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IMPROVING SMALL CONVOLUTIONAL NEURAL
NETWORKS WITH SEMI-SUPERVISED LEARNING
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Laura FLOREA®*, Andrei RACOVITEANU5

The widespread adoption of Convolutional Neural Networks in both
academia and the commercial sector have led to a rise in interest of compact
solutions in constrained scenarios. Even though CNNs with a large number of layers
have shown outstanding results in various tasks, these large architectures are not
always well suited in some situations. The best results can be obtained when
training networks with many labeled samples, which is difficult for highly
specialized tasks. Using semi-supervised learning techniques, the performance of
small CNNs can be boosted to make them more practical, even when the labeled set
is small. The paper focuses on three semi-supervised algorithms, used in two
architectures with a small number of layers and shows how their performance can
be improved when training on small datasets.

Keywords: semi-supervised learning, convolutional neural networks, image
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1. Introduction

Although neural networks have been studied for many decades, they are
still the focus of many researchers, which has led to impressive developments in
their overall structure, training algorithms and handling of data. In terms of utility,
in image-based applications, Convolutional Neural Networks (CNN) are currently
being used in various scenarios, both academic and commercial, with continuous
and notable improvements (as compared to the first popular convolutional
architecture, AlexNet [1]) in the manner in which the layers behave and interact
with each other.

Most of the successful applications of CNNs revolve around supervised
problems, where the training algorithm uses images X; and their corresponding
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labels (target values) ;. A loss function quantifies the discrepancies between the
network’s output and the target value, and an optimizer adjusts the weights which
particularize the network in order to minimize the loss’ value. This method is a
standard approach for many high-performance solutions, but it is not without
disadvantages. The main concern when employing supervised learning is the size
and adequacy of the used datasets. Typical CNN architectures proposed in the
literature have millions of trainable parameters and require large collections of
data to assure good generalization. For generic tasks, such as the classification of
mundane objects, acquiring and labeling many samples may be straightforward,
but in other tasks expert annotators are required. In other cases, gathering enough
data is a challenging task in and of itself. Different approaches, such as the
classical data augmentation, or such as the more recent Mixup method [2], can be
considered solutions to the issue, generating new relevant samples used in
training.

Another way to address the lack of training samples is to integrate
unlabeled data alongside the labeled part. Algorithms which make use of data in
this way are called Semi-supervised Learning (SSL) methods. Far from being a
new idea, the field of SSL has seen consistent growth, partly based on the large
data collections required by CNNSs. Although it is not a universal solution, SSL is
a useful tool to boost performance and a promising avenue to pursue.

A popular approach in improving network behavior by means of unlabeled
samples is to introduce an extra regularization term in the form of a consistency
loss. Methods such as the IT-model [3] and Mean Teacher [4] are noted as being
effective SSL algorithms [5] which fall into this category. In other cases, the
unsupervised portion of data is labeled during training and used as regular
samples, Pseudo-Label [6] being a frequently mentioned example. When the extra
data is used in this fashion, it acts as a form of entropy minimization [5].

A frequent point of interest in modern neural networks is the number of
neural layers, denoted as the depth of the architecture. After AlexNet appeared,
many notable efforts revolved around using an ever-increasing number of
convolutional layers to extract highly specialized features, before the final output
layers. If VGG [7] networks featured up to 19 neural layers, this number seems
small when compared to ResNet [8] architectures, where values of 34, 50 or even
151 layers were possible. The increased classification accuracies observed from
these networks seemed to point out towards the architecture depth as the main
contributing factor for the final results. ResNet architectures even have less
trainable parameters than VGG-19, further making a case for the power of depth.
As a direct response to these trends, alternatives such as Wide Residual Networks
(WRN) [9] show that there is a strong case to be made for a balance between
depth and “width” (the number of filters in each convolutional layer). Although
the number of layers is reduced, WRNs are far from being shallow and actually
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argue for increasing the number of parameters. Even if with GPU acceleration
training large networks is not as unfeasible as it once was, one cannot overlook
the fact that smaller network variants have their appeal, where applications should
be more resource conscious.

This paper is focused on the analysis of different SSL solutions in the
context of networks composed by very few convolutional layers. In the following
sections, besides explaining the general framework of the experiments, three
methods of using unsupervised data will be presented and used for two
classification tasks. One of them is more generic and frequently featured when
comparing Machine Learning algorithms, while the second revolves around the
more specialized and difficult task of facial expression classification.

2.Architectures and proposed algorithms

All the SSL algorithms which will be used for training CNNs in the
following sections rely on adding supplemental terms to the original Cross
Entropy (CE) loss, typical for classification tasks. An important aspect to consider
when employing such methods is that the components of the total loss need to be
weighted (or balanced) adequately. If the extra term is much larger than the CE,
then the training process might be affected, and classification accuracy will take a
severe hit. In the other extreme, if the SSL loss is too small, then there aren’t any
noticeable differences from the fully supervised baseline case.

Two architectures were used in our tests, based on the target dataset. Both
architectures consist of simple blocks: a convolution layer with ReLU activation
followed by max-pooling. The convolutions have kernels of size 3 x 3, with a
stride of 1 and padding added as to keep the same number of rows and columns at
the output. The pooling layers have 2 x 2 kernels with a stride of 2, avoiding
overlapping regions within the feature maps. After these blocks, a dropout layer
[10] is used before a fully connected (FC) layer, denoted as FCreatures. The
architectures are then ended by a typical FC output layer. Two out of the three
methods make use of the features layer. Because of this, even though the networks
have few convolutional layers, the dimension of that component will be initially
kept at a sizeable 1024 neurons. Some variations in the architectures and the
overall impact on performance will be discussed in the relevant section.

2.1. Adapted IT-model

The first proposal refers to a series of trainings which used a modified
version of the IT-model [3] as the means of introducing unlabeled data in the
process. This algorithm consists in feeding the network the same batch of images
twice and enforcing a consistency loss between the outputs of the two versions (as
suggested in the overall architecture shown in Fig. 1). In the original paper [3],
there were two components which ensured that multiple passes of the same data
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would yield the same results. First, the inputs are modified before entering the
network by adding Gaussian noise and other augmentations. Secondly, the use of
dropout layers directly impacts the features computed throughout the forward
pass. The main aim of the authors was to enforce the same network outputs,
independent of the augmentations and the inherent stochastic nature of dropout
layers since the original input is the same. Adding a second branch of the same
architecture ensures an easy comparison of the network outputs, given the same
starting images. In our implementation, the only augmentations applied on the
images are random rotations of a maximum of 10° and a random horizontal flip
with a probability of 50%. Also, it should be noted that the architecture proposed
in [3] has considerably more convolutional layers, and the use of multiple dropout
layers is expected to impact our network differently than envisioned in the
original implementation. The networks which we used have either 2 or 3
convolutional layers, while the original one in [3] has 9 for all the target datasets.
Furthermore, their deeper architecture should be less affected by multiple dropout
layers, since the stronger features can be computed in a larger processing pipeline.
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Fig. 1. Implementation of the IT-model [3] on our network with two convolutional layers, where
the Consistency cost is the second term of (1).

The error between the two versions is measured using a Mean Squared
Error (MSE) loss, leading to the total loss described in (1). In it, X; is an image
with a label ¥;, while o; and o, are the outputs of the network after applying a
softmax activation function for two versions of the input batch X; and X,. In the
case of unlabeled samples, only the second term of the total loss is applicable. As
a supplemental experiment, a third version of the input X, was tested to see if the
performance can be further improved.

Looear = Leg(X¥) + @y MSE(o0;, 0;) 1)
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2.2. SSL learning via autoencoder loss

The second method that was tested shifted focus from the network output
to the FCreatures layer. A secondary task is defined besides the regular classification
one, which consists of training an autoencoder architecture which uses as input
the features layer. This kind of regularization term has been used in the past, such
as by Dong et al. [11], but it is not a usual semi-supervised approach. Two extra
dense layers are needed, a much smaller one for compression, followed by one
with the same number of neurons as FCreatures (Fig. 2). So, in the second method,
the total loss is comprised of the regular CE loss and MSE loss between the input
and output of the autoencoder component (2), where FCr, 4 (X;) are the values
of the eponymous layer given an input X; and 0,.:cencoder (£;) 1S the network’s
output on the autoencoder branch. As was the case for the first method, when
processing unsupervised batches, only the second term of the loss function is
considered, since labels are not required for the reconstruction.

me! = LCE(X:'J'FEj + aEMSE(FCfEnru:"Es (Xi:]’ﬂnuma nooder [:Xi)) (2)
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Fig. 2. Implementation of autoencoder SSL regularization
on our network with two convolutional layers.

2.3. NN distance minimization for unlabeled samples

The third and final SSL method which was tested took inspiration from
such approaches as the Center Loss [12], introduced by Wen et al., which
determines features to be more discriminative by minimizing the distance to their
respective class centroids. Although it was envisioned in terms of a purely
supervised task, the framework can be developed to work with unlabeled samples,
as it was in Florea et al. [13]. When adapted for use in SSL scenarios, a new
dependency arises, forcing the introduction of labels for the unsupervised data.
The method we propose disregards class prototypes and the need for extra
labeling, by enforcing distance minimization to individual samples. The features
of unlabeled images are compared to those of labeled ones and the Nearest
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Neighbor (NN) is found. The new loss component thus minimizes the distance
between the features of the two mentioned samples (as suggested in Fig. 3).

Fig. 3. The third method uses unlabeled samples
by minimizing the distance from their features to known labeled data.

Ideally, the NN should be identified from the entirety of the labeled
training dataset. However, this would introduce severe overhead when the set is
large, considering that distances need to be computed after each network update.
Because of this, a stochastic approach was chosen, where the comparison only
takes into account labeled samples from the current batch. This should not be such
a troublesome issue, since most images from the same class are likely to have
similar features, and the stochastic factor will have an extra regularizing effect.
Compared to the previous methods, it is hard to define the total loss given a single
sample, based on the nature of the supplemental term. In consequence, (3) shows
the total loss for an entire batch, where NN(X;) is the Nearest Neighbor of X;
from the current batch of labeled images (X;).
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All three methods have been trained on both datasets and the same data
splits to ensure a fair comparison. When necessary, different configurations and
hyper-parameters will be used to ensure better results.

3. Datasets and their usage

As mentioned in the previous sections, two datasets were used in the
experimental setup. The first one is CIFAR-10 [14], a popular choice when
reporting classifier performance both for supervised and SSL solutions. It is



Improving small Convolutional Neural Networks with semi-supervised learning 113

comprised of 60,000 small images (32 x 32 pixels in RGB format) split between
10 classes such as airplane, cat, frog, or truck. Out of these, 50,000 are destined
to be used for training and 10,000 for testing. In our scenarios, the test dataset was
left in its full size, while subsets of 250, 1,000 and 4,000 training images were
considered as being labeled in order to adapt the data for an SSL framework. All
training images which are not part of these subsets will be automatically
considered as being unlabeled.

Although test accuracy on CIFAR-10 within a fully supervised framework
may go up to 99% [15], the purpose of our experiments was to study the
improvement brought by the unlabeled samples in our networks with few layers.
This approach of using a dataset usually destined for supervised training is not
uncommon in SSL literature.

Since CIFAR-10 is considered a general-purpose dataset, and not
especially difficult, we expanded our efforts to the more complex issue of facial
expression recognition. The main extra difficulties brought by this task are related
to both image composition and meaning. Since all samples must contain faces,
they are bound to look more alike and the labels themselves are prone to some
degree of subjectivity, based on annotator experience and background. The chosen
dataset for this segment is FER+ [16], which is based on the data from FER2013
[17] but corrects various errors in the contained images and labels. The considered
labels are the 6 fundamental expressions (happiness, sadness, surprise, anger,
disgust, fear), along with neutral. In its original form, FER+ also contains
contempt, but this expression was left out of our experiments, since it is not
always included in other studies.

Each image from FER+ is a 48 x 48 grayscale image and the decision to
not rescale them led to the need of the second architecture, with a supplemental
convolution and max-pooling operation. This way, the number of neurons used as
input for the FC segment could be kept low. From the perspective of the overall
dataset size, 28,709 samples are used for training, while 3,589 are destined for
validation (or public test as it was originally called) and just as many for the test
split. In this case, subsets of 320, 400, 2,000, 4,000 and 10,000 images were
considered labeled during the experiments, just as for the previous dataset.

4. Experimental results

Adding supplemental terms to the regular CE loss function can lead to the
overall loss of convergence of the training process. Because of this, it is common
to start training in a fully supervised fashion and add the other components after
the classification loss is smaller. We tested multiple starting points considering the
inherent volatility of working with few labeled samples and, indeed, starting the
training with extra loss terms lead to unreliable networks. A good starting point
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for all experiments was anywhere above 50 epochs, possibly 100 for smaller
learning rates.
Table 1
The impact of multiple dropout layers in our implementation of the IT-model.
Classification accuracy [%0] reported for the CIFAR-10 dataset
in supervised (S) and semi-supervised (SSL) scenarios

No. 3 x dropout FC-dropout
images S SSL S SSL
250 37.1 37.63 37.7 38.76
1000 46.64 48.35 49.05 50.79
4000 59.11 58.18 62.19 62.41

For the batch of networks trained using our implementation of the
IT-model, the number and position of the dropout layers proved to be an important
aspect. Given the small size of networks, multiple dropout layers seemed to not
improve performance. Configurations with a single, two or three dropout layers
were tested. In relation to other components of the network, the regularization
layer was tried after the convolution or after the pooling layer. The best results
were noticed when a single dropout operation was included, before FCreatures.
Other variants were close to each other but with a visible drop when comparing
with the wining one. In Table 1 the “3 x dropout” column signifies that three
dropout layers were used, one after each convolution operation and one before
FCteatures. The “FC-dropout” column has a single dropout operation, before the
fully connected layer. It should be reminded that the architecture in the original
paper contained visibly more convolutional layers, which could explain the
negative effect on performance. All three tested algorithms bring a boost in
classification accuracy to various degrees. The results on the CIFAR-10 dataset
are reported in Table 2. A fully supervised baseline which only uses the Cross
Entropy loss is shown in the column marked “CE”.

The most interesting trends are noted for the second method, which uses
the autoencoder reconstruction loss (noted as “Autoencoder Cost™), where the use
of unlabeled samples negatively impacts the overall result. However, just adding
the extra loss as a regularization method in a fully supervised scenario is
beneficial to the network.

Table 2

The performance of the target methods on the CIFAR-10 dataset.
The reported values are the classification accuracy [%] on the test set

Autoencoder NN LaplaceNet

No. CE T1-model Cost distance [18]
Images s | ssL | ST |SSL | o | gg | ssL ssL
aug. | aug.

250 | 37.85| 37.7 | 38.76 | 3746 | 39.25 | 4246 | 3754 | 4241 -
1000 | 48.73 | 49.05 | 50.79 | 47.83 | 49.55 | 53.19 | 48.24 54.1 95.29+0.05
4000 | 61.12 | 62.19 | 62.41 | 60.34 | 62.08 | 64.22 | 60.9 66.3 95.65+0.10
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Another noteworthy aspect is that in the case of the IT-model, the extra
version of the input batch (noted with “3 aug.”) does not help. When comparing
the effectiveness of each algorithm, the third proposed method, noted as “NN
distance”, displays the most consistent improvements with a margin of 5%,
visibly better than our version of the IT-model. The last column in the table shows
a comparison with LaplaceNet [18], which visibly surpasses our results, but uses a
network that has 14 times as many convolutional layers and uses much stronger
augmentation techniques (CutOut [19] and RandAugment [20]).

Table 3
The performance of the target methods on the FER+ dataset.

The reported values are the classification accuracy [%] on the test set
-model Autoencoder _ NN MarginMix

No. Cost distance [13]

images CE SSL+3
SSL aug. S SSL SSL SSL

320 [50.44 | 51.88 | 51.31 | 52.38 | 52.44 | 52.92 50.76

400 |49.16 | 50.38 | 49.7 | 51.49 | 51.34 | 53.58 56.75

2000 | 57.91 | 60.77 | 60.17 | 63.67 | 63.46 | 64.29 60.83

4000 | 66.2 | 65.04 | 64.85 | 67.25 | 68.53 | 70.47 75.18
10000 | 71.82 | 72.92 | 72.89 | 74.11 | 74.26 | 76.59 81.25

When analyzing the results on FER+ from Table 3, most methods display
the same trends, the clear winner being, again, the third method. A notable
exception is the method with the autoencoder branch, where the unsupervised set
does not negatively affect the training anymore but does not bring any noticeable
improvement over using the labeled data only. Our implementations are compared
with MarginMix [13], featured in the last column, where the results are reported
for a network more than 9 times as deep as the one we tested. Even though the
difference in depth is visible, the margin is relatively small, <5% in all cases, all
three methods even surpassing MarginMix when only 320 labels are available.

Table 4
The performance of the SSL method based on minimizing NN distance, with different sizes
of the fully connected layer. The values represent classification accuracy [%] on FER+

No. FC neurons
images | 1024 128
320 52.92 52.26
400 53.58 52.62
2000 64.29 64.14
4000 70.47 70.71
10000 76.59 77.97
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Even though the approach based on NN distance minimization has the best
results, the FCreatures layer still has a large number of neurons compared to the rest
of the network. Since the algorithm has proved to be successful given its original
constraints, further testing was done to analyze the impact of the layer’s size.
Reducing the number of neurons by a factor of 8 has led to interesting results, as
can be seen in Table 4. Even though for smaller labeled subsets performance was
slightly worse, in the case with the largest supervised part accuracy increased by
>1%. This result might seem surprising at first but given the network structure
most of its weights were contained by FCreatures, While the three convolutional
layers were not enough to produce features complex enough for the large layer.
From the inference speed point of view, the network with 128 neurons in the
FCreatures layer is considerably faster than other usual architectures. Using the
acceleration of a smaller video card (NVIDIA GTX 1060) only 0.91ms are
necessary to process a single image, while a ResNet-18 networks requires 4.39ms
for the same operation and the larger network from [18] takes 8.1ms.

Of course, using CNNs with few convolutional layers is bound to reduce
performance. When comparing our architecture which uses the IT-model with the
one (containing 9 convolutional layers and a fully connected one) in the original
paper (Table 5) there is a visible reduction in accuracy.

Table 5
The performance of the II-model in our network compared to the original implementation.

The values represent classification accuracy [%] on CIFAR-10

No. CE IT-model II-model
images [3] [3] (ours)
4000 65.15 £ 1.65 87.64 £ 0.31 62.41

However, it can be seen that the margin between the fully supervised
version of the network implemented in [3] and ours with the IT-model is relatively
small, even though the number of neural layers is also more than twice as small,
with fewer filters for the convolutional layers.

5. Conclusions

The field of CNNs has noticed many advances in recent years, but most
emphasis was put on large architectures. In the experiments presented throughout
this paper we have shown that there is still room for improvement in smaller
networks. We have tested three different SSL solutions, and all have shown their
utility in our scenarios, but the NN distance minimization method proposed as our
third solution was clearly the most powerful one. Its consistent improvement of
around 5% makes it a definite prospect for usage in larger, less constrained,
networks as well. Semi-supervised Learning has proven to be a tool which can
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address many issues real-life computer vision tasks can encounter. Building on
top of the established architecture may be a consistent solution, when considering
the availability of existing unlabeled data, without adding any overhead at test
time.
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