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NORMALIZATION OF ACO ALGORITHM PARAMETERS 

Alina E. NEGULESCU1 

Due to the fact that Swarm Systems algorithms have been determined to be 

efficient in solving discrete optimization problems with proven applicability into 

practical world, the computer scientists are continuously and increasingly 

discovering swarm-inspired algorithms or improving existing ones. The scope of this 

paper is to present such an improvement brought to the Elitist Ant System (EAS) 

algorithm through the normalization of its parameters’ values. It is important to 

mention that Normalized EAS (N-EAS) behaves exactly as EAS in terms of solution 

length and computational time since the algorithm behind is the same and the only 

difference is the normalization of the parameters. The advantage of N-EAS is that it 

spares computational time for otherwise running empirical test-runs for determining 

a good set of parameter values, like in the case of EAS. 
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1. Introduction: The Natural Model 

The “collective intelligence” of the swarm systems in nature have inspired 

computer scientists to design algorithms by modeling their behavior [4], [5]. As 

Brownlee remarked in [1], “collective intelligence emerges through the 

cooperation of usually large numbers of homogenous entities in the environment 

and examples include colonies of ants, bees, termites, flocks of birds or schools of 

fish”. The amazing thing about these entities is the fact that they are able of find 

solutions to problems without requiring any centralized management, this way 

exhibiting self-organization, which is extremely helpful for finding food, 

relocating and protecting from predators [2]. 

As regards the ants, they communicate indirectly with each other using 

pheromones deposited in the environment [2], while the bees use the dance moves 

[3] and the fish and birds the proximities (for a direct communication). Fig. 1 

presents the way by which the ants travel from their nest to a food source and 

back by using the shortest possible path. In the first image, Fig. 1.a, two groups of 

ants are preparing to leave the nest. Between the nest and the food source there are 

many possible routes they could choose from, however, only two seem relatively 

shorter. Assuming that the upper route is 2 times longer than the lower one, each 

group of ants will choose, with 50% probability, one of the two as they cannot 
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know from the beginning which one is shorter. Nevertheless, the group of ants 

which will choose the lower route (below the obstacle) will arrive at the food 

source approximately two times faster, as represented in Fig. 1.b.  
 

 
Fig. 1. Ants finding the shortest path to a food sources and then back to the nest 

 

As the ants are moving, they deposit a pheromone trail in the environment. 

The pheromone, as described in [2] is a hormone produced by ants through which 

they establish a sort of indirect communication among them. Moreover, the ants 

returning back to the nest, reinforce the initial trail, which, as described in [3], will 

attract other ants in the proximity, determining them to follow this trail with a 

greater probability than the less intense ones, this way, laying more pheromone. 

This process, in its essence, represents the positive feedback loop system, because 

the higher the intensity of a pheromone trail, the higher the probability of an ant 

(or group of ants) choosing and reinforcing it, over and over again. This process 

stands at the basis of the stigmergy concept introduced by Grassé in [6], which 

describes an indirect form of communication mediated by the modifications in the 

environment.  

No less important is the negative feedback, which following the example 

provided in Fig. 1.c. represents the evaporation of the pheromone trail, due to 

natural conditions (i.e. wind). Because of evaporation, when the group of ants that 

have chosen the upper route reach the food source and must return to the nest, 

they will choose, with a higher probability, to return back using the lower route as 

it contains grater pheromone intensity. The evaporation of the pheromone trails 

from the environment is important because it allows the ants in the natural system 

to “forget” the long routes. 

2. Review: ACO algorithms and their features 

Inspired from the natural model of ants finding the shortest path to a food 

source and then back to the nest (Fig. 1), Marco Dorigo, who is considered the 

proponent of Ant Colony Optimization and one of the founders of the Swarm 

Intelligence research field, has proposed the Ant System [7] as the first Travelling 

Salesman Problem (TSP) dedicated algorithm. 

TSP is an easy problem to understand but can be very hard to solve. A 

short description of the problem is that a travelling salesman must visit a list of 
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cities where every two cities are directly connected, passing through all of them 

only once and returning to the starting one (resulting a Hamiltonian cycle in the 

associated problem’s graph). The objective is that the Travelling Salesman will 

perform this task by using the shortest route. For a small number of cities (nodes 

in the graph) the problem is easy to solve, however, the complexity grows quickly 

as the number of possible combinations is increasing in a factorial manner. 

The initial ACO algorithm and its variants are included in the meta-

heuristics category [8]. Meta-heuristics is applied for TSP where an optimal 

solution is looked for in a discrete search-space where the candidate solutions 

increase in a factorial manner. Therefore, in general, the exhaustive search of the 

optimal solution is infeasible. As a result, for meta-heuristics, the scope is to find 

rather “good” solutions than to compute the best one.  

For attaining algorithm improvement (following the design of the AS 

algorithm (1992) [8] – which stands at the foundation of ACO algorithms), other 

variants have been designed under the same umbrella. Since the scope of this 

paper is centered on the normalization of the parameters of the EAS algorithm, the 

other variants will only be briefly mentioned. The first improvement brought to 

the AS algorithm, as presented in [11], has been obtained by introducing (also in 

1992) the Elitist AS (EAS) algorithm [12] which had the scope to weight the 

“best-so-far solution” higher, in order to increase the exploitation through bias. 

Consequently, in 1996, Stützle and Hoos had introduced the Max-Min Ant 

System (MMAS) algorithm [13] which followed the same design as the AS 

algorithm, however, as described in [14]: “(i) pheromone trails are only updated 

offline by the daemon (the arcs which were used by the best ant in the current 

iteration receive additional pheromone) and (ii) pheromone trail values are 

restricted to an interval , while (iii) trails are initialized to their 

maximum value ”. 

Soon after, the Rank-based AS (RAS) algorithm’s improvement, proposed 

in [15] and referred in [11], consisted in the fact that “at each iteration the best-so 

far solution has the highest influence on the pheromone update, while a selection 

of the best solutions constructed at that current iteration influences the update 

depending on their ranks”. Also, from the same category of successful ACO 

variants referred in [11], Ant Colony System (ACS) algorithm, introduced in [16], 

brought more improvements besides the pheromone update. The solution 

construction is particular, being called “pseudo-random proportional”, while the 

best solution update rule is “only applied to the pheromone value , whose 

corresponding solution component  was added to the solution under 

construction”. The overall benefit of that mechanism is that the ants are exploring 

the search space more, with every iteration. Following the natural model 

presented in Fig. 1 and adding the distance between nodes as heuristic 
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information, the most important parameters in relation with the objective function 

( ), for any ACO algorithm, are described below: 

• m (the number of artificial entities); 

• n (the number of nodes / cities); 

•  (the influence of the pheromone intensity when choosing the 

next node to visit); 

•  (the influence of the distance between the nodes when choosing 

the next node to visit); 

•  (the pheromone evaporation speed); 

•  (the pheromone quantity deposited on the arches in the graph); 

•  (the multiplication value of the pheromone intensity for elitist 

ants) – applicable only for Elitist Ant System (EAS) algorithm, 

where the ants which find a better solution are allowed to deposit 

more pheromone. 

The pseudo-code for ACO applied to Travelling Salesman Problem (TSP) 

is the following: 
 

 

Initialize_Parameters function has the role to set the algorithm parameters 

such as , ,  and m, as well as loading the map (i.e. TSP benchmark). In order 

to “kick-start” the algorithm, a minimum value of pheromone ( ) is deposited 

equally on all the graphs' arches, this action being performed by the 

Initialize_Pheromone_Trails function (which is missing from the original AS 

algorithm). 

The usual stop condition of the algorithm is represented by a maximum 

number of iterations or imposed time limit. While the condition is not met, 

Construct_Solution function will be applied to all m ants. The set of steps 

performed by this function includes the positioning of ants on the map, either 

randomly or predictably (ant 1 in node 1, ant 2 in node 2 and so on) and choosing 

function Ant_Colony_Optimization 

{ 

 Initialize_Parameters; 

 

 Initialize_Pheromone_Trails; 

 

 while (stop_condition_not_met) 

 { 

  Construct_Solutions(m); 

  Global_Update_Trails(); 

  Evaporate(); 

  Store_Best_Solution(m); 

 } 

} 
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the next node for finding the solution (shortest route) based on attractability. In 

this function, as initially implemented for Ant System (AS) algorithm and 

depicted in [6], the transition from node i to node j rule, is based on: 

•  – the distance (the cost) between i and j nodes; 

•  =  – the heuristic information indicating the benefit of 

passing from the node  to the node  (it is equivalent with the 

visibility between the two nodes); 

•  – the pheromone intensity at the iteration  between the  

and  nodes; 

•                                          (1) 

 

The above formula, presented in [7], represents the probability  at the 

iteration  for an ant k in node  to choose node  as the next node in which it will 

travel, which is equal with the ratio between the intensity  of the pheromone 

between the nodes and  at the iteration weighted with , and multiplied by the 

visibility between the nodes  and  weighted with  […] and the sum of the 

products between the intensity of the pheromones between any two nodes through 

which the ant did not pass (weighted with ) and the visibility between any two 

nodes through which the ant did not pass (weighted with ). Also: 

• – is the set of nodes where the ant  is allowed to go (this set is 

composed by all the nodes which were not yet visited); 

•  – determine the influence of the pheromone trail and of the 

heuristic information when choosing the next node. 

This function is repeated for every ant (m). After all ants (artificial 

entities) have fulfilled their tour, the function Global_Update_Trails has the role 

to calculate the intensity of the pheromone on all visited arches as a sum of 

pheromone intensities. This function represents the positive feedback, essential 

for convergence to solution as in nature. The function for evaporation has likewise 

an important role, because otherwise, the algorithm would get trapped in local 

optima. Last but not least, all the tours performed by the ants are calculated and 

the best solution is stored.  

With this overview in mind, the next section will be focusing on the EAS 

algorithm, which, for the purpose of this research undertaking, has been modified 

(i.e. through the normalization of the algorithm’s parameters values) in order to 

allow avoiding the initial multiple test-runs needed for setting up the parameters 

values, which are dependent of the problem size and type. 
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3. Problem definition and proposed solution 

A computational problem represents a task which can be suitable for being 

solved by a computer, which in essence, is equal to stating that an algorithm can 

solve the problem. Two main computational resources are considered when 

determining the complexity of a problem: time and storage. Owing to Moore’s 

Law, the storage problem has become less stringent, as the memory capacity 

increased while its cost decreased, and, although not being considered of reduced 

importance, it is however, not impacting the solution as much as the time is. 

Considering the applicability of swarm-inspired algorithms, such as ACO, 

for practical problems, the solution is imperative to be provided in real-time. Any 

computation that might be avoided due to the optimization of the algorithm’s 

parameters have an immediate value for delivering an optimal solution within the 

time-constraint. A drawback of the classical approach is that the parameters of the 

algorithm are strongly dependent on the size and topology of the map (i.e. 

problem) [17]. As such, a few test-runs are needed before solving a problem in 

order to determine appropriate values for the main parameters  and , thus 

impacting the solution delivery in terms of time. To address this drawback, 

researchers have modified the original algorithm to be able to adapt its parameters 

dynamically while solving the problem, as presented in [8], [9], [10], [11], [17] 

and [18]. 

A practical example is the distance measurement unit between two cities. 

If on a regular (physical) map, the distance between Berlin and Los Angeles is 

represented by several centimeters, in reality, the actual distance is 9,304 

kilometers. The relation between the actual distance and the map distance is 

proportionally calculated. By normalizing these distances, that can vary from 

graph to graph, for example, between 10 and 10000 (on one graph) and between 

0.01 and 50 (on another), the  parameter will be much less influenced. 

Regardless the graph, 10000 and 50 will always be maximum 1, while 10 and 

0.01 will always normalize to 0 value. The rest of the distances in the graph will 

be calculated proportionally to the smallest and biggest value, specifically, they 

will take values in the  domain. 

Considering time saving, by avoiding the initial multiple test-runs for 

setting up the parameters values, the main improvements of the N-EAS 

algorithm, are as follows: 

• All the distances will be transformed in [0, 1] domain; when a 

graph (i.e. a map) is loaded, the minimum and maximum distance 

between the nodes is determined, by using the formula (2), where  

and  are any two nodes in the graph: 
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    (2) 

 

• The length of an ant’s  tour is also maintained normalized, as a 

sub-unitary value, by summing the length of the  arches in the 

tour and dividing the obtained length by  as presented in formula 

(3). Since all arches lengths are sub-unitary, summing  sub-

unitary values and dividing their sum by , the result will also be 

sub-unitary: 
 

      (3) 
 

•  and  parameters are sub-unitary as well, and need to be true for: 
 

        (4) 
 

•  parameter (evaporation speed) also maintains the same sub-

unitary trend; 

• The pheromone intensity is initialized when the algorithm starts 

with an equal (sub-unitary) value on all arches, using formula (5). 

The  in the denominator is ensuring that even if all ants will use 

that arch in their paths, when updating the pheromone using the 

formula (6), the pheromone value will not exceed 1. 
 

         (5) 
 

• When the algorithm is running, the pheromone intensity is updated, 

through deposit and evaporation, this value is also sub-unitary; 

• For deposit, the following formula is applied: 
 

       (6) 
 

• While for evaporation: 
 

       (7) 

 

Since the solutions obtained with the normalized algorithm represent a 

sub-unitary value, it is necessary to convert them back to the original units of 

measure. This step is required in order to be able to easily compare them towards 

other algorithms results. The formula (8) is applied for the inverse conversion: 
 

 (8) 

After imposing all the parameters values within [0,1] domain, the next 

natural step was to test that the new algorithm has not been altered in terms of 
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performance, by comparing the obtained results with the results obtained using the 

original algorithm. Once this step was performed successfully (N-EAS algorithm 

behaved exactly the same as EAS), the next one was to methodologically 

determine the optimal parameters values for a set of similar benchmarks. 

Consequently, a statistical study has been performed by modeling a rank I full 

factorial experiment FFE  in order to determine the optimal values for the 

algorithm's parameters. Taking into consideration formula (4) where , it 

resulted: 

•  level combinations; 

•  independent combinations; 

• the squared sums were determined for 3 main effects, every main 

effect having 2 independent combinations; 

• between 2 factors there were  interactions; 

• an interaction between all 3 factors with  independent 

combinations. 

The central point coordinates, means, standard deviations and the variation 

intervals for the 3 influential factors were calculated along with their correlations 

and regressions. 

Variation intervals for all factors are equal to  and their central point is 

, low level and high level being equal to  and  (since they are 

normalized). The means for all factors is  and the standard deviations is . 

For the dependent variable (  = solution length) the mean is  and the 

standard deviations is . 

The correlation between all the independent variables is  and the 

correlations between each independent variable and the dependent variable are: 

,  and . 

The computed regressions for the three independent factors are: 

• : , , , std. err. of , 

, std. err. of , ; 

• : , , , std. err. of , 

, std. err. of , ; 

• : , , , std. err. of , 

, std. err. of , . 

Interpreting the computed regressions presented above, the following 

conclusions were drawn: 

• the  are indicating that the three null hypotheses for the factors are 

rejected, since they are below the chosen value of 0.05, meaning that all the 

factors are influencing the solution length; 
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• the  factor, which represents the  parameter of the algorithm, has negative 

values for the standardized ( ) and the unstandardized ( ) coefficient, 

indicating that there is an inverse relation between it and the solution length. 

• the factors  and , representing the  and  parameters have positive 

values for the standardized ( ) and the unstandardized ( ) coefficient, 

indicating that there is direct relation between them and the solution length. 

The above conclusions are also supported by the graphical representation 

of the interactions between every two independent factors and the solution length 

(Figs. 2 - 4). 
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Fig. 2. Solution length versus and  parameters with optimal intervals: 
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Fig. 3. Solution length versus  and  parameters with optimal intervals: 
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Fig. 4. Solution length versus  and  parameters with optimal intervals: 

 

After determining, for each FFE graph, the optimal domain values for the 

factors, by using a simple intersection of these domains can further allow 

identifying the optimal algorithm’s parameters values. Taking into the account the 

relation  and the fact that  (resulting from the intersection 

of the domains) the optimal values are  and . Since both  and  

domains are in the  domain, the optimal values of these parameters were 

determined to be  and . 

4. Conclusions 

It is a well-known fact that ACO algorithm’s performance of meta-

heuristics is very dependent on the parameters values. This is the reason for which 

the computer scientists, that perform researches in this field, dedicate a lot of 

effort into determining appropriate values for them. The determination of suitable 

values for these parameters can be performed either a priori, or a posteriori the 

algorithm’s employment [19].  

The disadvantage of the a priori approach is that is effortful, time-

consuming and usually done by trial and error without guaranteeing optimal 

values. However, these values can be optimally a priori obtained by 

methodologically testing all possible combinations. An alternative to the a priori 

determination is the a posteriori one, which consists in altering the algorithm’s 

parameter values while the algorithm is running for solving a problem. By 

allowing automatic fine tuning of its parameters in relation with the problem’s 
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instance, the algorithm becomes robust, even if it was initially designed for a 

different context.  

The main advantage of the approach presented herein (i.e. normalization 

of the algorithm’s parameters values), which falls into the a priori category, 

consists in the fact that the initial test-runs for setting up the algorithm’s 

parameters (determining its values) can be extrapolated for other similar maps. 

Other advantages are that all the parameters are normalized to the [0,1] domain 

and that , resulting in a much clearer ratio between the attractiveness of 

the heuristic information (the distance) and the pheromone intensity, when the 

artificial entities choose the next node in the graph. The normalization performed 

on EAS did not alter the algorithm and its performance, therefore a comparison 

between N-EAS and other ACO algorithms was considered unnecessary since 

there are other studies comparing EAS with other algorithms. It should be 

highlighted as a conclusion the fact that the foremost objective of this initiative 

was achieved, meaning, spearing computational time used by pre-tests in order to 

determine a good set of algorithm's parameters values. 
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