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OSCILLATION OF CERTAIN NONLINEAR SECOND-ORDER
DAMPED DELAY DYNAMIC EQUATIONS ON TIME

SCALES

Da-Xue Chen1, Guang-Hui Liu2, Yu-Hua Long3

The paper present some oscillation criteria for the nonlinear
second-order damped delay dynamic equation

(
r(t)|x∆(t)|β−1x∆(t)

)∆

+ p(t)|x∆σ

(t)|β−1x∆σ

(t) + q(t)f(x(τ(t))) = 0

on an arbitrary time scale T, where β > 0 is a constant, supT = ∞, σ(t) :=
inf{s ∈ T : s > t} is the forward jump operator on T, and x∆σ

:= x∆ ◦ σ.
Our results improve and extend some known results in which β > 0 is a
quotient of odd positive integers. Examples are given to illustrate our main
results.
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1. Introduction

The purpose of this paper is to give several oscillation criteria for the
nonlinear second-order damped delay dynamic equation

(
r(t)|x∆(t)|β−1x∆(t)

)∆

+ p(t)|x∆σ

(t)|β−1x∆σ

(t) + q(t)f(x(τ(t))) = 0 (1)

on an arbitrary time scale T, where β > 0 is a constant, supT = ∞, σ(t) :=
inf{s ∈ T : s > t} is the forward jump operator on T, x∆σ

:= x∆ ◦ σ, r, p
and q are positive rd-continuous functions on the time scale interval [t0,∞),
τ : T → T satisfies τ(t) ≤ t for t ∈ T, and limt→∞ τ(t) = ∞. The function
f ∈ C(R,R) is assumed to satisfy uf(u) > 0 and |f(u)| ≥ K|uβ|, for u 6= 0
and for some K > 0.
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Recall that a solution of (1) is a nontrivial real function x such that
x ∈ C1

rd[tx,∞) and r(t)|x∆(t)|β−1x∆(t) ∈ C1
rd[tx,∞) for a certain tx ≥ t0 and

satisfying (1) for t ≥ tx. Our attention is restricted to those solutions of (1)
which exist on the half-line [tx,∞) and satisfy sup{|x(t)| : t > t∗} > 0 for any
t∗ ≥ tx. A solution x of (1) is said to be oscillatory if it is neither eventually
positive nor eventually negative; otherwise it is nonoscillatory. Equation (1)
is said to be oscillatory if all its solutions are oscillatory.

Recently, much interest has focused on obtaining sufficient conditions for
the oscillation and nonoscillation of solutions of different classes of dynamic
equations on time scales, and we refer the reader to [1, 2, 3, 4, 5, 6, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30].
In particular, much work has been done on second-order damped dynamic
equations. For example, Guseinov and Kaymakçalan [24] considered the linear
damped dynamic equation

x∆∆(t) + p(t)x∆(t) + q(t)x(t) = 0, (2)

where p and q are positive rd-continuous functions, and established some suf-
ficient conditions for nonoscillation. They proved that if∫ ∞

t0

p(t)∆t < ∞ and

∫ ∞

t0

tq(t)∆t < ∞,

then (2) is nonoscillatory.
Erbe et al. [25] considered (2) and the nonlinear damped dynamic equa-

tion
x∆∆(t) + p(t)x∆σ

(t) + q(t)(f ◦ xσ)(t) = 0, (3)

where p and q are positive rd-continuous functions and f ∈ C(R,R) is assumed
to satisfy

xf(x) > 0 for x 6= 0 and |f(x)| ≥ K|x| for some K > 0, (4)

and established some sufficient conditions for oscillation by reducing the equa-
tions to the self-adjoint form and employing the generalized Riccati transfor-
mation technique.

Erbe and Peterson [26] considered (3) and obtained an oscillation crite-
rion when p is nonnegative rd-continuous function and

f ′(x) ≥ f(x)

x
≥ λ > 0 for |x| ≥ L > 0. (5)

No explicit sign assumptions are made with respect to the coefficient q and
the oscillation criterion is obtained by comparing the oscillation of (3) with
the self-adjoint equation

(ep(t, t0)x
∆(t))∆ + λep(t, t0)q(t)x

σ(t) = 0,

when
∫∞

t0
e−p(t, t0)∆t = ∞.

Bohner et al. [27] considered (3) when

f ′(x) > 0 and xf(x) > 0 for x 6= 0 (6)
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and established some new oscillation criteria in which no explicit sign assump-
tions on p and q are required. The results are obtained by reducing the equation
to the nonlinear equation

(ep(t, t0)x
∆(t))∆ + ep(t, t0)q(t)(f ◦ xσ)(t) = 0.

Saker et al. [28] gave some oscillation criteria for the second-order non-
linear damped dynamic equation

(r(t)x∆(t))∆ + p(t)x∆σ

(t) + q(t)(f ◦ xσ)(t) = 0,

where r, p and q are positive rd-continuous functions and f ∈ C(R,R) satisfies
(4) or

f ′(x) ≥ K for x 6= 0 and some K > 0.

The results are essentially new and complement the nonoscillation conditions
for (2) for the linear case that has been established in [24].

Very recently, Erbe et al. [29] presented several oscillation criteria for
the second-order nonlinear damped delay dynamic equation

(
r(t)(x∆(t))β

)∆

+ p(t)(x∆σ

(t))β + q(t)f(x(τ(t))) = 0,

where β is a quotient of odd positive integers.
However, all the results in [24, 25, 26, 27, 28] cannot be applied to (1)

when β 6= 1. Also, the results in [29] cannot be applied to (1) when β is not
equal to a quotient of odd positive integers. Furthermore, in the case when

f(x) = x
(

1
9
+ 1

1+x2

)
, the conditions (5) and (6) do not hold and the results in

[26, 27] cannot be applied, since f ′(x) = (x2−2)(x2−5)
9(1+x2)2

changes sign four times

(see Saker et al. [28]). Therefore, it is of great interest to study (1) when β > 0
is a constant. The main goal of this paper is to establish some new criteria for
the oscillation of (1) when β > 0 is a constant. Our results are essentially new
and extend and improve the results in [24, 25, 26, 27, 28, 29].

This paper is organized as follows: In the next section, we present some
preliminaries on time scales and several lemmas which enable us to prove our
main results. In Section 3, we establish several new oscillation criteria for (1).
In the last section, we illustrate our results with some examples to which the
oscillation criteria in [24, 25, 26, 27, 28, 29] fail to apply.

In what follows, for convenience, when we write a functional inequal-
ity without specifying its domain of validity we assume that it holds for all
sufficiently large t.

2. Preliminaries on time scales and lemmas

For completeness, we recall the following concepts related to the notion
of time scales. More details can be found in [8, 9].

A time scale T is an arbitrary nonempty closed subset of the real numbers
R. We assume throughout that T has the topology that it inherits from the
standard topology on the real numbers R. Some examples of time scales are
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as follows: the real numbers R, the integers Z, the positive integers N, the
nonnegative integers N0, [0, 1] ∪ [2, 3], [0, 1] ∪ N, hZ := {hk : k ∈ Z, h > 0}
and qZ := {qk : k ∈ Z, q > 1} ∪ {0}. But the rational numbers Q, the
complex numbers C and the open interval (0, 1) are no time scales. Many
other interesting time scales exist, and they give rise to plenty of applications
(see [8]).

For t ∈ T, the forward jump operator and the backward jump operator
are defined by:

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},
where inf ø = supT (i.e., σ(t) = t if T has a maximum t) and sup ø = inf T
(i.e., ρ(t) = t if T has a minimum t), here ø denotes the empty set.

Let t ∈ T. If σ(t) > t, we say that t is right-scattered, while if ρ(t) < t,
we say that t is left-scattered. Points that are right-scattered and left-scattered
at the same time are called isolated. Also, if t < supT and σ(t) = t, then t
is called right-dense, and if t > inf T and ρ(t) = t, then t is called left-dense.
The graininess function µ : T→ [0,∞) is defined by

µ(t) := σ(t)− t.

We also need below the set Tκ: If T has a left-scattered maximum m,
then Tκ = T − {m}. Otherwise, Tκ = T. Let f : T → R, then we define the
function fσ : Tκ → R by

fσ(t) := f(σ(t)) for all t ∈ Tκ,

i.e., fσ := f ◦ σ.
For a, b ∈ T with a < b, we define the interval [a, b] in T by

[a, b] := {t ∈ T : a ≤ t ≤ b}.
Open intervals and half-open intervals, etc. are defined accordingly.

Fix t ∈ Tκ and let f : T→ R. Define f∆(t) to be the number (provided
it exists) with the property that given any ε > 0, there is a neighbourhood U
of t such that

|[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s| for all s ∈ U.

In this case, we say that f∆(t) is the (delta) derivative of f at t and that f is
(delta) differentiable at t.

Assume that f : T→ R and let t ∈ Tκ. If f is (delta) differentiable at t,
then

f(σ(t)) = f(t) + µ(t)f∆(t).

A function f : T→ R is said to be right-dense continuous (rd-continuous)
provided it is continuous at each right-dense point in T and its left-sided limits
exist (finite) at all left-dense points in T. The set of all such rd-continuous
functions is denoted by

Crd(T) = Crd(T,R).
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The set of functions f : T→ R that are (delta) differentiable and whose
(delta) derivative is rd-continuous is denoted by

C1
rd(T) = C1

rd(T,R).

We will make use of the following product and quotient rules for the
(delta) derivatives of the product fg and the quotient f/g of two (delta) dif-
ferentiable functions f and g:

(fg)∆ = f∆g + fσg∆ = fg∆ + f∆gσ (7)

and (f

g

)∆

=
f∆g − fg∆

ggσ
, (8)

where gσ = g ◦ σ and ggσ 6= 0.
For a, b ∈ T and a (delta) differentiable function f , the Cauchy (delta)

integral of f∆ is defined by
∫ b

a

f∆(t)∆t = f(b)− f(a).

The integration by parts formula reads
∫ b

a

f(t)g∆(t)∆t = f(b)g(b)− f(a)g(a)−
∫ b

a

f∆(t)gσ(t)∆t (9)

or ∫ b

a

fσ(t)g∆(t)∆t = f(b)g(b)− f(a)g(a)−
∫ b

a

f∆(t)g(t)∆t.

The infinite integral is defined as
∫ ∞

a

f(s)∆s = lim
t→∞

∫ t

a

f(s)∆s.

Next we present some lemmas which we will need in the proof of our
main results.

Throughout this paper, we let

E(t) := e p(t)
rσ(t)

(t, t0), g(t) :=

∫ ∞

τ(t)

( 1

E(s)r(s)

)1/β

∆s,

and

α(t, u) :=

∫ τ(t)

u

(
1

r(s)

)1/β

∆s

/ ∫ σ(t)

u

(
1

r(s)

)1/β

∆s.

Lemma 2.1. Suppose that
∫ ∞

t0

( 1

E(t)r(t)

)1/β

∆t = ∞ (10)
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holds and that x is an eventually positive solution of (1). Then x∆(t) > 0 and(
r(t)(x∆(t))β

)∆

< 0.

Proof. Take t1 ≥ t0 such that

x(τ(t)) > 0, t ∈ [t1,∞). (11)

Therefore, from (1) we have for t ∈ [t1,∞)
(
r(t)|x∆(t)|β−1x∆(t)

)∆

+ p(t)|x∆σ

(t)|β−1x∆σ

(t) = −q(t)f(x(τ(t))) < 0, (12)

which implies
(
r(t)|x∆(t)|β−1x∆(t)

)∆

E(t) +
(
r(t)|x∆(t)|β−1x∆(t)

)σ

E(t)
p(t)

rσ(t)
< 0

for t ∈ [t1,∞). Since E∆(t) = E(t) p(t)
rσ(t)

, we obtain

(
E(t)r(t)|x∆(t)|β−1x∆(t)

)∆

< 0, t ∈ [t1,∞). (13)

Now, we claim x∆(t) > 0 for t ∈ [t1,∞). If not, then there exists t2 ≥ t1 such
that x∆(t2) ≤ 0. Take t3 > t2. Since (13) implies that E(t)r(t)|x∆(t)|β−1x∆(t)
is strictly decreasing on [t1,∞), we get for t ≥ t3

E(t)r(t)|x∆(t)|β−1x∆(t) ≤ c1 := E(t3)r(t3)|x∆(t3)|β−1x∆(t3)

< E(t2)r(t2)|x∆(t2)|β−1x∆(t2) ≤ 0.

Therefore, for t ≥ t3 we conclude that x∆(t) < 0, −E(t)r(t)(−x∆(t))β ≤ c1

and

x∆(t) ≤ −(−c1)
1/β

( 1

E(t)r(t)

)1/β

.

Integrating from t3 to t, we find

x(t) ≤ x(t3)− (−c1)
1/β

∫ t

t3

( 1

E(s)r(s)

)1/β

∆s, t ∈ [t3,∞).

Thus, from (10) we obtain that x(t) is eventually negative, which implies a
contradiction. Hence, we have x∆(t) > 0 for t ∈ [t1,∞) and thus, from (12)
we get

(
r(t)(x∆(t))β

)∆

= −p(t)(x∆σ

(t))β − q(t)f(x(τ(t))) < 0, t ∈ [t1,∞).

The proof is complete. ¤

Lemma 2.2. Suppose that
∫ ∞

t0

[
1

E(v)r(v)

∫ v

t0

E(u)q(u)gβ(u)∆u

]1/β

∆v = ∞ (14)
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holds and that x is an eventually positive solution of (1). Then x∆(t) > 0 and(
r(t)(x∆(t))β

)∆

< 0.

Proof. We proceed as in the proof of Lemma 2.1 to get that (11)–(13) hold.
Now, we claim x∆(t) > 0 for t ∈ [t1,∞). If not, then we proceed as in the
proof of Lemma 2.1 to obtain that there exists t3 ≥ t1 such that x∆(t) < 0 for
t ∈ [t3,∞). Take t4 ≥ t3 such that τ(t) ≥ t3 for t ∈ [t4,∞). Using the fact
that −E(t)r(t)(−x∆(t))β is strictly decreasing on [t1,∞), we have

−x(τ(t)) ≤ x(∞)− x(τ(t))

= −
∫ ∞

τ(t)

[E(s)r(s)(−x∆(s))β]1/β

[E(s)r(s)]1/β
∆s

≤ −[E(τ(t))r(τ(t))(−x∆(τ(t)))β]1/β

∫ ∞

τ(t)

1

[E(s)r(s)]1/β
∆s

≤ −[E(t3)r(t3)(−x∆(t3))
β]1/β

∫ ∞

τ(t)

1

[E(s)r(s)]1/β
∆s

= c2g(t), t ∈ [t4,∞),

where x(∞) := limt→∞ x(t) ≥ 0 and c2 := −[E(t3)r(t3)(−x∆(t3))
β]1/β < 0.

Thus, from (12) we obtain

−
(
E(t)r(t)(−x∆(t))β

)∆

= −E(t)q(t)f(x(τ(t)))

≤ −KE(t)q(t)xβ(τ(t))

≤ −K(−c2)
βE(t)q(t)gβ(t), t ∈ [t4,∞).

Integrating from t4 to t, we get

− E(t)r(t)(−x∆(t))β

≤ −E(t4)r(t4)(−x∆(t4))
β −K(−c2)

β

∫ t

t4

E(u)q(u)gβ(u)∆u

≤ −K(−c2)
β

∫ t

t4

E(u)q(u)gβ(u)∆u, t ∈ [t4,∞).

From the last inequality, we have

x∆(t) ≤ K
1
β c2

[
1

E(t)r(t)

∫ t

t4

E(u)q(u)gβ(u)∆u

]1/β

, t ∈ [t4,∞).

Integrating from t4 to t, we find

x(t) ≤ x(t4) + K
1
β c2

∫ t

t4

[
1

E(v)r(v)

∫ v

t4

E(u)q(u)gβ(u)∆u

]1/β

∆v, t ∈ [t4,∞).

Therefore by (14), we obtain limt→∞ x(t) = −∞, which contradicts the fact
that x is an eventually positive solution of (1). Hence, we have x∆(t) > 0 for
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t ∈ [t1,∞) and thus, from (12) we get
(
r(t)(x∆(t))β

)∆

= −p(t)(x∆σ

(t))β − q(t)f(x(τ(t))) < 0, t ∈ [t1,∞).

The proof is complete. ¤

Lemma 2.3. Assume that∫ ∞

t0

( 1

E(v)r(v)

∫ v

t0

E(u)q(u)∆u
)1/β

∆v = ∞ (15)

holds and that x is an eventually positive solution of (1). Then either

x∆(t) > 0 and
(
r(t)(x∆(t))β

)∆

< 0

or limt→∞ x(t) = 0.

Proof. We consider two cases: (i) x∆(t) > 0; (ii) x∆(t) ≤ 0.
Case (i). Let x∆(t) > 0. In this case, it follows from (1) that

(
r(t)(x∆(t))β

)∆

= −p(t)(x∆σ

(t))β − q(t)f(x(τ(t))) < 0.

Case (ii). Let x∆(t) ≤ 0. In this case, we get limt→∞ x(t) := l ≥ 0 and
x(τ(t)) ≥ l. Therefore, from (1) there exists t1 ≥ t0 such that

−
(
E(t)r(t)(−x∆(t))β

)∆

= −E(t)q(t)f(x(τ(t)))

≤ −KE(t)q(t)xβ(τ(t))

≤ −KlβE(t)q(t), t ∈ [t1,∞).

Integrating from t1 to t, we have

−E(t)r(t)(−x∆(t))β ≤ −E(t1)r(t1)(−x∆(t1))
β −Klβ

∫ t

t1

E(u)q(u)∆u

≤ −Klβ
∫ t

t1

E(u)q(u)∆u, t ∈ [t1,∞).

Thus, we obtain

x∆(t) ≤ −K
1
β l

( 1

E(t)r(t)

∫ t

t4

E(u)q(u)∆u
)1/β

, t ∈ [t1,∞).

Integrating from t1 to t, we get

x(t) ≤ x(t1)−K
1
β l

∫ t

t1

( 1

E(v)r(v)

∫ v

t1

E(u)q(u)∆u
)1/β

∆v, t ∈ [t1,∞).

If l > 0, then by (15) we obtain limt→∞ x(t) = −∞, which contradicts the
fact that x is an eventually positive solution of (1). Hence, we have l = 0, i.e.,
limt→∞ x(t) = 0. The proof is complete. ¤
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Lemma 2.4. Assume that there exists T ≥ t0 such that

x(t) > 0, x∆(t) > 0 and
(
r(t)(x∆(t))β

)∆

< 0 for t ∈ [T,∞).

Then x(τ(t)) ≥ α(t, T )xσ(t) for t ∈ [T1,∞), where T1 > T satisfies that
τ(t) > T for t ∈ [T1,∞).

Proof. Since r(t)(x∆(t))β is strictly decreasing on [T,∞), for t ∈ [T1,∞) we
have

xσ(t)− x(τ(t)) =

∫ σ(t)

τ(t)

[r(s)(x∆(s))β]1/β

r1/β(s)
∆s

≤ [r(τ(t))(x∆(τ(t)))β]1/β

∫ σ(t)

τ(t)

1

r1/β(s)
∆s

and
xσ(t)

x(τ(t))
≤ 1 +

[r(τ(t))(x∆(τ(t)))β]1/β

x(τ(t))

∫ σ(t)

τ(t)

1

r1/β(s)
∆s. (16)

Also, for t ∈ [T1,∞) we get

x(τ(t)) > x(τ(t))− x(T ) =

∫ τ(t)

T

[r(s)(x∆(s))β]1/β

r1/β(s)
∆s

≥ [r(τ(t))(x∆(τ(t)))β]1/β

∫ τ(t)

T

1

r1/β(s)
∆s

and
[r(τ(t))(x∆(τ(t)))β]1/β

x(τ(t))
<

( ∫ τ(t)

T

1

r1/β(s)
∆s

)−1

. (17)

Therefore, (16) and (17) imply

xσ(t)

x(τ(t))
≤ 1 +

∫ σ(t)

τ(t)

1

r1/β(s)
∆s

( ∫ τ(t)

T

1

r1/β(s)
∆s

)−1

=

∫ σ(t)

T

1

r1/β(s)
∆s

( ∫ τ(t)

T

1

r1/β(s)
∆s

)−1

for t ∈ [T1,∞). Hence, we obtain x(τ(t)) ≥ α(t, T )xσ(t) for t ≥ T1. The proof
is complete. ¤

Lemma 2.5. (Bohner and Peterson [8], p. 32, Theorem 1.87) Let f : R→ R
be continuously differentiable and suppose g : T → R is delta differentiable.
Then f ◦ g : T→ R is delta differentiable and satisfies

(f ◦ g)∆(t) =

{ ∫ 1

0

f ′(g(t) + hµ(t)g∆(t))dh

}
g∆(t).
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Lemma 2.6. (Hardy et al. [7]) If X and Y are nonnegative, then

λXY λ−1 −Xλ ≤ (λ− 1)Y λ when λ > 1,

where the equality holds if and only if X = Y.

3. Main results

In this section, we state and prove our main results.

Theorem 3.1. Suppose that one of the conditions (10) or (14) holds. Fur-
thermore, suppose that there exists a positive ∆-differentiable function ϕ such
that for all sufficiently large T ≥ t0,

lim sup
t→∞

∫ t

T1

[
Kαβ(s, T )ϕ(s)q(s)− r(s)(Q+(s))β+1

(β + 1)β+1ϕβ(s)

]
∆s = ∞, (18)

where T1 > T satisfies that τ(t) > T for t ∈ [T1,∞) and Q+(t) := max{0, Q(t)},
here Q(t) := ϕ∆(t)− ϕ(t)p(t)

rσ(t)
. Then every solution of (1) is oscillatory.

Proof. Suppose that x is a nonoscillatory solution of (1). Without loss of
generality, we may assume that x is an eventually positive solution of (1).
Then, by Lemmas 2.1 and 2.2 there exists T ≥ t0 such that

x(τ(t)) > 0, x∆(t) > 0 and
(
r(t)(x∆(t))β

)∆

< 0 for t ∈ [T,∞).

Define the function w by the generalized Riccati substitution

w(t) = ϕ(t)
r(t)(x∆(t))β

xβ(t)
. (19)

It is easy to see that w(t) > 0 for t ∈ [T,∞). By the product and quotient
rules (7) and (8) for the ∆-derivative of two ∆-differentiable functions, we have

w∆(t) = ϕ∆(t)
(r(t)(x∆(t))β

xβ(t)

)σ

+ ϕ(t)
(r(t)(x∆(t))β

xβ(t)

)∆

= ϕ∆(t)
(r(t)(x∆(t))β

xβ(t)

)σ

+ ϕ(t)
[r(t)(x∆(t))β]∆

(xβ(t))σ

− ϕ(t)
r(t)(x∆(t))β(xβ(t))∆

xβ(t)(xβ(t))σ
, t ∈ [T,∞).

Hence, from (1), (19) and the definition of Q we obtain for t ∈ [T,∞)

w∆(t) ≤ Q(t)

ϕσ(t)
wσ(t)−Kϕ(t)q(t)

(x(τ(t))

xσ(t)

)β

−ϕ(t)
r(t)(x∆(t))β(xβ(t))∆

xβ(t)(xβ(t))σ
. (20)

Since t ≤ σ(t) and
(
r(t)(x∆(t))β

)∆

is strictly decreasing on t ∈ [T,∞), we get

r(t)(x∆(t))β ≥
(
r(t)(x∆(t))β

)σ

for t ∈ [T,∞). Thus, from (19) and (20), we
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have

w∆(t) ≤ Q(t)

ϕσ(t)
wσ(t)−Kϕ(t)q(t)

(x(τ(t))

xσ(t)

)β

−ϕ(t)
wσ(t)

ϕσ(t)

(xβ(t))∆

xβ(t)
, t ∈ [T,∞).

Taking T1 > T such that τ(t) > T for t ∈ [T1,∞), it follows from Lemma 2.4
that

w∆(t) ≤ Q(t)

ϕσ(t)
wσ(t)−Kαβ(t, T )ϕ(t)q(t)− ϕ(t)

wσ(t)

ϕσ(t)

(xβ(t))∆

xβ(t)
, t ∈ [T1,∞).

By Lemma 2.5, for t ∈ [T1,∞) we obtain

(xβ(t))∆ = β

{∫ 1

0

[x(t) + hµ(t)x∆(t)]β−1dh

}
x∆(t)

= β

{∫ 1

0

[(1− h)x(t) + hxσ(t)]β−1dh

}
x∆(t)

≥
{

β(x(t))β−1x∆(t), β > 1,
β(xσ(t))β−1x∆(t), 0 < β ≤ 1.

Therefore, for t ∈ [T1,∞), if 0 < β ≤ 1, we get

w∆(t) ≤ Q(t)

ϕσ(t)
wσ(t)−Kαβ(t, T )ϕ(t)q(t)− βϕ(t)

wσ(t)

ϕσ(t)

x∆(t)

xσ(t)

(xσ(t)

x(t)

)β

, (21)

whereas if β > 1, we get

w∆(t) ≤ Q(t)

ϕσ(t)
wσ(t)−Kαβ(t, T )ϕ(t)q(t)− βϕ(t)

wσ(t)

ϕσ(t)

x∆(t)

xσ(t)

xσ(t)

x(t)
. (22)

Using the fact that x(t) is strictly increasing and r(t)(x∆(t))β is strictly de-
creasing, we have

xσ(t) ≥ x(t) and x∆(t) ≥
(rσ(t)

r(t)

)1/β

(x∆(t))σ, t ∈ [T1,∞). (23)

From (21)–(23), we obtain for t ∈ [T1,∞)

w∆(t) ≤ Q(t)

ϕσ(t)
wσ(t)−Kαβ(t, T )ϕ(t)q(t)− βϕ(t)

wσ(t)

ϕσ(t)

(rσ(t)

r(t)

)1/β (x∆(t))σ

xσ(t)
.

In view of (19), we get for t ∈ [T1,∞)

w∆(t) ≤ Q+(t)

ϕσ(t)
wσ(t)−Kαβ(t, T )ϕ(t)q(t)− βϕ(t)(wσ(t))λ

(ϕσ(t))λr1/β(t)
, (24)

where λ := 1 + 1
β
. Taking

X =
(βϕ(t))1/λwσ(t)

ϕσ(t)r1/(β+1)(t)
and Y =

(βr(t))1/λ(Q+(t))β

(β + 1)βϕβ/λ(t)
,
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by Lemma 2.6 and (24) we have

w∆(t) ≤ r(t)(Q+(t))β+1

(β + 1)β+1ϕβ(t)
−Kαβ(t, T )ϕ(t)q(t), t ∈ [T1,∞).

Integrating from T1 to t, we obtain for t ∈ [T1,∞)

∫ t

T1

[
Kαβ(s, T )ϕ(s)q(s)− r(s)(Q+(s))β+1

(β + 1)β+1ϕβ(s)

]
∆s ≤ w(T1)− w(t) < w(T1),

which implies a contradiction to (18). The proof is complete. ¤

The following theorem gives a Philos-type oscillation criterion for (1).

Theorem 3.2. Suppose that one of the conditions (10) or (14) holds. Fur-
thermore, suppose that there exist a positive function ϕ ∈ C1

rd([t0,∞),R) and
a function H ∈ Crd(D,R), where D := {(t, s) ∈ T× T : t ≥ s ≥ t0}, such that

H(t, t) = 0 for t ≥ t0, H(t, s) > 0 for (t, s) ∈ D0,

where D0 := {(t, s) ∈ T × T : t > s ≥ t0}, and H has a nonpositive rd-
continuous delta partial derivative H∆s(t, s) on D0 with respect to the second
variable and satisfies, for all sufficiently large T ≥ t0,

lim sup
t→∞

1

H(t, T1)

∫ t−1

T1

[
KH(t, s)αβ(s, T )ϕ(s)q(s)

− r(s)(h+(t, s)ϕσ(s))β+1

(β + 1)β+1(H(t, s)ϕ(s))β

]
∆s = ∞, (25)

where T1 is defined as in Theorem 3.1 and h+(t, s) := max{0, H∆s(t, s) +

H(t, s)Q+(s)
ϕσ(s)

}, here Q+ is defined as in Theorem 3.1. Then all solutions of (1)

are oscillatory.

Proof. Suppose that x is a nonoscillatory solution of (1). Without loss of
generality, we may assume that x is an eventually positive solution of (1). We
proceed as in the proof of Theorem 3.1 to get that (24) holds. Multiplying
(24) by H(t, s) and integrating from T1 to t− 1, we find

∫ t−1

T1

H(t, s)Kαβ(s, T )ϕ(s)q(s)∆s

≤ −
∫ t−1

T1

H(t, s)w∆(s)∆s +

∫ t−1

T1

H(t, s)
Q+(s)

ϕσ(s)
wσ(s)∆s

−
∫ t−1

T1

H(t, s)
βϕ(s)(wσ(s))λ

(ϕσ(s))λr1/β(s)
∆s, t ∈ [T1 + 1,∞). (26)
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Applying the integration by parts formula (9), we get

−
∫ t−1

T1

H(t, s)w∆(s)∆s

=
[
−H(t, s)w(s)

]s=t−1

s=T1

+

∫ t−1

T1

H∆s(t, s)wσ(s)∆s

< H(t, T1)w(T1) +

∫ t−1

T1

H∆s(t, s)wσ(s)∆s, t ∈ [T1 + 1,∞). (27)

Substituting (27) in (26), we obtain for t ∈ [T1 + 1,∞)
∫ t−1

T1

H(t, s)Kαβ(s, T )ϕ(s)q(s)∆s

< H(t, T1)w(T1)

+

∫ t−1

T1

{[
H∆s(t, s) + H(t, s)

Q+(s)

ϕσ(s)

]
wσ(s)−H(t, s)

βϕ(s)(wσ(s))λ

(ϕσ(s))λr1/β(s)

}
∆s

≤ H(t, T1)w(T1) +

∫ t−1

T1

[
h+(t, s)wσ(s)−H(t, s)

βϕ(s)(wσ(s))λ

(ϕσ(s))λr1/β(s)

]
∆s. (28)

Therefore by using Lemma 2.6 in (28) with

X =
(H(t, s)βϕ(s))1/λwσ(s)

ϕσ(s)r1/(β+1)(s)
and Y =

r1/λ(s)(h+(t, s)ϕσ(s))β

λβ(H(t, s)βϕ(s))β/λ
,

we have for t ∈ [T1 + 1,∞)
∫ t−1

T1

H(t, s)Kαβ(s, T )ϕ(s)q(s)∆s

< H(t, T1)w(T1) +

∫ t−1

T1

r(s)(h+(t, s)ϕσ(s))β+1

(β + 1)β+1(H(t, s)ϕ(s))β
∆s.

Therefore, we obtain for t ∈ [T1 + 1,∞)

1

H(t, T1)

∫ t−1

T1

[
H(t, s)Kαβ(s, T )ϕ(s)q(s)− r(s)(h+(t, s)ϕσ(s))β+1

(β + 1)β+1(H(t, s)ϕ(s))β

]
∆s

< w(T1),

which implies a contradiction to (25). Thus, this completes the proof. ¤

Remark 3.1. From Theorems 3.1 and 3.2, we can obtain many different suffi-
cient conditions for the oscillation of (1) with different choices of the functions
ϕ and H.

For example, let ϕ(t) = t, then Theorem 3.1 yields the following result.
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Corollary 3.1. Suppose that one of the conditions (10) or (14) holds and for
all sufficiently large T ,

lim sup
t→∞

∫ t

T1

[
Ksαβ(s, T )q(s)− r(s)(V+(s))β+1

(β + 1)β+1sβ

]
∆s = ∞, (29)

where T1 is defined as in Theorem 3.1 and V+(t) := max{0, 1 − tp(t)
rσ(t)

}. Then

every solution of (1) is oscillatory.

Let ϕ(t) = 1, then from Theorem 3.1 we obtain the following result.

Corollary 3.2. Suppose that one of the conditions (10) or (14) holds and for
all sufficiently large T ,

∫ ∞

T1

αβ(t, T )q(t)∆t = ∞, (30)

where T1 is defined as in Theorem 3.1. Then every solution of (1) is oscillatory.

Let ϕ(t) = 1 and H(t, s) = (t − s)m, (t, s) ∈ D, where m ≥ 1 is a con-
stant, then H∆s(t, s) ≤ −m(t − σ(s))m−1 ≤ 0 for (t, s) ∈ D0 (see Saker [6]).
Therefore, from Theorem 3.2 we obtain the following Kamenev-type oscillation
criterion for (1).

Corollary 3.3. Suppose that one of the conditions (10) or (14) holds and for
all sufficiently large T ,

lim sup
t→∞

1

(t− T1)m

∫ t

T1

(t− s)mαβ(s, T )q(s)∆s = ∞, (31)

where T1 is defined as in Theorem 3.1 and m ≥ 1 is a constant. Then all
solutions of (1) are oscillatory.

Also, by Lemma 2.3, we obtain some other oscillation criteria for (1) as
in Theorems 3.1 and 3.2 and Corollaries 3.1–3.3 as follows.

Corollary 3.4. Assume that (15) and (18) hold. Then every solution of (1)
is oscillatory or tends to zero as t →∞.

Corollary 3.5. Assume that (15) and (25) hold. Then every solution of (1)
is oscillatory or tends to zero as t →∞.

Corollary 3.6. Assume that (15) and (29) hold. Then every solution of (1)
is oscillatory or tends to zero as t →∞.
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Corollary 3.7. Assume that (15) and (30) hold. Then every solution of (1)
is oscillatory or tends to zero as t →∞.

Corollary 3.8. Assume that (15) and (31) hold. Then every solution of (1)
is oscillatory or tends to zero as t →∞.

4. Examples

In this section, we give some examples to illustrate our main results.

Example 4.1. Consider the second-order nonlinear damped delay dynamic
equation

(tβ−1

b(t)
|x∆(t)|β−1x∆(t)

)∆

+
(σ(t))β−1

tbσ(t)
|x∆σ

(t)|β−1x∆σ

(t)

+
1

αβ(t, t∗)t2
|x(τ(t))|β−1x(τ(t)) = 0, (32)

where β > 0 is a constant, t∗ satisfies that t0 > t∗ > 0 and τ(t) > t∗ for

t ∈ [t0,∞), and b(t) := e 1
t
(t, t0). In (32), r(t) = tβ−1

b(t)
, p(t) = (σ(t))β−1

tbσ(t)
, q(t) =

1
αβ(t,t∗)t2 and f(u) = |u|β−1u.

We will apply Corollary 3.1. We have
∫ ∞

t0

( 1

E(t)r(t)

)1/β

∆t =

∫ ∞

t0

1

t1−
1
β

∆t = ∞,

which implies (10) holds. Furthermore, we see that V+(t) := max{0, 1− tp(t)
rσ(t)

} =

0 and

lim sup
t→∞

∫ t

T1

[
Ksαβ(s, T )q(s)− r(s)(V+(s))β+1

(β + 1)β+1sβ

]
∆s

= lim sup
t→∞

∫ t

T1

K

(
α(s, T )

α(s, t∗)

)β
1

s
∆s = lim sup

t→∞

∫ t

T1

K
1

s
∆s = ∞,

since limt→∞
α(t,T )
α(t,t∗) = 1. Therefore by Corollary 3.1, every solution of (32) is

oscillatory.

Example 4.2. Consider the second-order nonlinear damped delay dynamic
equation

((tσ(t))β

b(t)
|x∆(t)|β−1x∆(t)

)∆

+
(σ(t))β

bσ(t)
|x∆σ

(t)|β−1x∆σ

(t)

+
tβ

αβ(t, t∗)
|x(τ(t))|β−1x(τ(t)) = 0, (33)
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where 0 < β ≤ 1 is a constant, t∗ satisfies that t0 > t∗ > 0 and τ(t) > t∗ for
t ∈ [t0,∞), b(t) := e 1

(σ(σ(t)))β
(t, t0) and we suppose

∫ ∞

t0

1

t1−
1
β σ(t)

∆t = ∞ (34)

for those time scales T. This holds for many time scales, for example when
T = qN0

0 := {qk
0 : k ∈ N0, q0 > 1}.

In (33), r(t) = (tσ(t))β

b(t)
, p(t) = (σ(t))β

bσ(t)
, q(t) = tβ

αβ(t,t∗) and f(u) = |u|β−1u.

It is clear that∫ ∞

t0

( 1

E(t)r(t)

)1/β

∆t =

∫ ∞

t0

1

tσ(t)
∆t =

∫ ∞

t0

(
− 1

t

)∆

∆t =
1

t0
< ∞,

which implies (10) does not hold. Now we prove that (14) holds. We have

∫ ∞

t0

[
1

E(v)r(v)

∫ v

t0

E(u)q(u)gβ(u)∆u

]1/β

∆v

≥
∫ ∞

t0

[
1

(vσ(v))β

∫ v

t0

( ug(u)

α(u, t∗)

)β

∆u

]1/β

∆v

≥
∫ ∞

t0

[
v − t0

(vσ(v))β

]1/β

∆v, (35)

since for t ∈ [t0,∞), E(t) := e 1

(σ(σ(t)))β
(t, t0) ≥ 1 and

g(t) :=

∫ ∞

τ(t)

( 1

E(s)r(s)

)1/β

∆s =

∫ ∞

τ(t)

1

sσ(s)
∆s

=

∫ ∞

τ(t)

(
− 1

s

)∆

∆s =
1

τ(t)
≥ 1

t
≥ α(t, t∗)

t
.

Take 0 < c < 1 such that t − t0 > ct for t ≥ tc > t0, then from (35) and (34)
we obtain

∫ ∞

t0

[
1

E(v)r(v)

∫ v

t0

E(u)q(u)gβ(u)∆u

]1/β

∆v ≥ c
1
β

∫ ∞

tc

1

v1− 1
β σ(v)

∆v = ∞,

which implies (14) holds. To apply Corollary 3.2, it remains to prove that (30)
holds. We get

∫ ∞

T1

αβ(t, T )q(t)∆t =

∫ ∞

T1

(
α(t, T )

α(t, t∗)

)β

tβ∆t =

∫ ∞

T1

tβ∆t = ∞,

since limt→∞
α(t,T )
α(t,t∗) = 1. Thus, for those time scales where (34) holds, every

solution of (33) is oscillatory by Corollary 3.2.
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