implements the matrix logical clock. 
AlertClientThread - is the class through which alerts are sent to the server. 

After a short initial handshaking, the client was invited by the pair server thread to 
send the alert. This one puts it on line and if the alert is received correctly, a 
confirmation message, containing the identifier of the last received alert, is sent, 
along with an invitation to send a new alert; if the alert was not received properly 
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(condition currently achieved only if the console was introduced other message 
that the one requested by the protocol), server requests alert’s retransmission. The 
client transmits only CAP formed alerts. 

6. Showing an operating example 

Consider the alert scenario in the next figure. Ellipses represent alerting 
network nodes, each with a unique identifier. The rectangle above nodes is the 
port number on which it listens. The arrows represent the direction and way of 
transmission of alerts, and the numbers on them, the sequence in which alerts are 
sent. On each of these nodes a software agent is running, having the dual function 
of client and server for alerting. Alerting is done in connection oriented mode, 
using TCP stream sockets. A socket is uniquely identified by an IP address (node 
address) and port (through which data is directed to their intended application). 
Each server waits for connections on the specified port. In order to do testing on a 
single machine, we consider nodes to differentiate by port that the server listens 
on. 

 
Fig. 2. Alerting scenario 

 
When a node has an alert to send to another node, on the client thread, the 

application tries to connect to destination node. When the server receives the 
connection request, it fires a separate thread that deals with the request and 
receives the alert, all of that while remaining in a state of listening and capable to 
accept other connections. As to the transmitter, in the current form of the solution, 
it can send a single alert at a time. Launching the client is done form the command 
line, by writing at the console the address and port to which will send the alert, 
then the messages corresponding to the established alerting protocol. Alert 
generation is done automatically, focusing on the issue of interest here, namely 
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the timestamp. Additionally, a unique alert identifier is generated, identifier 
composed of the identifier of the node and another identifier unique on the 
machine (GUID). Warning message is encoded in CAP (Common Alerting 
Protocol) format. In a production version, the client must wait no longer for 
commands from the user, it can periodically query a database in which the sensors 
put their records, and based on internal logic it can decide what nodes should be 
alerted. In the figure below one can see the values of the matrix clocks of nodes in 
the system, at different times, according to the first steps of the alert scenario 
described above. At the end of the process, the clocks have the values next to the 
heads of the arrows. 

 
Fig. 3. the flow of alerts and the matrix clocks of the nodes 

 
In the window below, one can see the client window and examples of the 

messages exchanged in the system: 

 
Fig. 4. Client console 
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The server sends back the client the request message received from it and 
the message resulting from processing that request. If the alert was received 
successfully, the latter is composed of the identifier of the last received alert, the 
CAP message that carried it and the current matrix clock. In a production version, 
only the identifier may be kept, in order to make confirmation of alert receipt. 
Serverul trimite înapoi clientului mesajul cerere primit de la acesta şi mesajul 
rezultat în urma procesării cererii. 

7. Complementing the standards with matrixclock element  

The proposed solution introduces into the structure of alerting messages 
the element matrixClock. 

 
Fig. 5. The DOM of the element matrixClock 

<?xml version="1.0"?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
<xs:element name="matrixClock"> 
  <xs:complexType> 
    <xs:sequence> 
      <xs:element maxOccurs="unbounded" ref="ln"/> 
    </xs:sequence> 
    <xs:attribute name="size" use="required" type="xs:integer"/> 
  </xs:complexType> 
</xs:element> 
<xs:element name="ln"> 
  <xs:complexType mixed="true"> 
    <xs:attribute name="id" use="required" type="xs:integer"/> 
  </xs:complexType> 
</xs:element> 
</xs:schema> 

Fig. 6. XML Schema of the element matrixClock 

8. Conclusion and further development 

In this article we motivated by a simple cost analysis the need to correlate 
alerts in warning systems for emergencies, we deduced the necessity of knowing 
the correct order of alerts and we implemented a solution for this, based on an 
Lamport type algorithm, introducing the element matrix clock in the structure of 
alerting protocols. 
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Further additions, designed to enhance the effectiveness of the mechanism, 
may be made. We can introduce a fault detection component against the 
Byzantine errors (which will be located in the algorithm at a message receipt). 
Thus, knowing that a node n was aware of the system's timestamps, can 
additionally verify at the receiver that it had properly assigned timestamp (e.g. by 
checking that each secondary vector of the matrix is smaller than the main vector 
– the one corresponding to the current node) . It is correct that after a period a 
node has not responded, to invalidate the corresponding line in the matrix (since it 
is unlikely to be up to date), using an additional column in the matrix named 
valid. Each alert message can be signed with the private key of the transmitter and 
at the receiver to verify its authenticity with the public key. It might also, 
adaptively to frequency at which nodes exchange messages, if within a specified 
interval a process did not make send/receive operations, to exchange specific 
messages exclusively serving to update the clock.  
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