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IMPROVING SMALL CONVOLUTIONAL NEURAL 

NETWORKS WITH SEMI-SUPERVISED LEARNING 

Mihai BADEA1, Constantin VERTAN2, Corneliu FLOREA3, 

Laura FLOREA4, Andrei RACOVIŢEANU5 

The widespread adoption of Convolutional Neural Networks in both 

academia and the commercial sector have led to a rise in interest of compact 

solutions in constrained scenarios. Even though CNNs with a large number of layers 

have shown outstanding results in various tasks, these large architectures are not 

always well suited in some situations. The best results can be obtained when 

training networks with many labeled samples, which is difficult for highly 

specialized tasks. Using semi-supervised learning techniques, the performance of 

small CNNs can be boosted to make them more practical, even when the labeled set 

is small. The paper focuses on three semi-supervised algorithms, used in two 

architectures with a small number of layers and shows how their performance can 

be improved when training on small datasets. 
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1. Introduction 

Although neural networks have been studied for many decades, they are 

still the focus of many researchers, which has led to impressive developments in 

their overall structure, training algorithms and handling of data. In terms of utility, 

in image-based applications, Convolutional Neural Networks (CNN) are currently 

being used in various scenarios, both academic and commercial, with continuous 

and notable improvements (as compared to the first popular convolutional 

architecture, AlexNet [1]) in the manner in which the layers behave and interact 

with each other.  

Most of the successful applications of CNNs revolve around supervised 

problems, where the training algorithm uses images  and their corresponding 
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labels (target values) . A loss function quantifies the discrepancies between the 

network’s output and the target value, and an optimizer adjusts the weights which 

particularize the network in order to minimize the loss’ value. This method is a 

standard approach for many high-performance solutions, but it is not without 

disadvantages. The main concern when employing supervised learning is the size 

and adequacy of the used datasets. Typical CNN architectures proposed in the 

literature have millions of trainable parameters and require large collections of 

data to assure good generalization. For generic tasks, such as the classification of 

mundane objects, acquiring and labeling many samples may be straightforward, 

but in other tasks expert annotators are required. In other cases, gathering enough 

data is a challenging task in and of itself. Different approaches, such as the 

classical data augmentation, or such as the more recent Mixup method [2], can be 

considered solutions to the issue, generating new relevant samples used in 

training. 

Another way to address the lack of training samples is to integrate 

unlabeled data alongside the labeled part. Algorithms which make use of data in 

this way are called Semi-supervised Learning (SSL) methods. Far from being a 

new idea, the field of SSL has seen consistent growth, partly based on the large 

data collections required by CNNs. Although it is not a universal solution, SSL is 

a useful tool to boost performance and a promising avenue to pursue. 

A popular approach in improving network behavior by means of unlabeled 

samples is to introduce an extra regularization term in the form of a consistency 

loss. Methods such as the Π-model [3] and Mean Teacher [4] are noted as being 

effective SSL algorithms [5] which fall into this category. In other cases, the 

unsupervised portion of data is labeled during training and used as regular 

samples, Pseudo-Label [6] being a frequently mentioned example. When the extra 

data is used in this fashion, it acts as a form of entropy minimization [5]. 

A frequent point of interest in modern neural networks is the number of 

neural layers, denoted as the depth of the architecture. After AlexNet appeared, 

many notable efforts revolved around using an ever-increasing number of 

convolutional layers to extract highly specialized features, before the final output 

layers. If VGG [7] networks featured up to 19 neural layers, this number seems 

small when compared to ResNet [8] architectures, where values of 34, 50 or even 

151 layers were possible. The increased classification accuracies observed from 

these networks seemed to point out towards the architecture depth as the main 

contributing factor for the final results. ResNet architectures even have less 

trainable parameters than VGG-19, further making a case for the power of depth. 

As a direct response to these trends, alternatives such as Wide Residual Networks 

(WRN) [9] show that there is a strong case to be made for a balance between 

depth and “width” (the number of filters in each convolutional layer). Although 

the number of layers is reduced, WRNs are far from being shallow and actually 
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argue for increasing the number of parameters. Even if with GPU acceleration 

training large networks is not as unfeasible as it once was, one cannot overlook 

the fact that smaller network variants have their appeal, where applications should 

be more resource conscious.  

This paper is focused on the analysis of different SSL solutions in the 

context of networks composed by very few convolutional layers. In the following 

sections, besides explaining the general framework of the experiments, three 

methods of using unsupervised data will be presented and used for two 

classification tasks. One of them is more generic and frequently featured when 

comparing Machine Learning algorithms, while the second revolves around the 

more specialized and difficult task of facial expression classification. 

2.Architectures and proposed algorithms 

All the SSL algorithms which will be used for training CNNs in the 

following sections rely on adding supplemental terms to the original Cross 

Entropy (CE) loss, typical for classification tasks. An important aspect to consider 

when employing such methods is that the components of the total loss need to be 

weighted (or balanced) adequately. If the extra term is much larger than the CE, 

then the training process might be affected, and classification accuracy will take a 

severe hit. In the other extreme, if the SSL loss is too small, then there aren’t any 

noticeable differences from the fully supervised baseline case. 

Two architectures were used in our tests, based on the target dataset. Both 

architectures consist of simple blocks: a convolution layer with ReLU activation 

followed by max-pooling. The convolutions have kernels of size 3 x 3, with a 

stride of 1 and padding added as to keep the same number of rows and columns at 

the output. The pooling layers have 2 x 2 kernels with a stride of 2, avoiding 

overlapping regions within the feature maps. After these blocks, a dropout layer 

[10] is used before a fully connected (FC) layer, denoted as FCfeatures. The 

architectures are then ended by a typical FC output layer. Two out of the three 

methods make use of the features layer. Because of this, even though the networks 

have few convolutional layers, the dimension of that component will be initially 

kept at a sizeable 1024 neurons. Some variations in the architectures and the 

overall impact on performance will be discussed in the relevant section. 

2.1. Adapted Π-model 

The first proposal refers to a series of trainings which used a modified 

version of the Π-model [3] as the means of introducing unlabeled data in the 

process. This algorithm consists in feeding the network the same batch of images 

twice and enforcing a consistency loss between the outputs of the two versions (as 

suggested in the overall architecture shown in Fig. 1). In the original paper [3], 

there were two components which ensured that multiple passes of the same data 
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would yield the same results. First, the inputs are modified before entering the 

network by adding Gaussian noise and other augmentations. Secondly, the use of 

dropout layers directly impacts the features computed throughout the forward 

pass. The main aim of the authors was to enforce the same network outputs, 

independent of the augmentations and the inherent stochastic nature of dropout 

layers since the original input is the same. Adding a second branch of the same 

architecture ensures an easy comparison of the network outputs, given the same 

starting images. In our implementation, the only augmentations applied on the 

images are random rotations of a maximum of 10˚ and a random horizontal flip 

with a probability of 50%. Also, it should be noted that the architecture proposed 

in [3] has considerably more convolutional layers, and the use of multiple dropout 

layers is expected to impact our network differently than envisioned in the 

original implementation. The networks which we used have either 2 or 3 

convolutional layers, while the original one in [3] has 9 for all the target datasets. 

Furthermore, their deeper architecture should be less affected by multiple dropout 

layers, since the stronger features can be computed in a larger processing pipeline. 

 
Fig. 1. Implementation of the Π-model [3] on our network with two convolutional layers, where 

the Consistency cost is the second term of (1). 
 

The error between the two versions is measured using a Mean Squared 

Error (MSE) loss, leading to the total loss described in (1). In it,  is an image 

with a label , while  and  are the outputs of the network after applying a 

softmax activation function for two versions of the input batch  and . In the 

case of unlabeled samples, only the second term of the total loss is applicable. As 

a supplemental experiment, a third version of the input  was tested to see if the 

performance can be further improved. 
 

  (1) 
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2.2. SSL learning via autoencoder loss 

The second method that was tested shifted focus from the network output 

to the FCfeatures layer. A secondary task is defined besides the regular classification 

one, which consists of training an autoencoder architecture which uses as input 

the features layer. This kind of regularization term has been used in the past, such 

as by Dong et al. [11], but it is not a usual semi-supervised approach. Two extra 

dense layers are needed, a much smaller one for compression, followed by one 

with the same number of neurons as FCfeatures (Fig. 2). So, in the second method, 

the total loss is comprised of the regular CE loss and MSE loss between the input 

and output of the autoencoder component (2), where  are the values 

of the eponymous layer given an input  and   is the network’s 

output on the autoencoder branch. As was the case for the first method, when 

processing unsupervised batches, only the second term of the loss function is 

considered, since labels are not required for the reconstruction.  
 

  (2) 
 

Fig. 2. Implementation of autoencoder SSL regularization  

on our network with two convolutional layers. 

2.3. NN distance minimization for unlabeled samples 

The third and final SSL method which was tested took inspiration from 

such approaches as the Center Loss [12], introduced by Wen et al., which 

determines features to be more discriminative by minimizing the distance to their 

respective class centroids. Although it was envisioned in terms of a purely 

supervised task, the framework can be developed to work with unlabeled samples, 

as it was in Florea et al. [13]. When adapted for use in SSL scenarios, a new 

dependency arises, forcing the introduction of labels for the unsupervised data. 

The method we propose disregards class prototypes and the need for extra 

labeling, by enforcing distance minimization to individual samples. The features 

of unlabeled images are compared to those of labeled ones and the Nearest 
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Neighbor (NN) is found. The new loss component thus minimizes the distance 

between the features of the two mentioned samples (as suggested in Fig. 3). 
 

 
Fig. 3. The third method uses unlabeled samples  

by minimizing the distance from their features to known labeled data. 

 

Ideally, the NN should be identified from the entirety of the labeled 

training dataset. However, this would introduce severe overhead when the set is 

large, considering that distances need to be computed after each network update. 

Because of this, a stochastic approach was chosen, where the comparison only 

takes into account labeled samples from the current batch. This should not be such 

a troublesome issue, since most images from the same class are likely to have 

similar features, and the stochastic factor will have an extra regularizing effect. 

Compared to the previous methods, it is hard to define the total loss given a single 

sample, based on the nature of the supplemental term. In consequence, (3) shows 

the total loss for an entire batch, where  is the Nearest Neighbor of  

from the current batch of labeled images ( ). 
 

 

 
(3) 

 

All three methods have been trained on both datasets and the same data 

splits to ensure a fair comparison. When necessary, different configurations and 

hyper-parameters will be used to ensure better results.  

3. Datasets and their usage 

As mentioned in the previous sections, two datasets were used in the 

experimental setup. The first one is CIFAR-10 [14], a popular choice when 

reporting classifier performance both for supervised and SSL solutions. It is 
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comprised of 60,000 small images (32 x 32 pixels in RGB format) split between 

10 classes such as airplane, cat, frog, or truck. Out of these, 50,000 are destined 

to be used for training and 10,000 for testing. In our scenarios, the test dataset was 

left in its full size, while subsets of 250, 1,000 and 4,000 training images were 

considered as being labeled in order to adapt the data for an SSL framework. All 

training images which are not part of these subsets will be automatically 

considered as being unlabeled. 

Although test accuracy on CIFAR-10 within a fully supervised framework 

may go up to 99% [15], the purpose of our experiments was to study the 

improvement brought by the unlabeled samples in our networks with few layers. 

This approach of using a dataset usually destined for supervised training is not 

uncommon in SSL literature. 

Since CIFAR-10 is considered a general-purpose dataset, and not 

especially difficult, we expanded our efforts to the more complex issue of facial 

expression recognition. The main extra difficulties brought by this task are related 

to both image composition and meaning. Since all samples must contain faces, 

they are bound to look more alike and the labels themselves are prone to some 

degree of subjectivity, based on annotator experience and background. The chosen 

dataset for this segment is FER+ [16], which is based on the data from FER2013 

[17] but corrects various errors in the contained images and labels. The considered 

labels are the 6 fundamental expressions (happiness, sadness, surprise, anger, 

disgust, fear), along with neutral. In its original form, FER+ also contains 

contempt, but this expression was left out of our experiments, since it is not 

always included in other studies. 

Each image from FER+ is a 48 x 48 grayscale image and the decision to 

not rescale them led to the need of the second architecture, with a supplemental 

convolution and max-pooling operation. This way, the number of neurons used as 

input for the FC segment could be kept low. From the perspective of the overall 

dataset size, 28,709 samples are used for training, while 3,589 are destined for 

validation (or public test as it was originally called) and just as many for the test 

split. In this case, subsets of 320, 400, 2,000, 4,000 and 10,000 images were 

considered labeled during the experiments, just as for the previous dataset. 

4. Experimental results 

Adding supplemental terms to the regular CE loss function can lead to the 

overall loss of convergence of the training process. Because of this, it is common 

to start training in a fully supervised fashion and add the other components after 

the classification loss is smaller. We tested multiple starting points considering the 

inherent volatility of working with few labeled samples and, indeed, starting the 

training with extra loss terms lead to unreliable networks. A good starting point 
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for all experiments was anywhere above 50 epochs, possibly 100 for smaller 

learning rates.  
Table 1 

The impact of multiple dropout layers in our implementation of the Π-model.  

Classification accuracy [%] reported for the CIFAR-10 dataset 

in supervised (S) and semi-supervised (SSL) scenarios 

No. 

images 

3 x dropout FC-dropout 

S SSL S SSL 

250 37.1 37.63 37.7 38.76 

1000 46.64 48.35 49.05 50.79 

4000 59.11 58.18 62.19 62.41 

 

For the batch of networks trained using our implementation of the 

Π-model, the number and position of the dropout layers proved to be an important 

aspect. Given the small size of networks, multiple dropout layers seemed to not 

improve performance. Configurations with a single, two or three dropout layers 

were tested. In relation to other components of the network, the regularization 

layer was tried after the convolution or after the pooling layer. The best results 

were noticed when a single dropout operation was included, before FCfeatures. 

Other variants were close to each other but with a visible drop when comparing 

with the wining one. In Table 1 the “3 x dropout” column signifies that three 

dropout layers were used, one after each convolution operation and one before 

FCfeatures. The “FC-dropout” column has a single dropout operation, before the 

fully connected layer. It should be reminded that the architecture in the original 

paper contained visibly more convolutional layers, which could explain the 

negative effect on performance. All three tested algorithms bring a boost in 

classification accuracy to various degrees. The results on the CIFAR-10 dataset 

are reported in Table 2. A fully supervised baseline which only uses the Cross 

Entropy loss is shown in the column marked “CE”.  

The most interesting trends are noted for the second method, which uses 

the autoencoder reconstruction loss (noted as “Autoencoder Cost”), where the use 

of unlabeled samples negatively impacts the overall result. However, just adding 

the extra loss as a regularization method in a fully supervised scenario is 

beneficial to the network. 
Table 2 

The performance of the target methods on the CIFAR-10 dataset. 

The reported values are the classification accuracy [%] on the test set 

No. 

images 
CE 

Π-model 
Autoencoder 

Cost 

NN 

distance 

LaplaceNet 

[18] 

S SSL 
S+3 

aug. 

SSL+3  

aug. 
S SSL SSL SSL 

250 37.85 37.7 38.76 37.46 39.25 42.46 37.54 42.41 - 

1000 48.73 49.05 50.79 47.83 49.55 53.19 48.24 54.1 95.29±0.05 

4000 61.12 62.19 62.41 60.34 62.08 64.22 60.9 66.3 95.65±0.10 
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Another noteworthy aspect is that in the case of the Π-model, the extra 

version of the input batch (noted with “3 aug.”) does not help. When comparing 

the effectiveness of each algorithm, the third proposed method, noted as “NN 

distance”, displays the most consistent improvements with a margin of 5%, 

visibly better than our version of the Π-model. The last column in the table shows 

a comparison with LaplaceNet [18], which visibly surpasses our results, but uses a 

network that has 14 times as many convolutional layers and uses much stronger 

augmentation techniques (CutOut [19] and RandAugment [20]). 
 

Table 3 

The performance of the target methods on the FER+ dataset. 

The reported values are the classification accuracy [%] on the test set 

No. 

images 
CE 

Π-model 
Autoencoder 

Cost 

NN 

distance 

MarginMix 

[13] 

SSL 
SSL+3 

aug. 
S SSL SSL SSL 

320 50.44 51.88 51.31 52.38 52.44 52.92 50.76 

400 49.16 50.38 49.7 51.49 51.34 53.58 56.75 

2000 57.91 60.77 60.17 63.67 63.46 64.29 60.83 

4000 66.2 65.04 64.85 67.25 68.53 70.47 75.18 

10000 71.82 72.92 72.89 74.11 74.26 76.59 81.25 

 

When analyzing the results on FER+ from Table 3, most methods display 

the same trends, the clear winner being, again, the third method. A notable 

exception is the method with the autoencoder branch, where the unsupervised set 

does not negatively affect the training anymore but does not bring any noticeable 

improvement over using the labeled data only. Our implementations are compared 

with MarginMix [13], featured in the last column, where the results are reported 

for a network more than 9 times as deep as the one we tested. Even though the 

difference in depth is visible, the margin is relatively small, <5% in all cases, all 

three methods even surpassing MarginMix when only 320 labels are available. 
 

Table 4 

The performance of the SSL method based on minimizing NN distance, with different sizes 

of the fully connected layer. The values represent classification accuracy [%] on FER+ 

No. 

images 

FC neurons 

1024 128 

320 52.92 52.26 

400 53.58 52.62 

2000 64.29 64.14 

4000 70.47 70.71 

10000 76.59 77.97 
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Even though the approach based on NN distance minimization has the best 

results, the FCfeatures layer still has a large number of neurons compared to the rest 

of the network. Since the algorithm has proved to be successful given its original 

constraints, further testing was done to analyze the impact of the layer’s size. 

Reducing the number of neurons by a factor of 8 has led to interesting results, as 

can be seen in Table 4. Even though for smaller labeled subsets performance was 

slightly worse, in the case with the largest supervised part accuracy increased by 

>1%. This result might seem surprising at first but given the network structure 

most of its weights were contained by FCfeatures, while the three convolutional 

layers were not enough to produce features complex enough for the large layer. 

From the inference speed point of view, the network with 128 neurons in the 

FCfeatures layer is considerably faster than other usual architectures. Using the 

acceleration of a smaller video card (NVIDIA GTX 1060) only 0.91ms are 

necessary to process a single image, while a ResNet-18 networks requires 4.39ms 

for the same operation and the larger network from [18] takes 8.1ms. 

Of course, using CNNs with few convolutional layers is bound to reduce 

performance. When comparing our architecture which uses the Π-model with the 

one (containing 9 convolutional layers and a fully connected one) in the original 

paper (Table 5) there is a visible reduction in accuracy. 
 

Table 5 

The performance of the Π-model in our network compared to the original implementation. 

The values represent classification accuracy [%] on CIFAR-10 

No. 

images 

CE 

[3] 

Π-model 

[3] 

Π-model 

(ours) 

4000 65.15 ± 1.65 87.64 ± 0.31 62.41 

 

However, it can be seen that the margin between the fully supervised 

version of the network implemented in [3] and ours with the Π-model is relatively 

small, even though the number of neural layers is also more than twice as small, 

with fewer filters for the convolutional layers. 

5. Conclusions 

The field of CNNs has noticed many advances in recent years, but most 

emphasis was put on large architectures. In the experiments presented throughout 

this paper we have shown that there is still room for improvement in smaller 

networks. We have tested three different SSL solutions, and all have shown their 

utility in our scenarios, but the NN distance minimization method proposed as our 

third solution was clearly the most powerful one. Its consistent improvement of 

around 5% makes it a definite prospect for usage in larger, less constrained, 

networks as well. Semi-supervised Learning has proven to be a tool which can 



Improving small Convolutional Neural Networks with semi-supervised learning         117 

address many issues real-life computer vision tasks can encounter. Building on 

top of the established architecture may be a consistent solution, when considering 

the availability of existing unlabeled data, without adding any overhead at test 

time. 
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