
U.P.B. Sci. Bull., Series C, Vol. 79, Iss. 2, 2017 ISSN 2286-3540

NORMALIZATION OF ACO ALGORITHM PARAMETERS

Alina E. NEGULESCU1

Due to the fact that Swarm Systems algorithms have been determined to be

efficient in solving discrete optimization problems with proven applicability into

practical world, the computer scientists are continuously and increasingly

discovering swarm-inspired algorithms or improving existing ones. The scope of this

paper is to present such an improvement brought to the Elitist Ant System (EAS)

algorithm through the normalization of its parameters’ values. It is important to

mention that Normalized EAS (N-EAS) behaves exactly as EAS in terms of solution

length and computational time since the algorithm behind is the same and the only

difference is the normalization of the parameters. The advantage of N-EAS is that it

spares computational time for otherwise running empirical test-runs for determining

a good set of parameter values, like in the case of EAS.

Keywords: Swarm Intelligence (SI), Ant Colony Optimization (ACO), Elitist Ant

System (EAS), Normalized EAS (N-EAS)

1. Introduction: The Natural Model

The “collective intelligence” of the swarm systems in nature have inspired

computer scientists to design algorithms by modeling their behavior [4], [5]. As

Brownlee remarked in [1], “collective intelligence emerges through the

cooperation of usually large numbers of homogenous entities in the environment

and examples include colonies of ants, bees, termites, flocks of birds or schools of

fish”. The amazing thing about these entities is the fact that they are able of find

solutions to problems without requiring any centralized management, this way

exhibiting self-organization, which is extremely helpful for finding food,

relocating and protecting from predators [2].

As regards the ants, they communicate indirectly with each other using

pheromones deposited in the environment [2], while the bees use the dance moves

[3] and the fish and birds the proximities (for a direct communication). Fig. 1

presents the way by which the ants travel from their nest to a food source and

back by using the shortest possible path. In the first image, Fig. 1.a, two groups of

ants are preparing to leave the nest. Between the nest and the food source there are

many possible routes they could choose from, however, only two seem relatively

shorter. Assuming that the upper route is 2 times longer than the lower one, each

group of ants will choose, with 50% probability, one of the two as they cannot

1 PhD student, Computer Science Department, University POLITEHNICA of Bucharest, Romania,

e-mail: alina.lascu@gmail.com

72 Alina E. Negulescu

know from the beginning which one is shorter. Nevertheless, the group of ants

which will choose the lower route (below the obstacle) will arrive at the food

source approximately two times faster, as represented in Fig. 1.b.

Fig. 1. Ants finding the shortest path to a food sources and then back to the nest

As the ants are moving, they deposit a pheromone trail in the environment.

The pheromone, as described in [2] is a hormone produced by ants through which

they establish a sort of indirect communication among them. Moreover, the ants

returning back to the nest, reinforce the initial trail, which, as described in [3], will

attract other ants in the proximity, determining them to follow this trail with a

greater probability than the less intense ones, this way, laying more pheromone.

This process, in its essence, represents the positive feedback loop system, because

the higher the intensity of a pheromone trail, the higher the probability of an ant

(or group of ants) choosing and reinforcing it, over and over again. This process

stands at the basis of the stigmergy concept introduced by Grassé in [6], which

describes an indirect form of communication mediated by the modifications in the

environment.

No less important is the negative feedback, which following the example

provided in Fig. 1.c. represents the evaporation of the pheromone trail, due to

natural conditions (i.e. wind). Because of evaporation, when the group of ants that

have chosen the upper route reach the food source and must return to the nest,

they will choose, with a higher probability, to return back using the lower route as

it contains grater pheromone intensity. The evaporation of the pheromone trails

from the environment is important because it allows the ants in the natural system

to “forget” the long routes.

2. Review: ACO algorithms and their features

Inspired from the natural model of ants finding the shortest path to a food

source and then back to the nest (Fig. 1), Marco Dorigo, who is considered the

proponent of Ant Colony Optimization and one of the founders of the Swarm

Intelligence research field, has proposed the Ant System [7] as the first Travelling

Salesman Problem (TSP) dedicated algorithm.

TSP is an easy problem to understand but can be very hard to solve. A

short description of the problem is that a travelling salesman must visit a list of

Normalization of ACO algorithm parameters 73

cities where every two cities are directly connected, passing through all of them

only once and returning to the starting one (resulting a Hamiltonian cycle in the

associated problem’s graph). The objective is that the Travelling Salesman will

perform this task by using the shortest route. For a small number of cities (nodes

in the graph) the problem is easy to solve, however, the complexity grows quickly

as the number of possible combinations is increasing in a factorial manner.

The initial ACO algorithm and its variants are included in the meta-

heuristics category [8]. Meta-heuristics is applied for TSP where an optimal

solution is looked for in a discrete search-space where the candidate solutions

increase in a factorial manner. Therefore, in general, the exhaustive search of the

optimal solution is infeasible. As a result, for meta-heuristics, the scope is to find

rather “good” solutions than to compute the best one.

For attaining algorithm improvement (following the design of the AS

algorithm (1992) [8] – which stands at the foundation of ACO algorithms), other

variants have been designed under the same umbrella. Since the scope of this

paper is centered on the normalization of the parameters of the EAS algorithm, the

other variants will only be briefly mentioned. The first improvement brought to

the AS algorithm, as presented in [11], has been obtained by introducing (also in

1992) the Elitist AS (EAS) algorithm [12] which had the scope to weight the

“best-so-far solution” higher, in order to increase the exploitation through bias.

Consequently, in 1996, Stützle and Hoos had introduced the Max-Min Ant

System (MMAS) algorithm [13] which followed the same design as the AS

algorithm, however, as described in [14]: “(i) pheromone trails are only updated

offline by the daemon (the arcs which were used by the best ant in the current

iteration receive additional pheromone) and (ii) pheromone trail values are

restricted to an interval , while (iii) trails are initialized to their

maximum value ”.

Soon after, the Rank-based AS (RAS) algorithm’s improvement, proposed

in [15] and referred in [11], consisted in the fact that “at each iteration the best-so

far solution has the highest influence on the pheromone update, while a selection

of the best solutions constructed at that current iteration influences the update

depending on their ranks”. Also, from the same category of successful ACO

variants referred in [11], Ant Colony System (ACS) algorithm, introduced in [16],

brought more improvements besides the pheromone update. The solution

construction is particular, being called “pseudo-random proportional”, while the

best solution update rule is “only applied to the pheromone value , whose

corresponding solution component was added to the solution under

construction”. The overall benefit of that mechanism is that the ants are exploring

the search space more, with every iteration. Following the natural model

presented in Fig. 1 and adding the distance between nodes as heuristic

74 Alina E. Negulescu

information, the most important parameters in relation with the objective function

(), for any ACO algorithm, are described below:

• m (the number of artificial entities);

• n (the number of nodes / cities);

• (the influence of the pheromone intensity when choosing the

next node to visit);

• (the influence of the distance between the nodes when choosing

the next node to visit);

• (the pheromone evaporation speed);

• (the pheromone quantity deposited on the arches in the graph);

• (the multiplication value of the pheromone intensity for elitist

ants) – applicable only for Elitist Ant System (EAS) algorithm,

where the ants which find a better solution are allowed to deposit

more pheromone.

The pseudo-code for ACO applied to Travelling Salesman Problem (TSP)

is the following:

Initialize_Parameters function has the role to set the algorithm parameters

such as , , and m, as well as loading the map (i.e. TSP benchmark). In order

to “kick-start” the algorithm, a minimum value of pheromone () is deposited

equally on all the graphs' arches, this action being performed by the

Initialize_Pheromone_Trails function (which is missing from the original AS

algorithm).

The usual stop condition of the algorithm is represented by a maximum

number of iterations or imposed time limit. While the condition is not met,

Construct_Solution function will be applied to all m ants. The set of steps

performed by this function includes the positioning of ants on the map, either

randomly or predictably (ant 1 in node 1, ant 2 in node 2 and so on) and choosing

function Ant_Colony_Optimization

{

 Initialize_Parameters;

 Initialize_Pheromone_Trails;

 while (stop_condition_not_met)

 {

 Construct_Solutions(m);

 Global_Update_Trails();

 Evaporate();

 Store_Best_Solution(m);

 }

}

Normalization of ACO algorithm parameters 75

the next node for finding the solution (shortest route) based on attractability. In

this function, as initially implemented for Ant System (AS) algorithm and

depicted in [6], the transition from node i to node j rule, is based on:

• – the distance (the cost) between i and j nodes;

• = – the heuristic information indicating the benefit of

passing from the node to the node (it is equivalent with the

visibility between the two nodes);

• – the pheromone intensity at the iteration between the

and nodes;

• (1)

The above formula, presented in [7], represents the probability at the

iteration for an ant k in node to choose node as the next node in which it will

travel, which is equal with the ratio between the intensity of the pheromone

between the nodes and at the iteration weighted with , and multiplied by the

visibility between the nodes and weighted with […] and the sum of the

products between the intensity of the pheromones between any two nodes through

which the ant did not pass (weighted with) and the visibility between any two

nodes through which the ant did not pass (weighted with). Also:

• – is the set of nodes where the ant is allowed to go (this set is

composed by all the nodes which were not yet visited);

• – determine the influence of the pheromone trail and of the

heuristic information when choosing the next node.

This function is repeated for every ant (m). After all ants (artificial

entities) have fulfilled their tour, the function Global_Update_Trails has the role

to calculate the intensity of the pheromone on all visited arches as a sum of

pheromone intensities. This function represents the positive feedback, essential

for convergence to solution as in nature. The function for evaporation has likewise

an important role, because otherwise, the algorithm would get trapped in local

optima. Last but not least, all the tours performed by the ants are calculated and

the best solution is stored.

With this overview in mind, the next section will be focusing on the EAS

algorithm, which, for the purpose of this research undertaking, has been modified

(i.e. through the normalization of the algorithm’s parameters values) in order to

allow avoiding the initial multiple test-runs needed for setting up the parameters

values, which are dependent of the problem size and type.

76 Alina E. Negulescu

3. Problem definition and proposed solution

A computational problem represents a task which can be suitable for being

solved by a computer, which in essence, is equal to stating that an algorithm can

solve the problem. Two main computational resources are considered when

determining the complexity of a problem: time and storage. Owing to Moore’s

Law, the storage problem has become less stringent, as the memory capacity

increased while its cost decreased, and, although not being considered of reduced

importance, it is however, not impacting the solution as much as the time is.

Considering the applicability of swarm-inspired algorithms, such as ACO,

for practical problems, the solution is imperative to be provided in real-time. Any

computation that might be avoided due to the optimization of the algorithm’s

parameters have an immediate value for delivering an optimal solution within the

time-constraint. A drawback of the classical approach is that the parameters of the

algorithm are strongly dependent on the size and topology of the map (i.e.

problem) [17]. As such, a few test-runs are needed before solving a problem in

order to determine appropriate values for the main parameters and , thus

impacting the solution delivery in terms of time. To address this drawback,

researchers have modified the original algorithm to be able to adapt its parameters

dynamically while solving the problem, as presented in [8], [9], [10], [11], [17]

and [18].

A practical example is the distance measurement unit between two cities.

If on a regular (physical) map, the distance between Berlin and Los Angeles is

represented by several centimeters, in reality, the actual distance is 9,304

kilometers. The relation between the actual distance and the map distance is

proportionally calculated. By normalizing these distances, that can vary from

graph to graph, for example, between 10 and 10000 (on one graph) and between

0.01 and 50 (on another), the parameter will be much less influenced.

Regardless the graph, 10000 and 50 will always be maximum 1, while 10 and

0.01 will always normalize to 0 value. The rest of the distances in the graph will

be calculated proportionally to the smallest and biggest value, specifically, they

will take values in the domain.

Considering time saving, by avoiding the initial multiple test-runs for

setting up the parameters values, the main improvements of the N-EAS

algorithm, are as follows:

• All the distances will be transformed in [0, 1] domain; when a

graph (i.e. a map) is loaded, the minimum and maximum distance

between the nodes is determined, by using the formula (2), where

and are any two nodes in the graph:

Normalization of ACO algorithm parameters 77

 (2)

• The length of an ant’s tour is also maintained normalized, as a

sub-unitary value, by summing the length of the arches in the

tour and dividing the obtained length by as presented in formula

(3). Since all arches lengths are sub-unitary, summing sub-

unitary values and dividing their sum by , the result will also be

sub-unitary:

 (3)

• and parameters are sub-unitary as well, and need to be true for:

 (4)

• parameter (evaporation speed) also maintains the same sub-

unitary trend;

• The pheromone intensity is initialized when the algorithm starts

with an equal (sub-unitary) value on all arches, using formula (5).

The in the denominator is ensuring that even if all ants will use

that arch in their paths, when updating the pheromone using the

formula (6), the pheromone value will not exceed 1.

 (5)

• When the algorithm is running, the pheromone intensity is updated,

through deposit and evaporation, this value is also sub-unitary;

• For deposit, the following formula is applied:

 (6)

• While for evaporation:

 (7)

Since the solutions obtained with the normalized algorithm represent a

sub-unitary value, it is necessary to convert them back to the original units of

measure. This step is required in order to be able to easily compare them towards

other algorithms results. The formula (8) is applied for the inverse conversion:

 (8)

After imposing all the parameters values within [0,1] domain, the next

natural step was to test that the new algorithm has not been altered in terms of

78 Alina E. Negulescu

performance, by comparing the obtained results with the results obtained using the

original algorithm. Once this step was performed successfully (N-EAS algorithm

behaved exactly the same as EAS), the next one was to methodologically

determine the optimal parameters values for a set of similar benchmarks.

Consequently, a statistical study has been performed by modeling a rank I full

factorial experiment FFE in order to determine the optimal values for the

algorithm's parameters. Taking into consideration formula (4) where , it

resulted:

• level combinations;

• independent combinations;

• the squared sums were determined for 3 main effects, every main

effect having 2 independent combinations;

• between 2 factors there were interactions;

• an interaction between all 3 factors with independent

combinations.

The central point coordinates, means, standard deviations and the variation

intervals for the 3 influential factors were calculated along with their correlations

and regressions.

Variation intervals for all factors are equal to and their central point is

, low level and high level being equal to and (since they are

normalized). The means for all factors is and the standard deviations is .

For the dependent variable (= solution length) the mean is and the

standard deviations is .

The correlation between all the independent variables is and the

correlations between each independent variable and the dependent variable are:

, and .

The computed regressions for the three independent factors are:

• : , , , std. err. of ,

, std. err. of , ;

• : , , , std. err. of ,

, std. err. of , ;

• : , , , std. err. of ,

, std. err. of , .

Interpreting the computed regressions presented above, the following

conclusions were drawn:

• the are indicating that the three null hypotheses for the factors are

rejected, since they are below the chosen value of 0.05, meaning that all the

factors are influencing the solution length;

Normalization of ACO algorithm parameters 79

• the factor, which represents the parameter of the algorithm, has negative

values for the standardized () and the unstandardized () coefficient,

indicating that there is an inverse relation between it and the solution length.

• the factors and , representing the and parameters have positive

values for the standardized () and the unstandardized () coefficient,

indicating that there is direct relation between them and the solution length.

The above conclusions are also supported by the graphical representation

of the interactions between every two independent factors and the solution length

(Figs. 2 - 4).

 > 0.8

 < 0.7

 < 0.5

 < 0.3

 < 0.1

-0
.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Beta

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Rho

0.0

0.2

0.4

0.6

0.8

1.0

S
o
lu

tio
n
 L

e
n
g
th

Fig. 2. Solution length versus and parameters with optimal intervals:

.

 > 0.8

 < 0.7

 < 0.5

 < 0.3

 < 0.1

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Beta

-0
.2

0.0
0.2

0.4
0.6

0.8
1.0

1.2

Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
o
lu

tio
n
 L

e
n
g
th

Fig. 3. Solution length versus and parameters with optimal intervals:

80 Alina E. Negulescu

 > 0.8

 < 0.8

 < 0.6

 < 0.4

 < 0.2

 < 0

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Rho

-0
.2

0.0
0.2

0.4
0.6

0.8
1.0

1.2

Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
o
lu

tio
n
 L

e
n
g
th

Fig. 4. Solution length versus and parameters with optimal intervals:

After determining, for each FFE graph, the optimal domain values for the

factors, by using a simple intersection of these domains can further allow

identifying the optimal algorithm’s parameters values. Taking into the account the

relation and the fact that (resulting from the intersection

of the domains) the optimal values are and . Since both and

domains are in the domain, the optimal values of these parameters were

determined to be and .

4. Conclusions

It is a well-known fact that ACO algorithm’s performance of meta-

heuristics is very dependent on the parameters values. This is the reason for which

the computer scientists, that perform researches in this field, dedicate a lot of

effort into determining appropriate values for them. The determination of suitable

values for these parameters can be performed either a priori, or a posteriori the

algorithm’s employment [19].

The disadvantage of the a priori approach is that is effortful, time-

consuming and usually done by trial and error without guaranteeing optimal

values. However, these values can be optimally a priori obtained by

methodologically testing all possible combinations. An alternative to the a priori

determination is the a posteriori one, which consists in altering the algorithm’s

parameter values while the algorithm is running for solving a problem. By

allowing automatic fine tuning of its parameters in relation with the problem’s

Normalization of ACO algorithm parameters 81

instance, the algorithm becomes robust, even if it was initially designed for a

different context.

The main advantage of the approach presented herein (i.e. normalization

of the algorithm’s parameters values), which falls into the a priori category,

consists in the fact that the initial test-runs for setting up the algorithm’s

parameters (determining its values) can be extrapolated for other similar maps.

Other advantages are that all the parameters are normalized to the [0,1] domain

and that , resulting in a much clearer ratio between the attractiveness of

the heuristic information (the distance) and the pheromone intensity, when the

artificial entities choose the next node in the graph. The normalization performed

on EAS did not alter the algorithm and its performance, therefore a comparison

between N-EAS and other ACO algorithms was considered unnecessary since

there are other studies comparing EAS with other algorithms. It should be

highlighted as a conclusion the fact that the foremost objective of this initiative

was achieved, meaning, spearing computational time used by pre-tests in order to

determine a good set of algorithm's parameters values.

R E F E R E N C E S

[1] J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes, Brisbane: Creative

Commons Australia, 2011.

[2] D. Gordon, “Control without hierarchy,” Nature, vol. 4468, p. 143, 2007.

[3] T. D. e. a. Seeley, "Group decision making in honey bee swarms," American Scientist, vol.

94, p. 220–229, 2006.

[4] A. Moallem and S. Ludwig, “Using artificial life techniques for distributed grid job

scheduling,” in Proceedings of the 2009 ACM symposium on Applied Computing, 1091-

1097, 2009.

[5] D. De Rango and A. Socievole, "Meta-heuristics techniques and Swarm Intelligence,"

Mobile Ad-hoc Networks: Applications, pp. http://www.intechopen.com/books/mobile-ad-

hoc-networks-applications/meta-heuristics-techniques-and-swarm-intelligence-in-mobile-ad-

hoc-networks, 2011.

[6] P. Grassé, "The automatic regulations of collective behavior of social insect and

"stigmergy"," Journal of Psychology and Normative Pathology, vol. 57, pp. 1-10, 1960.

[7] M. Dorigo, V. Maniezzo and A. Colorni, "The Ant System. Optimization by a colony of

coorperating agents," IEEE Trans. on Systems, Man and Cybernetics, Part B, vol. 26, no. 1,

pp. 29-41, 1996.

[8] M. Dorigo, “Optimisation, Learning and Natural Algorithms,” Politecnio di Milano, Milano,

1992.

[9] E. Bonabeau, M. Dorigo and G. Theraulaz, Swarm Intelligence. From Natural to Artificial

Systems, New York: Oxford University Press, 1999, p. 9.

[10] W. Gutjahr, "Ant colony optimization: recent developments in theoretical analysis," Theory

of Randomized Search Heuristics, pp. 225-254, 2011.

82 Alina E. Negulescu

[11] C. Blum, "Ant colony optimization: Introduction and recent trends," Physics of Life

Reviews, vol. 2, p. 353–373, 2005.

[12] M. Dorigo, "Phd Thesis: Optimization, learning and natural algorithms," Dipartimento di

Elettronica, Politecnico di Milano, Milano, 1992.

[13] T. Stützle and H. Hoos, "The MAX –MIN ant system and local search for the Travelling

Salesman Problem," Proceedings of IEEE International Conference on Evolutionary

Computation and Evolutionary Programming, pp. 209-314, 1997.

[14] M. Dorigo, G. di Caro and L. Gambardella, "Ant algorithms for discrete optimization,"

Artificial Life, vol. 5, no. 2, pp. 137-172 , 1999.

[15] B. Bullnheimer, R. Hartl and C. Strauss, "A new rank-based version of the Ant System: A

computational study," Central European J Operations Res Econom, vol. 7, no. 1, pp. 25-38,

1999.

[16] M. Dorigo and L. Gambardella, "Ant colony system: A cooperative learning approach to the

traveling salesman problem," IEEE Trans Evolutionary Computing, vol. 1, no. 1, pp. 53-66,

1997.

[17] T. Stützle, M. Lopez-Ibanez, P. Pellegrini, R. Maur, M. Montes de Oca, M. Birtarri and M.

Dorigo, "Parameter Adaptation in Ant Colony Optimization," IRIDIA - Technical Report

Series, vol. 002, pp. 1-24, 2010.

[18] S. Negulescu, I. Dzitac and A. Lascu, "Synthetic Genes for Artificial Ants. Diversity in Ant

Colony Optimization Algorithms," International Journal of Computers, Communication &

Control, vol. 5, no. 2, pp. 216-223, 2010.

[19] F. Hutter, H. H. Hoos and K. Leyton-Brown, "Identifying Key Algorithm Parameters and

Instance Features using Forward Selection," in Proceedings of the 7th International

Conference on Learning and Intelligent Optimization, Berlin, Heidelberg, 2013.

