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In this article, we consider the system of differential equations  
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where NR⊂Ω  is a bounded domain with 2C  boundary Ω∂ , )()(<1 1 Ω∈Cxp  is a 

function. The operator )|(|div= 2)(
)( uuu xp

xp ∇∇−Δ− −  is called )(xp -Laplacian, 

121 ,,, μλλλ  and 2μ  are positive parameters. We prove the existence of positive solutions when  
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via sub-supersolutions without assuming sign conditions on (0)(0),(0), hgf  or (0)τ . 
 
Keywords: Positive solutions; Sub-super solution; Variable exponent elliptic 

systems; )(xp -Laplacian problems.  

1. Introduction 

The study of differential equations and variational problems with variable 
exponent has been a new and interesting topic. It arises from nonlinear elasticity 
theory, electrorheological fluids, etc. (see [4, 16, 23]). Many results have been 
obtained on this kind of problems, for example [1, 4, 5, 7, 14, 23]. In [8, 9, 10], 
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Fan et al. give the regularity of weak solutions for differential equations with 
variable exponent. On the existence of solutions for elliptic systems with variable 
exponent, we refer to [14, 18, 19, 21]. In this paper, we mainly consider the 
existence of positive weak solutions for the system  
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 where NR⊂Ω  is a bounded domain with 2C  boundary Ω∂ , )()(<1 1 Ω∈Cxp  is 
a function. The operator )|(|div= 2)(

)( uuu xp
xp ∇∇−Δ− −  is called )(xp -Laplacian. 

Especially, if pxp ≡)(  (a constant), (1) is the well-known p -Laplacian system. 
There are many papers on the existence of solutions for p -Laplacian elliptic 
systems, for example [3, 5, 13, 15]. Owing to the nonhomogeneity of )(xp -
Laplacian problems are more complicated than those of p -Laplacian, many 
results and methods for p -Laplacian are invalid for )(xp -Laplacian; for 
example, if Ω  is bounded, then the Rayleigh quotient  
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is zero in general, and only under some special conditions 0>)( xpλ  (see [12]), 
and maybe the first eigenvalue and the first eigenfunction of )(xp -Laplacian do 
not exist, but the fact that the first eigenvalue 0>pλ  and the existence of the first 
eigenfunction are very important in the study of p -Laplacian problems. There are 
more difficulties in discussing the existence of solutions of variable exponent 
problems. In [13], the authors consider the existence of positive weak solutions 
for the following p -Laplacian problem  
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 The first eigenfunction is used to construct the subsolution of p -Laplacian 
problems successfully. On the condition that λ  is large enough and  
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the authors give the existence of positive solutions for problem (2). 
On the )(xp -Laplacian problems, maybe the first eigenvalue and the first 

eigenfunction of )(xp -Laplacian do not exist. Even if the first eigenfunction of 
)(xp -Laplacian exist, because of the nonhomogeneity of )(xp -Laplacian, the 

first eigenfunction cannot be used to construct the subsolution of )(xp -Laplacian 
problems. In [2, 18, 21], the authors studied the existence of solutions for the 
problem  
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 when some symmetric conditions are imposed. In [20] Q.H. Zhang investigated 
the existence of positive solutions of the system  
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 without any symmetric conditions. Motivated by the ideas introduced in [2, 20], 
in this paper, we study the existence of positive solutions for system (1), where 

)(1 Ω∈Cp  is a function, 121 ,,, μλλλ  and 2μ  are positive parameters, dcba ,,,  are 
continuous functions and NR⊂Ω  is a bounded domain. It should be noticed that 
we do not assume the symmetric condition as in [2, 18, 21]. 

To study )(xp -Laplacian problems, we need some theory on the spaces 
)(),( )(1,)( ΩΩ xpxp WL  and properties of )(xp -Laplacian which we will use later 

(see [7, 17]. If NR⊂Ω  is an open domain, write  
}, for 1>)(),(:{=)( Ω∈Ω∈Ω+ xxhChhC  
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Throughout the paper, we will assume that:   
    • NR⊂Ω  is an open bounded domain with 2C  boundary Ω∂ ;  
    • )(1 Ω∈Cp  and +− ≤ pp<1 ;  
    • ))([0,, 1 ∞∈Ch τ  are nonnegative, nondecreasing functions such that  
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    • ))([0,, 1 ∞∈Cgf  are nondecreasing functions, +∞+∞→ =)(lim ufu , 
+∞+∞→ =)(lim ugu , and  
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    • )(0,:,,, ∞→Ωdcba  are continuous functions such that 
)(min=1 xaa x Ω∈ , )(min=1 xbb x Ω∈ , )(min=1 xcc x Ω∈ , )(min=1 xdd x Ω∈ , 
)(max=2 xaa x Ω∈  and )(max=2 xbb x Ω∈ , )(max=2 xcc x Ω∈ , )(max=2 xdd x Ω∈ .  

 Denote  
{ }.<|)(| ,functionvaluedrealmeasurableais  | =)( )()( ∞−Ω ∫Ω dxxuuuL xpxp  

We introduce the norm on )()( ΩxpL  by  
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xpL ⋅Ω  becomes a Banach space, we call it generalized Lebesgue 

space. The space )|.|),(( )(
)(

xp
xpL Ω  is a separable, reflexive and uniform convex 

Banach space (see [7, Theorems 1.10, 1.14]). The space )()(1, ΩxpW  is defined by 
}|:|{=)( )()()(1, xpxpxp LuLuW ∈∇∈Ω , and it is equipped with the norm  
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0 ΩxpW  are separable, reflexive and uniform convex Banach space (see [7, 
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0 ))(()(: Ω→Ω xpxp WWL  is a continuous, bounded and strictly 

monotone operator, and it is a homeomorphism (see [11, Theorem 3.1]. 
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where ),( uxj  is continuous on R×Ω , and ),( ⋅xj  is increasing. It is easy to check 
that A is a continuous bounded mapping. Copying the proof of [22], we have the 
following lemma. 
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Lemma 1.1 (Comparison principle)  Let )(, )(1, Ω∈ xpWvu  satisfy 
0≥− AvAu  in ∗Ω))(( )(1,

0
xpW , ),0}()({min=)( xvxux −ϕ . If )()( )(1,

0 Ω∈ xpWxϕ  
(i.e. vu ≥  on Ω∂  ), then vu ≥  a.e. in Ω .  

Here and hereafter, we will use the notation ),( Ω∂xd  to denote the 
distance of Ω∈x  to the boundary of Ω . Denote ),(=)( Ω∂xdxd  and 

}<),( | {= εε Ω∂Ω∈Ω∂ xdx . Since Ω∂  is 2C  regularly, then there exists a 

constant (0,1)∈δ  such that )()( 3
2
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Lemma 1.2 (see[6] )  If the positive parameter η  is large enough and w  
is the unique solution of (5), then we have   

    • For any (0,1)∈θ  there exists a positive constant 1C  such that  
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2. Main result 
In the following, when there is no misunderstanding, we always use iC  to 

denote positive constants. 
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Theorem 2.1  If the conditions )( 1H - )( 5H  are satisfied then problem (1) 
has a positive solution when λ  is large enough.  

Proof. We shall establish Theorem 2.1 by constructing a positive 
subsolution ),( 21 ΦΦ  and supersolution ),( 21 zz  of (1), such that 11 z≤Φ  and 

22 z≤Φ . That is ),( 21 ΦΦ  and ),( 21 zz  satisfy  
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for all )()(1,
0 Ω∈ xpWq  with 0≥q . According to the sub-supersolution method for 

)(xp -Laplacian equations (see [6]), then (1) has a positive solution. 
 Step 1. We will construct a subsolution of (1). Let )(0,δσ ∈  be small 

enough. Denote  
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It is easy to see that )(, 1
21 Ω∈Cφφ . Denote  
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 By some simple computations we can obtain  
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From )( 3H  and )( 4H , there exists a positive constant 1>M  such that  
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Let M
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 .ln= Mkσ  (6) 
 If k  is sufficiently large from 6, we have  
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 Let αλζ k=− . Then  
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 If k  is sufficiently large, since αλζ k=− , we have  
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 From (11) and (12), we can see that ),( 21 φφ  is a subsolution of problem (1). 
 

 Step 2. We will construct a supersolution of problem (1). We consider  
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supersolution of problem (1). 

For )()(1,
0 Ω∈ xpWq  with 0≥q , it is easy to see that  
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 (13) 

 By )( 5H  for μ  large enough, using Lemma 1.2, we have  
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 Hence,  
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By )(),( 43 HH , when μ  is sufficiently large, using Lemma 1.2, we have  
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 Then  
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+
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Ω ∫∫∫ +≥∇⋅∇∇  (16) 

 According to (15) and (16), we can conclude that ),( 21 zz  is a supersolution for 
(1). 
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 It only remains to prove that 11 z≤φ  and 22 z≤φ . 
 In the definition of )(1 xv , let  

 |).)(|max)(max(2= 11 xx
xx

φφ
δ

γ ∇+
Ω∈Ω∈

 

We claim that  
 .),()( 11 Ω∈∀≤ xxvxφ  (17) 

 From the definition of 1v , it is easy to see that  
δφφ =)(when),()(max2)( 111 xdxvxx

x
≤≤

Ω∈
 

and  
.)(when),()(max2)( 111 δφφ ≥≤≤

Ω∈
xdxvxx

x
 

It only remains to prove that  
 .<)(when),()( 11 δφ xdxvx ≤  

Since )(1
11 δφ Ω∂∈− Cv , there exists a point δΩ∂∈0x  such that  

 )].()([min=)()( 11
0

0101 xxvxxv
x

φφ
δ

−−
Ω∂∈

 

If 0,<)()( 0101 xxv φ−  it is easy to see that ,<)(<0 δxd  and then  
 0.=)()( 0101 xxv φ∇−∇  

From the definition of 1v , we have  

.|)(>||))(|max)(max(2=|=)(| 011101 xxxxv
xx

φφφ
δ

γ ∇∇+∇
Ω∈Ω∈

 

It is a contradiction to 0=)()( 0101 xxv φ∇−∇ . Thus (17) is valid. 
Obviously, there exists a positive constant 3C  such that  
 .3λγ C≤  

Since )()( 3
2

δΩ∂∈Cxd , according to the proof of Lemma 1.2, then there exists a 
positive constant 4C  such that  

(0,1).where,a.e.in,)( 1)(
4

1)(
1)( ∈Ω≤≤Δ− +−+−

∗ θλγ θθ xpxp
xp CCxv  

When 
+

≥ pλη  is large enough, we have  
 .)(1)( η≤Δ− xvxp  

According to the comparison principle, we have  
 .),()(1 Ω∈∀≤ xxwxv  (18) 

 From (17) and (18), when 
+

≥ pλη  and 1≥λ  is sufficiently large, we have  
 .),()()( 11 Ω∈∀≤≤ xxwxvxφ  (19) 

 According to the comparison principle, when μ  is large enough, we have  
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 .),()()( 11 Ω∈∀≤≤ xxzxwxv  
Combining the definition of )(1 xv  and (19), it is easy to see that  

 .),()()()( 111 Ω∈∀≤≤≤ xxzxwxvxφ  
When 1≥μ  and λ  is large enough, from Lemma 1.2 we can see that 

))(( 2121 μμλλβ cap +
+

 is large enough then  

)))((()( 21212222 μμλλβμλλ cahdb pp ++
++

 
is large enough. Similarly, we have 22 z≤φ . This completes the proof.  

3. Conclusions 

The study of differential equations involving )(xp -growth conditions is a 
consequence of their applications. Materials requiring such more advanced theory 
have been studied experimentally since the middle of last century. In this paper, 
we have proved that problem (1) has at least one positive solution provided that 
the parameter λ  is large enough. The approach is based on the sub-supersolution 
arguments. This improves or complements the previous results [2, 18, 20, 21] in 
the sense that we consider problem (1) with weights )(),(),(),( xdxcxbxa  and the 
fact that we do not assume any symmetric conditions on the nonlinearities. 
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