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NORMALIZATION OF ACO ALGORITHM PARAMETERS

Alina E. NEGULESCU!?

Due to the fact that Swarm Systems algorithms have been determined to be
efficient in solving discrete optimization problems with proven applicability into
practical world, the computer scientists are continuously and increasingly
discovering swarm-inspired algorithms or improving existing ones. The scope of this
paper is to present such an improvement brought to the Elitist Ant System (EAS)
algorithm through the normalization of its parameters’ values. It is important to
mention that Normalized EAS (N-EAS) behaves exactly as EAS in terms of solution
length and computational time since the algorithm behind is the same and the only
difference is the normalization of the parameters. The advantage of N-EAS is that it
spares computational time for otherwise running empirical test-runs for determining
a good set of parameter values, like in the case of EAS.
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1. Introduction: The Natural Model

The “collective intelligence” of the swarm systems in nature have inspired
computer scientists to design algorithms by modeling their behavior [4], [5]. As
Brownlee remarked in [1], “collective intelligence emerges through the
cooperation of usually large numbers of homogenous entities in the environment
and examples include colonies of ants, bees, termites, flocks of birds or schools of
fish”. The amazing thing about these entities is the fact that they are able of find
solutions to problems without requiring any centralized management, this way
exhibiting self-organization, which is extremely helpful for finding food,
relocating and protecting from predators [2].

As regards the ants, they communicate indirectly with each other using
pheromones deposited in the environment [2], while the bees use the dance moves
[3] and the fish and birds the proximities (for a direct communication). Fig. 1
presents the way by which the ants travel from their nest to a food source and
back by using the shortest possible path. In the first image, Fig. 1.a, two groups of
ants are preparing to leave the nest. Between the nest and the food source there are
many possible routes they could choose from, however, only two seem relatively
shorter. Assuming that the upper route is 2 times longer than the lower one, each
group of ants will choose, with 50% probability, one of the two as they cannot
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know from the beginning which one is shorter. Nevertheless, the group of ants
which will choose the lower route (below the obstacle) will arrive at the food
source approximately two times faster, as represented in Fig. 1.b.
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Fig. 1. Ants finding the shortest path to a food sources and then back to the nest

As the ants are moving, they deposit a pheromone trail in the environment.
The pheromone, as described in [2] is a hormone produced by ants through which
they establish a sort of indirect communication among them. Moreover, the ants
returning back to the nest, reinforce the initial trail, which, as described in [3], will
attract other ants in the proximity, determining them to follow this trail with a
greater probability than the less intense ones, this way, laying more pheromone.
This process, in its essence, represents the positive feedback loop system, because
the higher the intensity of a pheromone trail, the higher the probability of an ant
(or group of ants) choosing and reinforcing it, over and over again. This process
stands at the basis of the stigmergy concept introduced by Grassé in [6], which
describes an indirect form of communication mediated by the modifications in the
environment.

No less important is the negative feedback, which following the example
provided in Fig. 1.c. represents the evaporation of the pheromone trail, due to
natural conditions (i.e. wind). Because of evaporation, when the group of ants that
have chosen the upper route reach the food source and must return to the nest,
they will choose, with a higher probability, to return back using the lower route as
it contains grater pheromone intensity. The evaporation of the pheromone trails
from the environment is important because it allows the ants in the natural system
to “forget” the long routes.

2. Review: ACO algorithms and their features

Inspired from the natural model of ants finding the shortest path to a food
source and then back to the nest (Fig. 1), Marco Dorigo, who is considered the
proponent of Ant Colony Optimization and one of the founders of the Swarm
Intelligence research field, has proposed the Ant System [7] as the first Travelling
Salesman Problem (TSP) dedicated algorithm.

TSP is an easy problem to understand but can be very hard to solve. A
short description of the problem is that a travelling salesman must visit a list of



Normalization of ACO algorithm parameters 73

cities where every two cities are directly connected, passing through all of them
only once and returning to the starting one (resulting a Hamiltonian cycle in the
associated problem’s graph). The objective is that the Travelling Salesman will
perform this task by using the shortest route. For a small number of cities (nodes
in the graph) the problem is easy to solve, however, the complexity grows quickly
as the number of possible combinations is increasing in a factorial manner.

The initial ACO algorithm and its variants are included in the meta-
heuristics category [8]. Meta-heuristics is applied for TSP where an optimal
solution is looked for in a discrete search-space where the candidate solutions
increase in a factorial manner. Therefore, in general, the exhaustive search of the
optimal solution is infeasible. As a result, for meta-heuristics, the scope is to find
rather “good” solutions than to compute the best one.

For attaining algorithm improvement (following the design of the AS
algorithm (1992) [8] — which stands at the foundation of ACO algorithms), other
variants have been designed under the same umbrella. Since the scope of this
paper is centered on the normalization of the parameters of the EAS algorithm, the
other variants will only be briefly mentioned. The first improvement brought to
the AS algorithm, as presented in [11], has been obtained by introducing (also in
1992) the Elitist AS (EAS) algorithm [12] which had the scope to weight the
“best-so-far solution” higher, in order to increase the exploitation through bias.
Consequently, in 1996, Stitzle and Hoos had introduced the Max-Min Ant
System (MMAS) algorithm [13] which followed the same design as the AS
algorithm, however, as described in [14]: “(i) pheromone trails are only updated
offline by the daemon (the arcs which were used by the best ant in the current
iteration receive additional pheromone) and (ii) pheromone trail values are
restricted to an interval [T,m:Tmax], While (iii) trails are initialized to their
maximum value t,,,...”.

Soon after, the Rank-based AS (RAS) algorithm’s improvement, proposed
in [15] and referred in [11], consisted in the fact that “at each iteration the best-S0
far solution has the highest influence on the pheromone update, while a selection
of the best solutions constructed at that current iteration influences the update
depending on their ranks”. Also, from the same category of successful ACO
variants referred in [11], Ant Colony System (ACS) algorithm, introduced in [16],
brought more improvements besides the pheromone update. The solution
construction is particular, being called “pseudo-random proportional”, while the
best solution update rule is “only applied to the pheromone value T;, whose
corresponding solution component ¢; was added to the solution under
construction”. The overall benefit of that mechanism is that the ants are exploring
the search space more, with every iteration. Following the natural model
presented in Fig. 1 and adding the distance between nodes as heuristic
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information, the most important parameters in relation with the objective function
(I = tour,,, q.»), for any ACO algorithm, are described below:

e m (the number of artificial entities);

e n (the number of nodes / cities);

e a (the influence of the pheromone intensity when choosing the
next node to visit);

e [ (the influence of the distance between the nodes when choosing
the next node to visit);

e p (the pheromone evaporation speed);

e ( (the pheromone quantity deposited on the arches in the graph);

e & (the multiplication value of the pheromone intensity for elitist
ants) — applicable only for Elitist Ant System (EAS) algorithm,
where the ants which find a better solution are allowed to deposit
more pheromone.

The pseudo-code for ACO applied to Travelling Salesman Problem (TSP)
is the following:

function Ant Colony Optimization

{

Initialize Parameters;
Initialize Pheromone Trails;

while (stop condition not met)
{
Construct Solutions (m);
Global Update Trails();
Evaporate () ;
Store Best Solution (m);

Initialize_Parameters function has the role to set the algorithm parameters
such as «, 5, p and m, as well as loading the map (i.e. TSP benchmark). In order
to “kick-start” the algorithm, a minimum value of pheromone (7;) is deposited
equally on all the graphs' arches, this action being performed by the
Initialize_Pheromone_Trails function (which is missing from the original AS
algorithm).

The usual stop condition of the algorithm is represented by a maximum
number of iterations or imposed time limit. While the condition is not met,
Construct_Solution function will be applied to all m ants. The set of steps
performed by this function includes the positioning of ants on the map, either
randomly or predictably (ant 1 in node 1, ant 2 in node 2 and so on) and choosing
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the next node for finding the solution (shortest route) based on attractability. In
this function, as initially implemented for Ant System (AS) algorithm and
depicted in [6], the transition from node i to node j rule, is based on:

e d,; —the distance (the cost) between i and j nodes;

e 1n; = 1/d;; — the heuristic information indicating the benefit of

passing from the node i to the node j (it is equivalent with the
visibility between the two nodes);
e 1;;(t) — the pheromone intensity at the iteration t between the i

and j nodes;
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The above formula, presented in [7], represents the probability p at the
iteration t for an ant k in node i to choose node j as the next node in which it will
travel, which is equal with the ratio between the intensity T of the pheromone
between the nodes i and j at the iteration t weighted with a, and multiplied by the
visibility between the nodes i and j weighted with £ [...] and the sum of the
products between the intensity of the pheromones between any two nodes through
which the ant did not pass (weighted with @) and the visibility between any two
nodes through which the ant did not pass (weighted with f5). Also:

e N is the set of nodes where the ant k is allowed to go (this set is
composed by all the nodes which were not yet visited);

e a5 — determine the influence of the pheromone trail and of the
heuristic information when choosing the next node.

This function is repeated for every ant (m). After all ants (artificial
entities) have fulfilled their tour, the function Global_Update_Trails has the role
to calculate the intensity of the pheromone on all visited arches as a sum of
pheromone intensities. This function represents the positive feedback, essential
for convergence to solution as in nature. The function for evaporation has likewise
an important role, because otherwise, the algorithm would get trapped in local
optima. Last but not least, all the tours performed by the ants are calculated and
the best solution is stored.

With this overview in mind, the next section will be focusing on the EAS
algorithm, which, for the purpose of this research undertaking, has been modified
(i.e. through the normalization of the algorithm’s parameters values) in order to
allow avoiding the initial multiple test-runs needed for setting up the parameters
values, which are dependent of the problem size and type.
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3. Problem definition and proposed solution

A computational problem represents a task which can be suitable for being
solved by a computer, which in essence, is equal to stating that an algorithm can
solve the problem. Two main computational resources are considered when
determining the complexity of a problem: time and storage. Owing to Moore’s
Law, the storage problem has become less stringent, as the memory capacity
increased while its cost decreased, and, although not being considered of reduced
importance, it is however, not impacting the solution as much as the time is.

Considering the applicability of swarm-inspired algorithms, such as ACO,
for practical problems, the solution is imperative to be provided in real-time. Any
computation that might be avoided due to the optimization of the algorithm’s
parameters have an immediate value for delivering an optimal solution within the
time-constraint. A drawback of the classical approach is that the parameters of the
algorithm are strongly dependent on the size and topology of the map (i.e.
problem) [17]. As such, a few test-runs are needed before solving a problem in
order to determine appropriate values for the main parameters @« and 5, thus
impacting the solution delivery in terms of time. To address this drawback,
researchers have modified the original algorithm to be able to adapt its parameters
dynamically while solving the problem, as presented in [8], [9], [10], [11], [17]
and [18].

A practical example is the distance measurement unit between two cities.
If on a regular (physical) map, the distance between Berlin and Los Angeles is
represented by several centimeters, in reality, the actual distance is 9,304
kilometers. The relation between the actual distance and the map distance is
proportionally calculated. By normalizing these distances, that can vary from
graph to graph, for example, between 10 and 10000 (on one graph) and between
0.01 and 50 (on another), the 5 parameter will be much less influenced.
Regardless the graph, 10000 and 50 will always be maximum 1, while 10 and
0.01 will always normalize to 0 value. The rest of the distances in the graph will
be calculated proportionally to the smallest and biggest value, specifically, they
will take values in the [0,1] domain.

Considering time saving, by avoiding the initial multiple test-runs for
setting up the parameters values, the main improvements of the N-EAS
algorithm, are as follows:

e All the distances will be transformed in [0, 1] domain; when a
graph (i.e. a map) is loaded, the minimum and maximum distance
between the nodes is determined, by using the formula (2), where a
and b are any two nodes in the graph:
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e The length of an ant’s k tour is also maintained normalized, as a
sub-unitary value, by summing the length of the n arches in the
tour and dividing the obtained length by = as presented in formula
(3). Since all arches lengths are sub-unitary, summing 7 sub-
unitary values and dividing their sum by =, the result will also be
sub-unitary:

EE,E?,_, length(arch)
Iy = mash=a 3

e aand [ parameters are sub-unitary as well, and need to be true for:
a+f=1 4)

e p parameter (evaporation speed) also maintains the same sub-
unitary trend,

e The pheromone intensity is initialized when the algorithm starts
with an equal (sub-unitary) value on all arches, using formula (5).
The m in the denominator is ensuring that even if all ants will use
that arch in their paths, when updating the pheromone using the
formula (6), the pheromone value will not exceed 1.

T = (5)

e When the algorithm is running, the pheromone intensity is updated,
through deposit and evaporation, this value is also sub-unitary;

e For deposit, the following formula is applied:

Ty = Tz'_;rl:l_ @y=(1-1} )

e While for evaporation:
Ti}':Ti}'g(l_Pj (7)

Since the solutions obtained with the normalized algorithm represent a
sub-unitary value, it is necessary to convert them back to the original units of
measure. This step is required in order to be able to easily compare them towards
other algorithms results. The formula (8) is applied for the inverse conversion:

Sﬂl!anght = ‘i'l'bast * [ma‘xdistﬂnca _mz‘ndistﬂncaj + MiNgictonces (8)

After imposing all the parameters values within [0,1] domain, the next
natural step was to test that the new algorithm has not been altered in terms of
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performance, by comparing the obtained results with the results obtained using the
original algorithm. Once this step was performed successfully (N-EAS algorithm
behaved exactly the same as EAS), the next one was to methodologically
determine the optimal parameters values for a set of similar benchmarks.
Consequently, a statistical study has been performed by modeling a rank | full
factorial experiment FFE3? in order to determine the optimal values for the
algorithm's parameters. Taking into consideration formula (4) where @ + 5 = 1, it
resulted:
e 3% level combinations;
e 3% — 1 independent combinations;
e the squared sums were determined for 3 main effects, every main
effect having 2 independent combinations;
e Dbetween 2 factors there were €2 interactions;
e an interaction between all 3 factors with 2% independent
combinations.

The central point coordinates, means, standard deviations and the variation
intervals for the 3 influential factors were calculated along with their correlations
and regressions.

Variation intervals for all factors are equal to 1.0 and their central point is
0.5, low level and high level being equal to 0.0 and 1.0 (since they are
normalized). The means for all factors is 0.5 and the standard deviations is 0.416.
For the dependent variable (v = solution length) the mean is 0.276 and the
standard deviations is 0.262,

The correlation between all the independent variables is 0.0 and the
correlations between each independent variable and the dependent variable are:

x, &y = —0499 x, & vy = 0382andx; < y = 0.481.
The computed regressions for the three independent factors are:
. %0 R=0498 R?=10.248 [ = —0498 std. err. of f = 0.173,
B = —0.313 std. err.of B = 0.109, p —value = 0.008;
. x,; R=0382 R?*=0.146, f = 0382, std. err. of f = 0.184
B = 0.240, std. err. of B = 0.116, p — value = 0.049;
. xy; R=0481 R?*=10.231, f = 0481, std. err. of f = 0.175,

B = 0302 std.err. of B = 0.110, p — value = 0.011.

Interpreting the computed regressions presented above, the following
conclusions were drawn:

e the p —values are indicating that the three null hypotheses for the factors are
rejected, since they are below the chosen value of 0.05, meaning that all the
factors are influencing the solution length;
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the x, factor, which represents the  parameter of the algorithm, has negative
values for the standardized (f) and the unstandardized (B) coefficient,
indicating that there is an inverse relation between it and the solution length.
the factors x; and x5, representing the p and £ parameters have positive
values for the standardized (5) and the unstandardized (B) coefficient,
indicating that there is direct relation between them and the solution length.
The above conclusions are also supported by the graphical representation

of the interactions between every two independent factors and the solution length
(Figs. 2 - 4).
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After determining, for each FFE graph, the optimal domain values for the
factors, by using a simple intersection of these domains can further allow
identifying the optimal algorithm’s parameters values. Taking into the account the
relation @ + 5 = 1 and the fact that f € [0.4,1.0] (resulting from the intersection
of the domains) the optimal values are & = 0.3 and § = 0.7. Since both p and =
domains are in the [0.0, 0.6] domain, the optimal values of these parameters were
determined to be p = 0.5 and £ = 0.5.

4. Conclusions

It is a well-known fact that ACO algorithm’s performance of meta-
heuristics is very dependent on the parameters values. This is the reason for which
the computer scientists, that perform researches in this field, dedicate a lot of
effort into determining appropriate values for them. The determination of suitable
values for these parameters can be performed either a priori, or a posteriori the
algorithm’s employment [19].

The disadvantage of the a priori approach is that is effortful, time-
consuming and usually done by trial and error without guaranteeing optimal
values. However, these values can be optimally a priori obtained by
methodologically testing all possible combinations. An alternative to the a priori
determination is the a posteriori one, which consists in altering the algorithm’s
parameter values while the algorithm is running for solving a problem. By
allowing automatic fine tuning of its parameters in relation with the problem’s
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instance, the algorithm becomes robust, even if it was initially designed for a
different context.

The main advantage of the approach presented herein (i.e. normalization
of the algorithm’s parameters values), which falls into the a priori category,
consists in the fact that the initial test-runs for setting up the algorithm’s
parameters (determining its values) can be extrapolated for other similar maps.
Other advantages are that all the parameters are normalized to the [0,1] domain
and that @ + 5 = 1, resulting in a much clearer ratio between the attractiveness of
the heuristic information (the distance) and the pheromone intensity, when the
artificial entities choose the next node in the graph. The normalization performed
on EAS did not alter the algorithm and its performance, therefore a comparison
between N-EAS and other ACO algorithms was considered unnecessary since
there are other studies comparing EAS with other algorithms. It should be
highlighted as a conclusion the fact that the foremost objective of this initiative
was achieved, meaning, spearing computational time used by pre-tests in order to
determine a good set of algorithm's parameters values.
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