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ON ORDERED HYPERSTRUCTURES 
 

D. HEIDARI1 B. DAVVAZ2 
 

In this paper we study a (semi)hypergroup ( , )H D  besides a binary 
relation ≤ , where ≤  is a partial preorder or a partial order such that satisfies the 
monotone condition. This structure is called a partially preordered (ordered) 
(semi)hypergroup. Also, we consider some well-known hypergroups and define a 
binary relation on them such that to become partially preordered (ordered) 
hypergroups. Finally, we associate a semihypergroup to a Γ -semigroup and prove 
some properties.  
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1. Introduction 
 

 The hyperstructure theory was born in 1934, when Marty introduced the 
notion of a hypergroup [11]. Algebraic hyperstructures are a generalization of 
classical algebraic structures. In a classical algebraic structure the composition of 
two elements is an element, while in an algebraic hyperstructure the composition 
of two elements is a non-empty set. More exactly, let H  be a non-empty set. Then 
the map )(: * HPHH →×D  is called a hyperoperation, where )(* HP  is the 
family of non-empty subsets of .H  The couple ),( DH  is called a hypergroupoid. 

In the above definition, if A  and B  are two non-empty subsets of H  and 
,x H∈  then we define  

}.{=    }{=  ;=
,

xAxAandAxAxbaBA
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∈∈  

An element e H∈  is called a unit element of hypergroupoid ),( DH  if 
x e x x e∈ ∩D D  for every .x H∈  

A hypergroupoid ),( DH  is called a semihypergroup if for every , , ,x y z H∈  
we have zyxzyx DDDD )(=)(  and is called a quasihypergroup if for every ,x H∈  

= = .x H H H xD D  This condition is called the reproduction axiom. The couple 
),( DH  is called a hypergroup if it is a semihypergroup and a quasihypergroup.  
Since then, hundreds of papers and several books have been written on this 

topic, see [6 and 15]. A recent book on hyperstructures [5] points out on their 
applications in cryptography, codes, automata, probability, geometry, lattices, 
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binary relations, graphs and hypergraphs. Another book [7] is devoted especially 
to the study of hyperring theory. Several kinds of hyperrings are introduced and 
analyzed. The volume ends with an outline of applications in chemistry and 
physics, analyzing several special kinds of hyperstructures: e-hyperstructures and 
transposition hypergroups. The theory of suitable modified hyperstructures can 
serve as a mathematical background in the field of quantum communication 
systems. 

The concept of ordering hypergroups introduced by Chvalina [1] as a 
special class of hypergroups and studied by many authors, see [2, 3, 4, 8, 9 and 
10].  

The term “poset” is short for “partially ordered set”, that is, a set whose 
elements are ordered but not all pairs of elements are required to be comparable in 
the order. A partial order is a binary relation R  on a set X  which satisfies 
conditions reflexivity, antisymmetry and transitivity. Sometimes we need to 
weaken the definition of partial order. We say that a partial preorder is a relation 
which satisfies conditions reflexivity and transitivity. 

An algebraic system ( ,., )G ≤  is called a partially preordered (ordered) 
groupoid if ( ,.)G  is a groupoid and ( , )G ≤  is a partially preordered (ordered) set 
which satisfies monotone condition as follows: if ,x y≤  then . .a x a y≤  and 

. .x a y a≤   for every , , .x y a G∈  
A term “po-groupoid” is used for partially ordered groupoid. A po-groupoid 

( ,., )G ≤  is a po-(semi)group if ( ,.)G  is a (semi)group. 
The notion of Γ -semigroups was introduced by Sen in [13]. Let S  and Γ  

be non-empty sets. Then S  is called a Γ -semigroup if there exists a mapping 
,S S S×Γ× →  written ),,( ba γ  by ,a bγ  such that satisfies the identities 

)(=)( cbacba βαβα  for all Scba ∈,,  and , .α β ∈Γ  Let S  be an arbitrary 
semigroup and Γ  be a non-empty set. Define a mapping SSS →×Γ×  by 

abba =α  for all Sba ∈,  and .α ∈Γ  It is easy to see that S  is a Γ -semigroup. 
Thus a semigroup can be considered as a Γ -semigroup. 

 
2. Partially ordered semihypergroups 

 
In this section we introduce the concept of partially preordered (ordered) 
semihypergroups and prove some results. First, we recall some preliminaries of 
semihypergroups. 

Let ),( DS  be a semihypergroup and I  be a subset of .S  Then I  is called a 
left (right) hyperideal if ( ),S I I I S I⊆ ⊆D D  and I  is called an ideal of S  if it is a 
left and a right ideal. 

Strongly regular relations have an important role in the theory of 
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hyperstructures. Starting from a (semi)hypergroup and using a strongly regular 
relation we can constract a (semi)group on the quotient set.  

Let ),( DS  be a semihypergroup and R  be an equivalence relation on .S  If 
A  and B  are non-empty subsets of ,S  then BRA  means that for all ,a A∈  there 
exists Bb∈  such that aRb  and for all ,b B′∈  there exists Aa ∈′  such that .a Rb′ ′  

Also, BRA  means that for all Aa∈  and ,b B∈  we have .aRb  
Definition 2.1 The equivalence relation R  is called  

(1) regular on the right (on the left) if for all ,x S∈  from ,aRb  it follows 
that ( ) ( )(( ) ( )a x R b x x a R x bD D D D  respectively);  

(2) strongly regular on the right (on the left) if for all ,x S∈  from ,aRb  it 

follows that ( ) ( )(( ) ( )a x R b x x a R x bD D D D  respectively);  
(3) R  is called regular (strongly regular) if it is regular (strongly regular) on 

the right and on the left.  
Theorem 2.2 [6] Let ),( DS  be a (semi)hypergroup and R  be an equivalence 
relation on .S    

(1) If R  is regular, then RS/  is a (semi)hypergroup, with respect to the 
following hyperoperation: = { | }.x y z z x y⊗ ∈ D   

(2) If the above hyperoperation is well defined on / ,S R  then R  is regular.  
Theorem 2.3 [6] Let ),( DS  be a (semi)hypergroup and R  be an equivalence 
relation on .S   

(1) If R  is strongly regular, then RS/  is a (semi)group, with respect to the 
following operation: = { | }.x y z z x y⊗ ∈ D   

(2) If the above operation is well defined on / ,S R  then R  is strongly 
regular.  
 Definition 2.4 An algebraic hyperstructure ),,( ≤DH  is called a partially 
preordered (ordered) semihypergroup, if ),( DH  is a semihypergroup and ≤  is a 
partial preorder (order) relation on H  such that the monotone condition holds as 
follows:  

   , , ,x y a x a y for all x y a S≤ ⇒ ≤ ∈D D  
where, if A  and B  are non-empty subsets of ,H  then we say that BA ≤  if for 
every Aa∈  there exists Bb∈  such that .a b≤   

Obviously, every po-semigroup is a po-semihypergroup. In the following 
we give some other examples of po-semihypergroups. 
Example 1 Let ),( ≤X  be a poset and .Q X∅ ≠ ⊆  If for every , ,x y X∈  we 
define = ,x y QD  then ),,( ≤DX  is a po-semihypergroup.  
Example 2 Let ),.,( ≤S  be a po-semigroup. If for every , ,x y S∈  we define 



88                                            D. Heidari, B. Davvaz 

{ }= : ,ix y x i∈D N  then ( , , )S ≤D  is a po-semihypergroup.  
Example 3 Let ),.,( ≤S  be a po-semigroup. If for every , ,x y S∈  we define 

, ,x y x y=< >D  where ,x y< >  is the ideal of S  generated by { }, ,x y  then 
( , , )S ≤D  is a po-semihypergroup.  
Definition 2.5 A non-empty subset I  of a po-semihypergroup ),,( ≤DS  is called a 
left (right) ideal of S  if the following conditions hold:   

(1) )( ISIIIS ⊆⊆ DD ;  
(2) If Ia∈  and ,b a≤  then Ib∈  for every .b S∈   
 I  is called an ideal of S  if it is a left and a right ideal.  
 If ),,( ≤DS  is a po-semihypergroup and ,A S⊆  then ( ]A  is the subset of S  

defined as follows:  
}.  ,:{=]( AasomeforatStA ∈≤∈  

Let A  be a non-empty subset of .S  Then the left, right and two-sided ideals 
of S  generated by A  are denoted by lA >< , rA ><  and < >,A  respectively. It 
is easy to see that  

].(](=><
];(](=><

];(](](](>=<

SAAA
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r
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∪
∪

∪∪∪

 

Example 4 Consider Example 1. If A  is a non-empty subset of X  containing ,Q  
then ](A  is an ideal of po-semihypergroup ( , , ).S ≤D   
Example 5 In the Example 2, every right ideal of po-semigroup ),.,( ≤S  is a right 
ideal of po-semihypergroup ( , , )S ≤D  and S  is the only left ideal. 
Lemma 2.6 Let ),,( ≤DS  be a po-semihypergroup. Then the following assertions 
hold:   

(1) ](AA ⊆  for every .A S⊆   
(2) If ,A B⊆  then ](]( BA ⊆  for every , .A B S⊆  
(3) ](](]( BABA DD ⊆  for every , .A B S⊆   
(4) ](=]](( AA  for every .A S⊆   
(5) If A  and B  are ideals of ,S  then ]( BAD  and BA∪  are ideals of .S  
(6) For every ,a S∈  ]( SaS DD  is an ideal of .S  
(7) If SCBA ⊆,,  such that ,A B⊆  then C A C B⊆D D  and .A C B C⊆D D  

Proof. The proof is straightforward.  
Definition 2.7 Let ),,( 111 ≤DS  and ),,( 222 ≤DS  be two po-semihypergroups. A map 

21: SS →ϕ  is called a homomorphism if for all 1, Syx ∈  we have   
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(1) )()()( 21 yxyx ϕϕϕ DD ⊆ ; (2) If 1 ,x y≤  then 2( ) ( );x yϕ ϕ≤   
and ϕ  is called a good homomorphism if )()(=)( 21 yxyx ϕϕϕ DD .  
Example 6 Let 1( , ,|)DN  and 2( , , )≤DN  be two po-semihypergroups, where 

{ }1
kx y x=D  k runs in a subset of ,N  { }2 : ,ix y x i= ∈D N   |  is the relation of 

divisibility and ≤  is the usual order relation on N . Then the identity map 
: ( , ,|) ( , , )ϕ → ≤D DN N  is a homomorphism. 

Theorem 2.8 Let ),,( ≤DS  be a partially preordered semihypergroup and R  be a 
strongly regular relation on .S  Then ),,/( ⊗RS  is a partially preordered 
semigroup, with respect to the following operation:  

}|{= yxzzyx D∈⊗  
and for all , /x y S R∈  a  preordere relation  defined as follows:  

.    1111 yxthatsuchyyxxyx ≤∈∃∈∀⇔  
Proof. By Theorem 2.2, ),/( ⊗RS  is a semigroup. First, we prove that the binary 
relation  is a partial preorder on / .S R  Since xx ≤  so xx  for every / .x S R∈  
Thus  is reflexive. If yx  and zy , then for every 1x x∈  there exists 1y y∈  

such that 1 1.x y≤ Since 1y y z∈ ≤  there exists  1z z∈  such that 1 1.y z≤  Hence 

x z≤  thus  is transitive. 
Suppose that RSayx /,, ∈  such that yx . If = ,t a x⊗  then for every tt ∈1  there 
exist aa ∈1  and xx ∈1  such that 111 xat D∈ . Since yxx ∈1  there exists yy ∈1  
such that 1 1.x y≤  So 1 1 1 1.a x a y≤D D  Thus there exists 111 yas D∈  such that 11 st ≤ . 
So 1=t t 1 = .s a y⊗  Therefore, ),,/( ⊗RS  is a partially preordered semigroup.  

Let ),,( 111 ≤DS  and ),,( 222 ≤DS  be two po-semihypergroups. Then 1 2( , )S S× D  
is a semihypergroup, where the hyperoperation D  defined as follows:  

).,(=),(),( 22112121 yxyxyyxx DDD  
 The lexicographical order defined on 1 2S S×  as follows: ),(),( 2121 yyxx ≤  

if and only if 111 yx ≤  or 11 = yx  and 2 2 2.x y≤  In the following we prove that 

1 2( , , )S S× ≤D  is a po-semihypergroup and is called the direct product of po-
semihypergroups 1 1 1( , , )S ≤D  and 2 2 2( , , ).S ≤D  
Theorem 2.9 Let ),,( 111 ≤DS  and ),,( 222 ≤DS  be two po-semihypergroups. Then 

1 2( , )S S× D  is a po-semihypergroup.  
Proof. Suppose that ),(),( 2121 yyxx ≤  for 1 2 1 2 1 2( , ), ( , )x x y y S S∈ ×  and

),(),(),( 212121 xxaatt D∈  for 1 2 1 2( , ) .a a S S∈ ×  Then 1111 xat D∈  and 2 2 2 2.t a x∈ D  
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Since 1 2 1 2( , ) ( , ),x x y y≤  so we have two cases: 
Case (1) 11 yx ≤ . Then 1 1 1 1 1 1 1,t a x a y∈ ≤D D  so there exists 1111 yas D∈  such 

that 1 1 1.t s≤  Now, if 2 2 2 2 ,s a y∈ D  then 1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , ).t t s s a a y y≤ ∈ D  
Case (2) 11 = yx  and 2 2 2.x y≤  Then 22222222 yaxat DD ≤∈  so there exists 

2222 yas D∈  such that 2 2 2.t s≤  Thus 1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , ).t t t s a a y y≤ ∈ D  Therefore, 

1 2( , , )S S× ≤D  is a po-semihypergroup.  
Notice that the mapping 1 1 2 1 1 2 1: , ( , )S S S x x xπ × → 6  is a good 

homomorphism, but the mapping 2 1 2 2 1 2 2: , ( , )S S S x x xπ × → 6   is not. 
 
3. Partially ordered hypergroups 

 
In this section we study the concept of partially preordered (ordered) hypergroups. 
Also, we consider some well-known hypergroups such as the ordering 
hypergroups, mentioned by Chvalina [1], and the hypergroups associated to a 
binary relation, mentioned by Rosenberg [12], and define a partial preorder or 
order on them such that become preordered hypergroups or po-hypergroups. 
Definition 3.1 The po-semihypergroup ),,( ≤DH  is called a po-hypergroup if 

),( DH  is a hypergroup.  
Example 7 Let ),( ≤X  be a poset. If for every Xyx ∈,  we define = { , },x y x yD  
then ( , , )X ≤D  is a po-hypergroup.  
Example 8 Let ),( ≤X  be a poset. If for every Xyx ∈,  we define = ,x y XD  then 

),,( ≤DX  is a po-hypergroup.  
The following example gives an extensive class of partial preorderd 

hypergroups and po-hypergroups. 
Example 9 Let ),.,( ≤G  be a partially preordered (ordered) group and P  be a non-
empty subset of .G  Then ),,( ≤PG D  is a preordered (ordered) hypergroup, where 

PD  is the P -hyperoperation defined as: =Px y xPyD  for every , .x y G∈   
Since, let yx ≤ for , .x y G∈  Then for every Ga∈  we should prove that 

.P Pa x a y≤D D  If = ,Pz a x aPx∈ D  then there exists Pt∈  such that = .z atx  
Now, since ),.,( ≤G  is a partially preordered (ordered) group, we get 

= .Patx aty aPy a y≤ ∈ D  Thus .P pa x a y≤D D  Therefore, ),,( ≤PG D  is a partially 
preordered (ordered) hypergroup.  

Next, we will construct a partially preordered (ordered) hypergroup from a 
topological group. A topological group is a group with a topology on it. More 
exactly, let ( ,.)G  be a group and ( , )G τ  be a topological space. Then the triple 
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( ,., )G τ  is called a topological group if the mappings ( , )x y xy→  and 1x x−→  
are continuous. 

A topology is said to be satisfy the axiom 0T   if for any two distinct points 
x  and ,y  there is an open set containing one of them but not another. 
Theorem 3.2 Let ),.,( τG  be a topological group and P  be a non-empty subset of 

.G  Then there exists a binary relation τ≤  on G  such that ),,( τ≤PG D  is a 
preordered hypergroup, where PD  is the P -hyperoperation. Furthermore, if τ  is 

0T , then ),,( τ≤PG D  is a po-hypergroup.  
Proof. For every Gyx ∈,  we define the binary relation τ≤  defined as follows:  

 ).   ,( ττ ∈∀∈⇒∈⇔≤ UUyUxyx  
It is easy to see that τ≤  is reflexive and transitive so τ≤  is a partial preorder 

relation on .G  
Now, we prove that ),.,( τ≤G  is a preordered group. Suppose that yx τ≤  

and Ga∈ . If Uax∈  for ,U τ∈  then 1 .x a U τ−∈ ∈  Since yx τ≤  we get 
1 .y a U−∈  Thus .ay U∈  Hence .ax ayτ≤  Thus ),.,( τ≤G  is a partial preordered 

group and similar to Example 8, ( , , )PG τ≤D  is a partially preordered hypergroup. 
Supose that τ  is 0T  and yx τ≤  and xy τ≤  for , .x y G∈  If ,x y≠  then 

there exists an open subset of ,G  say ,U  such that contains only one of x  and .y  
If Ux∈  and ,y U∉  then by definition of relation τ≤  we have x தح y Similarly in 
the case of Uy∈  and Ux∉  we have y தح x. This is a contradiction so we 
conclude that = .x y  So τ≤  is antisymmetric thus τ≤  is a partially ordered relation 
on .G  Therefore,   ( ,., )G τ≤  is a po-group so ( , , )PG τ≤D  is a po-hypergroup.  

In the following we recal an special class of hypergroups that studied by 
Chvalina [1] and called ordering hypergroups. 
Definition 3.3 [1] A hypergroup ),( DH  is said to be a quasi-ordering hypergroup, 
if for every , ,x y H∈  we have .=  = 2232 yxyxandxxx ∪∈ D  

Moreover, if 22 = yx  implies yx =  for every , ,x y H∈  then ),( DH  is called 
an ordering hypergroup.  

Let ),( DH  be a quasi-ordering hypergroup. Then we define a binary relation 

D≤  on H  as follows: .,  ,2 Hyxallforyxyx ∈∈⇔≤D  
Lemma 3.4 Let ),( DH  be a quasi-ordering hypergroup. Then the binary relation 

D≤  is a partial preorder on H . Furthermore, if ),( DH  is an ordering hypergroup, 
then D≤  is a partial ordere on H .  
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Proof. Suppose that ),( DH  is a quasi-ordering hypergroup. Then for every ,x H∈  
from 2xx∈  we have xx D≤  so D≤  is reflexive. If , ,x y z H∈  such that yx D≤  and 

,y z≤D  then 2yx∈  and 2zy∈ . So we have 2 2 2 2= ,x y z z z∈ ⊆ D  thus zx D≤ . 
Hence D≤  is transitive. Therefore, D≤  is a partial preorder on .H  

Suppose that ),( DH  is an ordering hypergroup. If yx D≤  and y x≤D  for 
, ,x y H∈  then 2yx∈  and 2.y x∈  So 2 2 2 2 2 2 2= = .y x x x y y y⊆ ⊆D D  Thus 
2 2= ,x y  so by hypothesis we get = .x y  Hence D≤  is an antisymmetric relation. 

Therefore, ≤D  is a partial ordere on .H  
Theorem 3.5 Let ),( DH  be a quasi-ordering hypergroup. Then ),,( DD ≤H  is a 
partially preordered hypergroup. Furthermore, if ),( DH  is an ordering hypergroup, 
then ),,( DD ≤H  is a po-hypergroup.  
Proof. Suppose that ,x y≤D for , .x y H∈  Then for every Ha∈  we should prove 
that .a x a y≤DD D  If 2 2= ,t a x a x∈ ∪D  then either 2at∈  or 2xt∈ . If 2 ,t a∈  then 

yatt DD ∈≤ . If 2 ,t x∈  then we have .t x y≤ ≤D D  So .t y a y≤ ∈D D  Therefore, if 
),( DH  is a quasi-ordering (ordering) hypergroup, then ),,( DD ≤H  is a partially 

preordered (ordered) hypergroup.  
Next, we want to find some conditions on a hypergroup such that becomes a 

po-hypergroup. 
Theorem 3.6 Let ( , )H D  be a hypergroup such that there exists an element H∈0  
and the following conditions hold:   

(1) 0 0 = {0};D  (2) {0, } 0x x⊆ D  for every ;x H∈  
(3) If 0 = 0,x yD D  then yx =  for every , .x y H∈   

Then there exists a binary relation ≤  on H  such that ( , , )H ≤D  is a po-hypergroup.  
Proof. We define a partially ordered relation ≤  on H  as follows:  

 0,  , .x y x y for every x y H≤ ⇔ ∈ ∈D  
By condition (2), 0x x∈ D  so xx ≤  for every .x H∈  Thus ≤  is reflexive. 
If yx ≤  and ,y x≤  for , ,x y H∈  then 0x y∈ D  and 0.y x∈ D  So we have  

0 ( 0) 0 = (0 0) = 0 ( 0) 0 = (0 0) = 0.x y y y x x x⊆ ⊆D D D D D D D D D D D  
Thus 0 = 0x yD D  and by condition (3), = .x y  So ≤  is antisymmetric. 

If yx ≤  and zy ≤  for , , ,x y z H∈  then 0x y∈ D  and 0.y z∈ D  So 
0 ( 0) 0 = 0.x y z z∈ ⊆D D D D  Thus zx ≤  and ≤  is transitive. Therefore, ≤  is a 

partially ordered relation on .H  
Now, suppose that yx ≤  for , .x y H∈  Then for every Ha∈  we should 

prove that .a x a y≤D D  Let .t a x∈ D  Since yx ≤  so 0.x y∈ D  Thus  
( 0) = ( ) 0.t a x a y a y∈ ⊆D D D D D  
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So there exists s a y∈ D  such that 0.t s∈ D  Hence t s a y≤ ∈ D  and the proof 
is complete.  
Example 10 Let },{0,= yxH  and the hyperoperation D  defined in the following 
table:  

D  0  x  y
0  {0} {0, }x  H  
x  {0, }x  H  H  
y H H H

Then ( , )H D  satisfies the pervious theorem so ( , , )H ≤D  is a po-hypergroup, 
where )},(),,(),,(),(0,),(0,{(0,0),= yyyxxxyx≤ . 

In [12], Rosenberg associated to each binary relation R  on a non-empty set H  is 
a partial hypergroupoid ( , ),R RH H= D  where for any Hyx ∈,  the hyperoperation 

RD  defined as follows: = = { | ( , ) }    = .xx x L z x z R and x y x x y y∈ ∪D D D D  
Let R  be a binary relation on a non-empty set H . Then an element Hx∈  

is called an outer element of R  if there exists Hh∈  such that ( , ) .h x R∉   
Theorem 3.7 [12] Let R  be a binary relation on a non-empty set H . Then RH  is 
a hypergroup if and only if   

(1) R  has full domain; (2) R  has full range; (3) 2;R R⊆   
(4) If 2( , ) ,a x R∈  then ( , ) ,a x R∈  whenever x  is an outer element of .R   

Lemma 3.8 Let R  be a partiallyl preordered relation on a non-empty set .H  Then 
RH  is a hypergroup. 

Proof. We verify the conditions of previous theorem. Since R  is reflexive so the 
conditions (1) and (2) hold. From reflexivity and transitivity of R  we conclude 
that 2R R=  so the conditions (3) and (4) hold. Therefore, ( , , )R RH RD  is a 
hypergroup. 
Theorem 3.9 Let R  be a partially ordered relation on a non-empty set .H  Then 
( , , )R RH RD  is a po-hypergroup.  
Proof. By previous lemma, RH  is a hypergroup. Now, we prove the monotone 
condition for .RH  Suppose that xRy  for , .x y H∈  We should prove that 

yxRaa RR DD  for every .a H∈  Let = .R a xt a x L L∈ ∪D  Then aLt∈  or .xt L∈  In 
the former case, tRa  and since yaa RD∈  the result holds. In the later case, we 
have tRx  since xRy  so yatRy RD∈ . Therefore, ( , , )R RH RD  is a po-hypergroup.  

4. Hyperstructures associated to Γ -semigroups 

In this section we associated to each Γ -groupoid a Γ -hypergroupoid and 
prove some results. Let us recall some notations. 
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The notions of an ordered Γ -groupoid (shortly, po-Γ -groupoid) and an  
ordered Γ -semigroup (shortly, po-Γ -semigroup) were defined by Sen and Seth in 
[14]. A po-Γ -groupoid (po-Γ -semigroup) is a Γ -groupoid (Γ -semigroup) S  
together with an order relation ≤  on S  such that x y≤  implies a x a yγ γ≤ and 

,x a y aγ γ≤ for all , ,x y a S∈ and .γ ∈Γ  
Definition 4.1 Let S  be a Γ -groupoid. Then we define the hyperoperation ΓD  on 
S  as follows:  

.,  }|{== Syxallforyxyxyx ∈Γ∈ΓΓ γγD  
Then ),( ΓDS  is called the hypergroupoid associated to Γ -semigroup S  and is 
denoted by .SΓ  
Lemma 4.2  If S  is a Γ -semigroup, then ΓS  is a semihypergroup.  
Proof. We prove the associativity condition for ΓS . For every Γ∈Szyx ,,  we have  

.)(=)(=)(=)(=)( zyxzyxzyxzyxzyx ΓΓΓΓΓ ΓΓΓΓΓ DDDDD  
So ΓS  is a semihypergroup.  
Lemma 4.3 Let S  be a Γ -semigroup. Then the following assertions hold:   

(1) If S  is a commutative Γ -semigroup, then ΓS  is a commutative 
semihypergroup.  

(2) If αS  is a monoid with identity element ,eα  for ,α ∈Γ  then αe  is a unit 
element of .SΓ   

(3) S  is a regular Γ -semigroup if and only if ΓS  is a regular 
semihypergroup.  

(4) The non-empty subset I  of S  is an ideal of S  if and only if I  is a 
hyperideal of .SΓ  

(5) S  is simple if and only if ΓS  is simple.  
Proof. (1) It is evident. 

(2) For every Sx∈  we have =x x e e x x e e xα α α αα α Γ Γ= ∈ ∩D D  so αe  is 
a unit element of .SΓ  

(3) The Γ -semigroup S  is regular if and only if for every Sx∈  there exist 
Sy∈  and Γ∈βα ,  such that xyxx βα=  if and only if there exists Sy∈  such 

that xyxx ΓΓ∈ DD  if and only if ΓS  is a regular semihypergroup. 
(4) Suppose that I  is an ideal of .S  Then for every Ia∈  and Ss∈  we 

have = .s a s a IΓ Γ ⊆D  Similarly .a s IΓ ⊆D  So I  is a hyperideal of ΓS . 
Conversely, suppose that I  is a hyperideal of .SΓ  Then for every ,a I∈  Ss∈  
and Γ∈γ  we have .s a s a Iγ Γ⊆ ⊆D  Similarly .a s Iγ ⊆  So I  is an ideal of .S  

(5) It gets from (4). 
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Proposition 4.4 If S  is a Γ -group, then ΓS  is a hypergroup.  
Proof. It is sufficient to check the reproduction axiom for semihypergroup .SΓ  
Since S  is a Γ -group so αS  is a group for every .α ∈Γ  Then for every Γ∈Sx  we 
have = .S x S x S Sα Γ⊆ ⊆D  So = .x S SΓD  Similarly, we get = .S x SΓD  Thus 

),( ΓDS  is a hypergroup.  
Proposition 4.5 Let S  be a commutative Γ -semigroup and M  be a minimal 
ideal of .S  Then ),( ΓDM  is a hypergroup.  
Proof. For every Mx∈  since =x M x M MΓ Γ ⊆D  so x MΓD  is an ideal of S  
contained in M . Since M  is a minimal ideal of S  so we have = .x M MΓD  By a 
similar way we have = .M x MΓD Thus the reproduction axiom holds. Therefore, 

),( ΓDM  is a hypergroup.  
Theorem 4.6 Let ),( ≤S  be a po-Γ -semigroup. Then ),,( ≤ΓDS  is a po-
semihypergroup.  
Proof. Suppose that yx ≤  for , .x y SΓ∈  Then for every Γ∈Sa  we should prove 
that .a x a yΓ Γ≤D D  If ,t a xΓ∈ D  then there exists Γ∈γ  such that = .t a xγ  Now, 
since S  is a po-Γ -semigroup we have = .t a x a y a yγ γ Γ≤ ∈ D  It is complete the 
proof.  
Theorem 4.7 Let S  be a Γ -semigroup and R  be a congruence relation on .S  
Then R  is a regular relation on semihypergroup .SΓ  Furthermore, ( / , )S RΓ ⊗  is a 
semihypergroup, where the hyperoperation ⊗  defined on /S RΓ  as follows:  

= { : }  , / .x y z z x y for every x y S RΓ Γ⊗ ∈ ∈D  
Proof. Suppose that Γ∈Syx,  such that .xRy  Then for every Γ∈Sa  we should 
prove that .a xRa yΓ ΓD D  If xat Γ∈ D , then there exists Γ∈γ  such that xat γ= . 
Since R  is a congruence relation on S  we have .a xRa y a yγ γ Γ∈ D  Similarly, if 

,t a yΓ∈ D  then there exists Γ∈γ  such that = .t a yγ  Since R  is a congruence 
relation on S  we have .a yRa x a xγ γ Γ∈ D  Thus R  is a regular relation on ΓS . 
Now, by Theorem 2.2, ( / , )S RΓ ⊗  is a semihypergroup.  

Let S  be a Γ -semigroup and R  be a congruence relation on .S  Let 
= { : }.γ γΓ ∈Γ� �  Then for every , /x y S R∈  the operation γ�  defined on /S R  as 

follows: = .x y x yγ γ�  Suppose that 1x Rx  and 1 .y Ry  Since R  is a congruence 
relation on S  we have 1 1 1x y Rx yγ γ  and 1x y Rx yγ γ  for every .γ ∈Γ  So 

1 1 = .x y x yγ γ  Thus the operation γ�  is well-defined for every .γ ∈Γ  Also, /S R  
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satisfies the associativity condition. Since for every , , /x y z S R∈  and ,α β ∈Γ� ��  we 
have  

.)(=)(=)(=)(=)(=)( zyxzyxzyxzyxzyxzyx βαβαβαβαβαβα ������  
Therefore, /S R  is a Γ� -semigroup. 
Theorem 4.8 Let S  be a Γ -semigroup and R  be a congruence relation on .S  
Then the semihypergroups ( / , )S RΓ ⊗  and (( / ) , )S R Γ Γ� �D  are same.  
Proof. Since R  is a congruence relation on ,S  by pervious theorem, we have 

/S RΓ  is a semihypergroup. Also, by the above argument /S R  is a Γ� -semigroup. 

Thus by Lemma 4.2, ( / )S R Γ�  is a semihypergroup. Also, for every , /x y S R∈  we 
have  

 { : } = { : } = .x y x y x y x yγ γ γ γ Γ⊗ = ∈Γ = ∈Γ ��� � D
  

R E F E R E N C E S 
 

[1] J. Chvalina, Commutative hypergroups in the sense of Marty and ordered Sets. Gen. Alg. and 
Ordered Sets, Proc. Inter. Conf., Olomouc, 19-30 (1994). 

[2] J. Chvalina and L.Chvalinová, State hypergroups of automata. Acta Math. Inform. Univ. 
Ostraviensis, 4: 105-120 (1996). 

[3] J. Chvalina and Š. Hošková, Abelizations of weakly associative hyperstructures based on their 
direct squares. Acta Math. Inform. Univ. Ostraviensis, 11: 11-23 (2003). 

[4] J. Chvalina and J. Moučka, Hypergroups determined by orderings with regular endomorphism 
monoids. Ital. J. Pure Appl. Math., 16: 227-242 (2004). 

[5] P. Corsini, V. Leoreanu-Fotea, Applications of hyperstructures theory. Advanced in 
Mathematics, Kluwer Academic Publisher, (2003).  

[6] P. Corsini, Prolegomena of hypergroup theory. Aviani Editore, (1993).  
[7] B. Davvaz, V. Leoreanu -Fotea, Hyperring Theory and Applications. International Academic 

Press, USA, (2008).  
[8] Š. Hošková, Representation of quasi-order hypergroups. Glob. J. Pure Appl. Math., 1: 173-176 

(2005). 
[9] Š. Hošková,  Upper order hypergroups as a reflective subcategory of subquasiorder 

hypergroups. Ital. J. Pure Appl. Math., 20: 215-222 (2006). 
[10] Š. Hošková and J. Chvalina, Discrete transformation hypergroups and transformation 

hypergroups with phase tolerance space. Discrete Math., 308: 4133-4143 (2008). 
[11] F. Marty, Sur une généralization de la notion de groupe. 8th congres Math. Scandinaves, 

Stockholm, 45-49 (1934). 
[12] I.G. Rosenberg, Hypergroups and join spaces determined by relations. Italian J. Pure Appl. 

Math., 4: 93-101 (1998). 
[13] M. K.Sen and N. K. Saha, On Γ-semigroup I. Bull. Calcutta Math. Soc., 78: 180–186 (1986). 
[14] M. K.Sen and A.Seth, On po-Γ-semigroups. Bull. Calcutta Math. Soc., 85: 445–450 (1993). 
[15] T. Vougiouklis, Hyperstructures and their representations. Hadronic Press, Inc, 115, Palm 

Harber, USA, (1994).  


