

ON STAR MOMENT SEQUENCES OF COMMUTING MULTIOPERATORS

Luminița LEMNETE-NINULESCU¹

In această notă, generalizăm Definiția 1.2. din [5] în cazul $A = (A_1, \dots, A_n) \in L(\mathcal{H})^n$, $n \geq 1$, este un multioperator comutativ pe un spațiu Hilbert H real și, de asemenea, în cazul în care $T = (T_1 \dots T_n) \in L(\mathcal{H})^n$, $n \geq 2$ este un multioperator comutativ definit pe un spațiu Hilbert complex H . În Secțiunea 2 a acestei note, introducem noțiunea de multioperator comutativ care admite șir de “star-momente reale”. În cazul H spațiu Hilbert real și de multioperator comutativ care admite șir de “star-momente complexe”. În cazul H spațiu Hilbert complex. În Secțiunea 3, generalizăm Teorema 2.2. din [5] și dăm condiții necesare și suficiente pentru ca un multioperator comutativ să admită șir de “star-momente reale” în cazul H spațiu real, respectiv șir de “star-momente complexe” în cazul H spațiu Hilbert complex. În Propoziția 3.2. a acestei note dăm condiții necesare pentru ca suportul măsurii de reprezentare a unui multioperator comutativ ca șir de “star-momente reale”, respectiv “star-momente complexe” să aibă suportul inclus în diferite mulțimi din \mathbf{R}^n sau \mathbf{C}^n , mulțimi descrise prin condiții algebrice. În aceeași notă introducem noțiunea de multioperator comutativ care admite șir de “star L -momente” și dăm o condiție suficientă pentru ca un multioperator comutativ să admită șir de “star L -momente complexe”.

In this note we generalize the Definition 1.2. in [5] in case when $A = (A_1, \dots, A_n) \in L(\mathcal{H})^n$, $n \geq 1$ is a commuting multioperator and H a real Hilbert space and also in case $T = (T_1 \dots T_n) \in L(\mathcal{H})^n$, $n \geq 2$ is a commuting multioperator on a complex Hilbert space H . We introduce in Section 2 of this note the notion of commuting multioperator that admits a star real moment sequence and the notion of commuting multioperator that admits a complex moment sequence. We also generalize Th. 2.2. in [5] and give in Section 3 necessary and sufficient conditions for a commuting multioperator to admit a “star real moment sequence representation”, respectively a star complex moment sequence representation. In Proposition 3.2. of this note, we give a necessary condition such that the representation measure of a commuting multioperator as star moment sequence to have the support included in some special sets in \mathbf{R}^n or \mathbf{C}^n , particular sets described by algebraic conditions. We also introduce the notion of commuting multioperator that admit a star L complex-moment sequence and provide a

¹ Reader, Dept. of Mathematics II, University POLITEHNICA of Bucharest, Romania, e-mail: Luminita_lemnate@yahoo.com.

sufficient condition such that a commuting multioperator to admit a star L-complex moment sequence.

Key words: star real and complex moment sequences ,commuting multioperator , linear functional, joint spectrum, Borel measure.

1. Introduction

Let H be a real Hilbert space and $L(H)$ the real algebra of all bounded linear operators on H . We denote with $A = (A_1, \dots, A_n) \in L(\mathcal{H})^n, n \geq 1$ a commuting multioperator on H that is $A_i A_j = A_j A_i, 1 \leq i, j \leq n$, briefly a c.m. In case that H is a complex Hilbert space and $T = (T_1, \dots, T_n) \in L(\mathcal{H})^n, n \geq 2$ is a commuting multioperator, we denote with $T^* = (T_1^*, \dots, T_n^*) \in L(\mathcal{H})^n, n \geq 2$ the commuting adjoint of T . Let $t = (t_1, \dots, t_n) \in \mathbb{R}^n$ denote the real variable in the Euclidian space and $z = (z_1, \dots, z_n) \in \mathbb{C}^n$ the complex variable in the complex Euclidian space. If $m = (m_1, \dots, m_n) \in \mathbb{N}^n$ is a multiindices, we have also $t^m = (t_1^{m_1} \dots t_n^{m_n}) \in \mathbb{R}$, $z^m = (z_1^{m_1} \dots z_n^{m_n}) \in \mathbb{C}$, $\bar{z}^m = (\bar{z}_1^{m_1} \dots \bar{z}_n^{m_n}) \in \mathbb{C}$, $T^m = T_1^{m_1} \circ \dots \circ T_n^{m_n} \in L(H)$, $T^{*m} = T_1^{*m_1} \circ \dots \circ T_n^{*m_n} \in L(H)$.

2. Star real moment sequences

We generalize Definition 1.2. in [5].

Definition 2.1. Let H be an arbitrary real Hilbert space and $A = (A_1, \dots, A_n) \in L(\mathcal{H})^n, n \geq 1$ a commuting multioperator on H . The commuting multioperator A has a star real moment sequence supported on a compact set in \mathbb{R}^n if there exists a compact set $\sigma(A) \subset \mathbb{R}^n$, nonzero vectors $u, v \in H$ and a positive Borel measure μ on $\sigma(A)$ such that we have the representations:

$$\langle A^m u, v \rangle_H = \int_{\sigma(A)} t^m d\mu(x), \forall m \in \mathbb{N}^n.$$

Remark. It is immediately that the commuting multioperators $A = (A_1, \dots, A_n) \in L(\mathcal{H})^n, n \geq 1$ that admit integral representations on compact sets in \mathbb{R}^n with respect to Borel positive , operator-valued measures , admits also “star-real moment sequences”. From the class of commuting multioperators that admit integral representations on compact sets in \mathbb{R}^n we mention the class of commuting self-adjoint multioperators. Commuting selfadjoint multioperators admit joint spectral measures which generate immediately the scalar positive

Borel representation measure as “star real-moment sequence”. In this case, the vectors $u, v \in H$ are arbitrary and the compact set on which the scalar positive Borel measure is defined is the joint spectrum $\sigma(A)$ of the c.m. $A = (A_1, \dots, A_n) \in L(\mathcal{H})^n, n \geq 1$.

Theorem 2.1. Let H be a real Hilbert space and $A = (A_1, \dots, A_n) \in L(\mathcal{H})^n, n \geq 1$ a commuting multioperator. The following assertions are equivalent:

(i) The commuting multioperator $A \in L(H)^n, n \geq 1$ has a “star-real moment sequence” supported on the joint spectrum $\sigma(A)$ of A .

(ii) There exists nonzero vectors u and v in H such that $\langle u, v \rangle_H \geq 0$ and

$$|\langle p(A)u, v \rangle_H| \leq \langle u, v \rangle_H \|p\|_\infty, \text{ for any } p \in \mathbf{R}[x_1, \dots, x_n]$$

where $\|p\|_\infty := \sup_{x \in \sigma(A)} |p(x)|$.

Proof. (i) \Rightarrow (ii). If we have (i), for $m = (0, \dots, 0) \in N^n$ we have

$$\langle A^0 u, v \rangle_H = \langle Iu, v \rangle_H = \langle u, v \rangle_H = \int_{\sigma(A)} d\mu(x) = \mu(\sigma(A)) \geq 0. \text{ Let}$$

$p \in \mathbf{R}[x_1, \dots, x_n] = \mathbf{R}[x]$ arbitrary ; we have

$$|\langle p(A)u, v \rangle_H| = \left| \int_{\sigma(A)} p(x) d\mu(x) \right| \leq \mu(\sigma(A)) \|p\|_\infty = \langle u, v \rangle_H \|p\|_\infty, \text{ with}$$

$\|p\|_\infty := \sup_{x \in \sigma(A)} |p(x)|$; that is (ii).

Conversely. (ii) \Rightarrow (i). We assume that

$$|\langle p(A)u, v \rangle_H| = \left| \int_{\sigma(A)} p(x) d\mu(x) \right| \leq \mu(\sigma(A)) \|p\|_\infty = \langle u, v \rangle_H \|p\|_\infty \quad \text{for all}$$

$p \in \mathbf{R}[x]$. Let the \mathbf{R} -linear functional $L : \mathbf{R}[x] \rightarrow \mathbf{R}$, $L(p) = \langle p(A)u, v \rangle_H$; because $L(1) = \langle Iu, v \rangle_H = \langle u, v \rangle_H \geq 0$, it results that L is positive on $\mathbf{R}[x]$ and from (ii), L is bounded on $\mathbf{R}[x] \Leftrightarrow L$ is continuous on $\mathbf{R}[x]$. In these conditions, via Hahn-Banach theorem we can extend L on the space of continuous functions $C(\sigma(A))$ with preserving the linearity, the continuity and the norm, that is $\|L_{ext}\| = \|L\|$; we denote the extension on $C(\sigma(A))$ with L_{ext} . Because L_{ext} is linear, continuous, positive on $C(\sigma(A))$ and $\sigma(A)$ is compact, from Riesz representation theorem we have an unique positive Borel measure μ on $\sigma(A)$ such that $L_{ext}(p) = \int_{\sigma(A)} p(x) d\mu(x) = \langle p(A)u, v \rangle_H, \forall p \in \mathbf{R}[x]$. If we

consider $p(x) = x^n, n \in \mathbf{N}^n$, we obtain $\langle A^n u, v \rangle_H = \langle \int_{\sigma(A)} x^n d\mu(x), v \rangle_H, \forall n \in \mathbf{N}^n$;
the required representation in (i).

3. Star complex moment sequences

Let H a complex Hilbert space and $T = (T_1, \dots, T_n) \in L(H)^n, n \geq 2$ a commuting multioperator. We generalized Definition 1.2. in [5] in case $n \geq 2$. That is:

Definition 3.2. The commuting multioperator $T = (T_1, \dots, T_n) \in L(H)^n, n \geq 2$ admit a star complex moment sequence supported on a compact set in \mathbf{C}^n if there exists a compact set $\sigma(T) \subset \mathbf{C}^n$, nonzero vectors $u, v \in H$ and a positive Borel measure μ on $\sigma(T)$ such that we have the representations $\langle T^* T^k u, v \rangle_H = \int_{\sigma(T)} z^j z^k d\mu(z), \forall j, k \in \mathbf{N}^n$.

Remark. It is immediately that the commuting multioperators that admit integral representations with respect with spectral measures , admit also star complex moment sequences. We mention in this case the class of commuting normals or subnormals.

The following theorem generalized the same Th.2.1. in [5]. The basic ideas of its proof is the same as in Theorem 2.1. in this note and also with Th.2.1. in [5]. It gives a necessary and sufficient condition on a commuting multioperator to admit star complex moment sequence.

Theorem 3.1. Let H be a complex Hilbert space and $T = (T_1, \dots, T_n) \in L(H)^n, n \geq 2$,be a commuting multioperator. The following assertions are equivalent:

(i) The commuting multioperator $T \in L(H)^n, n \geq 2$ has a “star-complex moment sequence” supported on the joint spectrum $\sigma(T)$ of T .

(ii) There exists nonzero vectors u and v in H such that $\langle u, v \rangle_H \geq 0$ and

$$|\langle p(T^*, T)u, v \rangle_H| \leq \langle u, v \rangle_H \|p\|_\infty, \text{ for any}$$

$$p \in C[\bar{z}_1, \dots, \bar{z}_n, z_1, \dots, z_n] = C[\bar{z}, z],$$

$$\text{where } \|p\|_\infty := \sup_{z \in \sigma(T)} |p(\bar{z}, z)|, z = (z_1, \dots, z_n), \bar{z} = (\bar{z}_1, \dots, \bar{z}_n).$$

The basic ideas of the proof of th.3.1 is quite similar with those from proof of th. 2.1. in this note and also with th.2.1. in [5]. The difference, from the proof in Th.2.1. Section 2 of this note , is that the moment functional is

defined by $L(\bar{z}^j z^k) = \langle T^{*j} T^k u, v \rangle_H$, $\forall j, k \in \mathbb{N}^n$ and is extended by \mathbf{C} -linearity to $\mathbf{C}[\bar{z}, z]$. Because of similarity with the proof in Th.2.1. Section 2, we omit it.

In various contexts, we can have a better localization of the support of the star real or complex moment sequence. We preserve the same notation as those in proof of Th.2.1.

Section 2 . For a better localization of the support of the representing measure of a “star-moment sequence”, we have the following :

Proposition 3.2. Let $T = (T_1, \dots, T_n) \in L(\mathcal{H})^n$, $n \geq 1$, be a commuting multioperator which admits a star complex moment sequence defined on the joint spectrum $\sigma(T) \subset \mathbf{C}^n$ and

μ the Borel positive defined representation measure of T as a star-complex moment sequence.

Assume that there exists $r \in \mathbf{C}_R[\bar{z}, z]$ (that is $r(\bar{z}, z) \in \mathbf{R}$ $\forall z \in \mathbf{C}$) with the property

that $L_{ext}(rp) \geq 0$ for all $p \in \mathbf{C}[\bar{z}, z]$ for which $p(\bar{z}, z) \geq 0$ when $z \in \sigma(T)$. In this case

$$\text{supp } \mu \subset \{z \in \sigma(T), r(\bar{z}, z) \geq 0\}.$$

If also $L_{ext}(rp) = 0$ for all $p \in \mathbf{C}[\bar{z}, z]$ with $p(\bar{z}, z) \geq 0$ when $z \in \sigma(T)$ and some

$$r \in \mathbf{C}_R[\bar{z}, z], \text{ then } \text{supp } \mu \subset \{z \in \sigma(T), r(\bar{z}, z) = 0\}.$$

Proof. (a) Let $L_{ext} : C(\sigma(T)) \rightarrow C$ the extended moment functional from Th.3.1., $L_{ext}(\bar{z}^j z^k) = \langle T^{*j} T^k u, v \rangle_H = \int_{\sigma(T)} \bar{z}^j z^k d\mu(z)$ when $j, k \in \mathbb{N}^n$. Because of (a) we have

$$L_{ext}(p(\bar{z}, z)r(\bar{z}, z)) = \int_{\sigma(T)} p(\bar{z}, z)r(\bar{z}, z)d\mu(z) \geq 0 \text{ for all } p \in \mathbf{C}[\bar{z}, z] \text{ with}$$

$p(\bar{z}, z) \geq 0$ on $\sigma(T)$.

It follows ,from Weierstrass approximation theorem , that we have $L_{ext}(f(z)r(\bar{z}, z)) \geq 0$ for all continuous positive functions $f \in \mathbf{C}_R(\sigma(T))$. With an easy measure theoretic argument, it follows that $\mu(B) = 0$ when $B \subset \{z \in \sigma(T), r(\bar{z}, z) < 0\}$. From the above argument it follows that $\text{supp } \mu \subset \{z \in \sigma(T), r(\bar{z}, z) \geq 0\}$; that is (a).

(b) If $L_{ext}(rp) = 0$ for some $r \in \mathbf{C}_R[\bar{z}, z]$ and all $p \in \mathbf{C}[\bar{z}, z]$ with $p(\bar{z}, z) \geq 0$ on $\sigma(T)$, then we have $L_{ext}(rf) = 0$ for all real positive valued continuous functions on $\sigma(T)$; i.e. $f \in C(\sigma(T))$, $f(z) \geq 0$. Again, by a simple measure theoretic argument, we have $\text{supp } \mu \subset \{z \in \sigma(T), r(\bar{z}, z) = 0\}$.

4. Star L - moment sequences

Definition 4. 3. Let $T = (T_1, \dots, T_n) \in L(\mathcal{H})^n$, $n \geq 1$, be a commuting multioperator on H , a complex Hilbert space. The c.m. T has a “star L -moment sequence” supported on a compact set $K \subset \mathbf{C}^n$ if there exist the nonzero vectors $u, v \in H$, a positive Borel measure μ on K and a measurable bounded function $h : K \rightarrow \mathbf{R}$ with $0 \leq h \leq L$ for a constant $L > 0$, such that the following representations hold :

$$\langle T^{*j} T^k u, v \rangle_H = \int_{\sigma(T)} \bar{z}^j z^k h(z) d\mu(z) \text{ for all } j, k \in \mathbf{N}^n.$$

Proposition 4.1. Let $T = (T_1, \dots, T_n) \in L(\mathcal{H})^n$, $n \geq 1$ and $S = (S_1, \dots, S_n) \in L(\mathcal{H})^n$, $n \geq 1$, be commuting multioperators on H a complex Hilbert space such the joint spectrums

$\sigma(T) = \sigma(S) = K$. Let the following assumptions be :

There exists $u, v \in H$ such that

$$|\langle p(T^*, T)u, v \rangle_H| \leq |\langle p(S^*, S)u, v \rangle_H| \leq \langle u, v \rangle \leq \|p\|_\infty, \forall p \in \mathbf{C}[\bar{z}, z].$$

There exists a measurable function $h : K \rightarrow \mathbf{R}$ such the following representations

$$\langle T^{*j} T^k u, v \rangle_H = \int_{\sigma(T)} \bar{z}^j z^k h(z) d\mu(z) \text{ for all } j, k \in \mathbf{N}^n \text{ and}$$

$$\langle S^{*j} S^k u, v \rangle_H = \int_{\sigma(T)} \bar{z}^j z^k d\mu(z) \text{ for all } j, k \in \mathbf{N}^n \text{ hold.}$$

In this case, the implication (i) \Rightarrow (ii) is true.

Proof. If (i) is true, then from Th.3.1. Section 3. there exists a positive Borel measure μ on the joint spectrums $\sigma(T) = \sigma(S) = K \subset \mathbf{C}^n$ such that we have $\langle T^{*j} T^k u, v \rangle_H = \int_{\sigma(T)} \bar{z}^j z^k d\lambda(z)$ for all $j, k \in \mathbf{N}^n$ and

$\langle S^{*j} S^k u, v \rangle_H = \int_{\sigma(S)} \bar{z}^j z^k d\mu(z)$ for all $j, k \in \mathbb{N}^n$. We shall prove, as in paper [3], that the measure $d\lambda$ is absolutely continuous with respect to the measure $d\mu$.

Indeed, because of (i) and because the obtained representation as “star-complex moment sequences”, we have $0 \leq \int_{\sigma(T)} p(\bar{z}, z) d\lambda(z) \leq \int_{\sigma(S)} p(\bar{z}, z) d\mu(z)$

for all $p \in \mathbf{C}[\bar{z}, z]$ with

$p(\bar{z}, z) \geq 0$ on K . Let $E \subset K$ be a measurable set with $\mu(E) = 0$ and χ_E the characteristic function of E . We approximate χ_E pointwise and monotonically by a sequence $\{\varphi_m\}_{m \in \mathbb{N}} \in C_R^+(K)$. For this sequence, because of previous inequalities, we have

$$0 \leq \int_K \varphi_m(z) d\lambda(z) \leq \int_K \varphi_m(z) d\mu(z) \leq \int_K \overline{\lim_m} \varphi_m d\mu(z) = \int_K \chi_E(z) d\mu(z) = \mu(E \cap K).$$

Hence, if $\mu(K \cap E) = 0$, it results that also $\lambda(K \cap E) = 0$. In this case there exists $h \in L^1(K, \mu)$ such that $d\mu = h d\lambda$. Because $\int_K h \varphi d\mu \geq 0$ for any $\varphi \in C_R^+(K)$, we

have $h \geq 0$ and because

$\int_K h \varphi d\mu \leq \int_K \varphi d\mu$, we have $h \leq 1$. That is, $0 \leq h \leq 1$ and we have the required representations

$$\begin{aligned} \langle T^{*j} T^k u, v \rangle_H &= \int_{\sigma(T)} \bar{z}^j z^k h(z) d\mu(z) \quad \text{for all } j, k \in \mathbb{N}^n \text{ and} \\ \langle S^{*j} S^k u, v \rangle_H &= \int_{\sigma(S)} \bar{z}^j z^k d\mu(z) \text{ for all } j, k \in \mathbb{N}^n. \text{ Q.E.D.} \end{aligned}$$

Acknowledgment

Many gratitude to Professor Octavian Stănișilă for early supporting me in continuing the study of the many problems of bounded and unbounded moments.

R E F E R E N C E S

[1] L. Lemnate-Ninulescu, On a k-Complex Moment Problem, Mathematica ,2010, to appear.

- [2] *L.lemnete-Ninulescu*, Operator-valued Trigonometric and L -Moment Problems, Rev.Roumaine Math.Purs Appl. **5-6**, 2009
- [3] *L.lemnete-Ninulescu, A.Zlatescu*, Some new aspects of the L -Moment Problem, Rev.Roumaine Math.Purs Appl. **3**, 2010.
- [4] *L.lemnete-Ninulescu*, Positive-definite Operator-valued functions and the Moment Problem, Operator Theory **22**, Theta 2010, 113-123.
- [5] *Sun Hyun Park*, On Star Moment Sequence of Operators, Honam Mathematical J. **29**, 2007, No.4., 569-576.