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ON POSITIVE SOLUTIONS FOR A CLASS OF ELLIPTIC
SYSTEMS INVOLVING THE p(x)-LAPLACIAN WITH
MULTIPLE PARAMETERS

Ghasem Alizadeh AFROUZI*, Saleh SHAKERI? Nguyen Thanh
CHUNG?

In this article, we consider the system of differential equations
= A yoU = AP [Aa(x) f (V) + e(x)h(u)]  inQ
= AV = AVILD(9G(U) + 1,d ()r(vV)]  inQ

u=v=00n 0Q,

where Q = R" is a bounded domain with C2 boundary 6Q, 1< p(x) € C*(Q) isa
function. The operator —A | u = —div(| Vu IP®-2 Vu) is called p(X)-Laplacian,

A, A, A, 14 and u, are positive parameters. We prove the existence of positive solutions when
1

tim TMEUD" ) _y um >0

U—>+00 u® -1

"mﬂ:o, |imﬂ:0

u—+o p - U=+ || p -

via sub-supersolutions without assuming sign conditions on f (0), g(0), h(0) or z(0).

Keywords: Positive solutions; Sub-super solution; Variable exponent elliptic
systems; p(x)-Laplacian problems.

1. Introduction

The study of differential equations and variational problems with variable
exponent has been a new and interesting topic. It arises from nonlinear elasticity
theory, electrorheological fluids, etc. (see [4, 16, 23]). Many results have been
obtained on this kind of problems, for example [1, 4, 5, 7, 14, 23]. In [8, 9, 10],
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Fan et al. give the regularity of weak solutions for differential equations with
variable exponent. On the existence of solutions for elliptic systems with variable
exponent, we refer to [14, 18, 19, 21]. In this paper, we mainly consider the
existence of positive weak solutions for the system

— AU = PPLAa(x) f (V) + e(x)h)]  inQ,
= AoV = APP[b(X)g(U) + ,d () (V)] inQ, O
u=v=0 onoQ,

where Q = R" is a bounded domain with C? boundary 6Q, 1< p(x) e C}(Q) is
a function. The operator —A ,,;u = —div(| Vu [P®-2 vu) is called p(x)-Laplacian.
Especially, if p(x)=p (a constant), (1) is the well-known p -Laplacian system.
There are many papers on the existence of solutions for p -Laplacian elliptic
systems, for example [3, 5, 13, 15]. Owing to the nonhomogeneity of p(x)-
Laplacian problems are more complicated than those of p -Laplacian, many
results and methods for p-Laplacian are invalid for p(x)-Laplacian; for
example, if Q is bounded, then the Rayleigh quotient

[ 2 vu P dx
Q

how= it~
Pe uewy P @)\ 1 [u "™ dx
2 p(x)

is zero in general, and only under some special conditions 2,,, >0 (see [12]),
and maybe the first eigenvalue and the first eigenfunction of p(x)-Laplacian do
not exist, but the fact that the first eigenvalue 4, >0 and the existence of the first

eigenfunction are very important in the study of p -Laplacian problems. There are
more difficulties in discussing the existence of solutions of variable exponent
problems. In [13], the authors consider the existence of positive weak solutions
for the following p -Laplacian problem
—Au=2af(v) inQ,
—A,v=Ag(u) inQ, (2)
u=v=0 onoQ.
The first eigenfunction is used to construct the subsolution of p -Laplacian

problems successfully. On the condition that A is large enough and
1

(p-1)
lim f[M(ggt_’l)) ]=oforeveryM >0,

U—+o0
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the authors give the existence of positive solutions for problem (2).
On the p(x)-Laplacian problems, maybe the first eigenvalue and the first

eigenfunction of p(x)-Laplacian do not exist. Even if the first eigenfunction of
p(x) -Laplacian exist, because of the nonhomogeneity of p(x)-Laplacian, the
first eigenfunction cannot be used to construct the subsolution of p(x)-Laplacian

problems. In [2, 18, 21], the authors studied the existence of solutions for the
problem
=AU =Af(v) inQ,
— AV =4g(u) inQ, 3)
u=v=0 onoQ,
when some symmetric conditions are imposed. In [20] Q.H. Zhang investigated
the existence of positive solutions of the system
— AU = PP f(v) inQ,
—A v =A"Mg(u) inQ, @)
u=v=0 onoQ,

without any symmetric conditions. Motivated by the ideas introduced in [2, 20],
in this paper, we study the existence of positive solutions for system (1), where

p e CH(Q) is a function, A, 4, A, iy and p, are positive parameters, a,b,c,d are
continuous functions and Q cR" is a bounded domain. It should be noticed that
we do not assume the symmetric condition as in [2, 18, 21].

To study p(x)-Laplacian problems, we need some theory on the spaces
LPY(Q),W P () and properties of p(x)-Laplacian which we will use later
(see [7, 17]. If Q<R" is an open domain, write

C.(Q)={h:heC(Q),h(x) >1for x e Q},

h* =suph(x), h =infh(x) foranyheC,(Q).

XeQ

XeQ
Throughout the paper, we will assume that:

+ QcR" is an open bounded domain with C? boundary oQ;
e peCYQ)andl<p <p*;
* h,z e C'([0,0)) are nonnegative, nondecreasing functions such that

. h(u) _ . z(u)
lim———=0, lim——

U—too P - u—>+o0 | P -1

« f,9 €C*([0,0)) are nondecreasing functions, lim,_,... f (U) = +o,
limu_e 9(U) = 400, and
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1

lim U (g(_u))piil) =0, VM >0.;

U—>+0 u® -1

* a,b,c,d:Q — (0,%) are continuous functions such that
a, = minkoaa(X), b = minkab(x), ¢, = minkac(X), d; = minad(x),
a, = max«aa(X) and b, = max..ab(X), ¢, = maxac(X), d, = maxxad(X) .
Denote
LPX(Q) = {u |u isameasurablereal — valuedfunction, J'Q Ju(x) "™ dx < oo}

We introduce the norm on L*™®(Q) by
U] = inf{/1>0:j |M|P<X> dxgl},
e A

p(x)

and (LP® (Q),]"],y) becomes a Banach space, we call it generalized Lebesgue
space. The space (LP™ (Q),].1,) is a separable, reflexive and uniform convex

Banach space (see [7, Theorems 1.10, 1.14]). The space W"*™(Q) is defined by
WHPO(Q) ={u e L™ ;| Vu e L’™}, and it is equipped with the norm

[ =lul,e +1 VUl YueW PH(Q).
We denote by W, **(Q) the closure of C(Q) in WHP¥(Q). WX (Q) and
WP (Q) are separable, reflexive and uniform convex Banach space (see [7,

Theorem 2.1]). We define
(L(u),v) = J'Q | VU P2 vuvvdx, Vu,veW;PY(Q),

then L:W}P®(Q) - W, P¥(Q))" is a continuous, bounded and strictly

monotone operator, and it is a homeomorphism (see [11, Theorem 3.1].
If u,veW,P¥(Q),(u,v) is called a weak solution of (1) if it satisfies

jﬂ | Vu |P®2 vuvgdx = jgzpm [4,f (V) + h()]gdx, ¥ qeW2rP®(Q),
[ 1Vv [P wuvgdx = [ 2©[2,9(0) + ppr(v)]adx, ¥ q e Wy (Q).

Define A:W"P¥(Q) — (W;P¥(Q))" as
(Au,) = [ (VU]?7 VuVe+ j(x,u)p)dx, Vu,peW PP (Q),
where j(x,u) is continuous on QxR and j(x,) is increasing. It is easy to check

that A is a continuous bounded mapping. Copying the proof of [22], we have the
following lemma.
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Lemma 1.1 (Comparison principle) Let u,v e W% (Q) satisfy
Au—Av>0 in W,""¥(Q))", @(x) = min{u(x)—v(x),0}. If p(x) eW,"¥(Q)
(i,e.u=von oQ ), thenu>v ae. in Q.

Here and hereafter, we will use the notation d(x,0Q) to denote the

distance of xeQ to the boundary of Q. Denote d(x)=d(x,0Q) and
0Q, ={xeQ|d(x,0Q) < &}. Since 6Q is C? regularly, then there exists a
constant ¢ € (0,1) such that d(x) eCZ(GTM) ,and |vd(x) |=1.

Denote

W(x), d(x)<é,

o [N ), 5<a <25
Vl(X)— 2

7o+ [ t)ﬁ(xiaﬁﬂlcl)'] i, 25 <d(x).

2

W(x), d(x) <4,

_c 2
76+L() (—25 t)p (b + pd)? T, S<d(x) <26,
V,(X) = L

¥+ j )p-l(zb +1,0,)P tdt, 28 <d(x).

Obviously, 0<v,(x),v,(x) eC' (Q) . Consider
P(X)W(X) =7 inQ, (5)
w 0 onoQ.
Lemma 1.2 (see[6] ) If the positive parameter 7 is large enough and w

is the unique solution of (5), then we have

* For any 6 (0,1) there exists a positive constant C, such that
1

+7
Cm® 7 < maxw(x);
XeQ)

1

» There exists a positive constant C, such that maxw(x) <C,n" .
xeQ

2. Main result
In the following, when there is no misunderstanding, we always use C, to
denote positive constants.
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Theorem 2.1 If the conditions (H,) - (H.) are satisfied then problem (1)

has a positive solution when A is large enough.
Proof. We shall establish Theorem 2.1 by constructing a positive
subsolution (®,,®,) and supersolution (z,,z,) of (1), such that ®, <z, and

®,<z,.Thatis (®,,dD,) and (z,,z,) satisfy

[ 1V, 7972 v, - vadx < [ 27O [Aa(x) (@) + 4 c()h(®,)]qdx,
[1V®, P92 Vo, - vadx < [ 2P[4,b(x)g(®,) + 2,d (X)7(®,)]adx,

and
[ 1V2, P97 vz, -vadx > [ 2°0[2,a(0) f (,) + #c()h(®,)]adx,
[ 1V2, P72 vz, - Vadx > | AP9[2,b()g(®,) + 1,0 (X)7(®,)]ailx,

for all geW, "™ (Q) with q>0. According to the sub-supersolution method for
p(x) -Laplacian equations (see [6]), then (1) has a positive solution.

Step 1. We will construct a subsolution of (1). Let o < (0,0) be small
enough. Denote

&40 _1 d(x)<o,
2 2
"ot e (2 t)P*luiamlcl)p ot o<d() <23,
¢1(x>— N, :
1+ [’ ke""(25 t)p_l(ﬂlal-i-,uicl)p_ldt 25 <d(x).

e 1 d(x) <o,
2 2
e 1+ [ ke (ﬁ) b, + ,d) P N, o <d(x) < 26,
¢2(X) = 2

14 [ kk“(25 t)ﬁ(ﬁzbl-i-,uzd)p Lt 25 <d(x).

It is easy to see that ¢, ¢, € C*(Q2) . Denote
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@ =minf inf p(x)-1 ,
4(sup| Vp(x) | +1)
¢ =min{4a, f(0)+24¢,h(0), 4,0,9(0) + 1,d,7(0) -1}
By some simple computations we can obtain

— k (ke ™) ”(XH[( p(x)—1) + (d (x) + MijVd kd } d(x) <o,

1 2(p(x)—1)_[2§—dj Inkek"(zg de ) Vpvd + Ad
20—0c p -1 20-0 20-0
2p(0-D)_,

25—d p -1
20—0

-A p(x)¢1 =

x&éﬂWH[ (ha,+ ). o <d(x) <25,

0, 25<d(x).

- k(ke"d(x))p(x)‘l[( p(x)-1) +(d (x) +nTijde Akd } d(x) <o,

1 2(p(x)—1)_(25—d) Inkek”(25 djp A VpVd + Ad
200 p -1 20-0 20-0
2p(01)

25 d p -1
20 -

—Ay i =

xméﬂ““[ (b, + 1,d,), o <d(x)<25,

0, 25<d(x).

From (H,) and (H,), there exists a positive constant M >1 such that
f(M-1)>1,h(M -1)>1,g(M -1)>1, (M -1)>1.

Let a:%InM . Then

ok =InM. (6)
If k is sufficiently large from 6, we have

Aot <K "Ma, d(x)<o. (7)
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Let — A4 =ka . Then
kPWg > 2P0,
From (7), we have

— Aot <A (43, T(0)+ 4¢,0(0) < 27 (Aa(X) f (4,) + tmc()h(4)), d(x) <o

(8)
Since d(x) e C?(0Q,;), there exists a positive constant C, such that
95 —d 2(p(0)-1) 4

o X)-: B p -1

—Ayt < (ke"7)P™ {E (43, + 4C,)
2
2(p() 1) -( 20-d j In kek"(—w_d j"l Vpvd + Ad
(26-o)(p -1) \26-0 20-0

<C,(ke")"™ (A4, + 1c)Ink, o <d(x)<26.

If k is sufficiently large, since — A¢ = ke, we have

(A, + 46,)Cy (ke*?)P®Ink = (@, + 4¢,)Cy (kM) PO Ink < A7) (@ + 16y).
Then
_Ap(x)¢1 < ﬂ’p(X) (ﬂ’.l.ai +IU1C1)’ o< d(X) < 25

Since ¢,(x),¢4,(X)>0 and h, f are monotone, when A is large enough we have

— Aot <A (Aa() F(4,) + e()h(4)), o <d(x) <26 9)
Obviously

~A g =027 (Aay + ) < AP (Aa(x) F () + iec(N(4)), 26 < d(x).(10)
Combining (8), (9) and (10), we can conclude that

~ Aot A (a(X) T () + pc()h(4)), a.e.onQ. (11)
Similarly
~ A SA(AD()G(4) + 1,0 (X)7(4,)), ae.on (12)

From (11) and (12), we can see that (¢,,¢,) is a subsolution of problem (1).

Step 2. We will construct a supersolution of problem (1). We consider
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—Aph = ﬂp+:u(j1az +44C,) inQ,
—AyZ, = AP (A0, + 11,d,)9(B(A° (Aa, + 4C)) 1)) InQ,
2,=2,=0 onoQ,

where g = ,3(/1p+ (La, + 14C,) 1) = maxyea Z,(X) . We shall prove that (z,,z,) is a
supersolution of problem (1).
For g e W, P (Q) with q>0, it is easy to see that

IQ |Vz, |’ vz, - Vqdx
= [ 277 (Ao, + 1,0,) 9 (B (A, + 116,) 1))l (13)
> [ A7 A (0GB (A8, +a1c,) w))adx+ [ 27 2,0(x)g (z,)ddx.
By (H.) for x large enough, using Lemma 1.2, we have

1
(B (Ad, + e i) 2 ([A° (b, +4d,) G (B (A, + g ) ) ) 2 7(2,).
(14)

Hence,

jﬂ |Vz, P92 vz, Vadx > jﬂm“ 14,d (X)7(2,)qox + _[Q/ip+/12b(x)g (z,)qdx. (15)
Also

L |Vz, |P¥7? vz, - Vqdx = .[Qﬂﬁ (A, + wC,) padx.
By (H,),(H,), when g is sufficiently large, using Lemma 1.2, we have

(4@, + uC,) u
1

> 112 B (A + pue) )]
AP Cz

1

> (B (A, + 11€) 1)) + AT (CIA7 (b, + 1,0,)Q (B (A2, + 1, )P ).

Then
jﬁ |Vz, |P®2 vz, - Vadx > _fg/lp+/11a(x) f (z,)qdx + jgﬂp* c(x)h(z,)qdx. (16)
According to (15) and (16), we can conclude that (z,,z,) is a supersolution for

(1).
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It only remains to prove that ¢ <z, and ¢, <z,.
In the definition of v,(x), let

2
7 = —(max ¢, (x) + max |V (X) ]).
5 xeQ xeQ
We claim that
A (X)<v(x), VxeQ. 17
From the definition of v,, it is easy to see that
#(X) £ 2max ¢, (X) <v,(x), whend (x) = &
xeQ
and
@ (X) £ 2max ¢ (X) < v, (x), whend (x) > 5.
XeQ)
It only remains to prove that
@, (X) <v,(x), whend(x) < 5.
Since v, —¢, € Cl(@) , there exists a point X, € @ such that

Vl(Xo) - ¢1(Xo) = min [Vl(x) - ¢1(X)]

XOE(')Q§
If v,(X,) —¢,(X,) <O, it is easy to see that 0 <d(x) < ¢, and then
WV, (%) = V(%) = 0.
From the definition of v,, we have

Vi (%) =7 = %(rygzx ¢ (x) + max Ve (X)) >V (X)].
Itis a contradiction to Vv,(x,)—V¢,(X,) =0. Thus (17) is valid.
Obviously, there exists a positive constant C, such that
y <C,A.
Since d(x) e CZ(@), according to the proof of Lemma 1.2, then there exists a

positive constant C, such that
— A, Vi (X) SCy P <C AP gelin®, whered e (0,1).

When 7 > 2"" is large enough, we have
= A oi(X) <7
According to the comparison principle, we have

v, (X) <w(x), VxeQ. (18)
From (17) and (18), when > A and 121 s sufficiently large, we have
& (X) v, (X) <w(x), VxeQ. (19)

According to the comparison principle, when g is large enough, we have
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v,(X) Sw(x)<z,(x), VxeQ.
Combining the definition of v,(x) and (19), it is easy to see that
A (X) v (X) Sw(x)<z,(x), VxeQ.
When x>1 and A is large enough, from Lemma 1.2 we can see that

ﬂ(/l"+ (4a, + 1,C,) 1) is large enough then

Vi (A;b, + ﬂzdz)h(ﬁ(}yr (43, + pCy) 1))
is large enough. Similarly, we have ¢, < z,. This completes the proof.

3. Conclusions

The study of differential equations involving p(x)-growth conditions is a

consequence of their applications. Materials requiring such more advanced theory
have been studied experimentally since the middle of last century. In this paper,
we have proved that problem (1) has at least one positive solution provided that
the parameter A is large enough. The approach is based on the sub-supersolution
arguments. This improves or complements the previous results [2, 18, 20, 21] in
the sense that we consider problem (1) with weights a(x),b(x),c(x),d(x) and the

fact that we do not assume any symmetric conditions on the nonlinearities.
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