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ON ORDERED HYPERSTRUCTURES
D. HEIDARI' B. DAVVAZ?

In this paper we study a (semi)hypergroup (H o) besides a binary

relation <, where < is a partial preorder or a partial order such that satisfies the
monotone condition. This structure is called a partially preordered (ordered)
(semi)hypergroup. Also, we consider some well-known hypergroups and define a
binary relation on them such that to become partially preordered (ordered)
hypergroups. Finally, we associate a semihypergroup to a 1" -semigroup and prove
some properties.

Keywords: Semihypergroup; I" -semigroup; Hypergroup; Po-hypergroup;
Po-semihypergroup

1. Introduction

The hyperstructure theory was born in 1934, when Marty introduced the
notion of a hypergroup [11]. Algebraic hyperstructures are a generalization of
classical algebraic structures. In a classical algebraic structure the composition of
two elements is an element, while in an algebraic hyperstructure the composition
of two elements is a non-empty set. More exactly, let H be a non-empty set. Then
the map o:HxH — P'(H) is called a hyperoperation, where P (H) is the
family of non-empty subsets of H. The couple (H,o) is called a hypergroupoid.

In the above definition, if 4 and B are two non-empty subsets of H and
x € H, then we define

AoB= U aob; xoA={x}o A and Aox= Ao{x}.
acA,beB

An element ee H is called a unit element of hypergroupoid (H,0) if
xeeoxnxoe forevery xe H.

A hypergroupoid (H,0) is called a semihypergroup if for every x, y,ze H,
we have xo(yoz)=(xoy)oz and is called a quasihypergroup if for every x € H,
xoH =H = Hox. This condition is called the reproduction axiom. The couple
(H o) is called a hypergroup if it is a semihypergroup and a quasihypergroup.

Since then, hundreds of papers and several books have been written on this
topic, see [6 and 15]. A recent book on hyperstructures [5] points out on their
applications in cryptography, codes, automata, probability, geometry, lattices,
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binary relations, graphs and hypergraphs. Another book [7] is devoted especially
to the study of hyperring theory. Several kinds of hyperrings are introduced and
analyzed. The volume ends with an outline of applications in chemistry and
physics, analyzing several special kinds of hyperstructures: e-hyperstructures and
transposition hypergroups. The theory of suitable modified hyperstructures can
serve as a mathematical background in the field of quantum communication
systems.

The concept of ordering hypergroups introduced by Chvalina [1] as a
special class of hypergroups and studied by many authors, see [2, 3, 4, 8, 9 and
10].

The term “poset” is short for “partially ordered set”, that is, a set whose
elements are ordered but not all pairs of elements are required to be comparable in
the order. A partial order is a binary relation R on a set X which satisfies
conditions reflexivity, antisymmetry and transitivity. Sometimes we need to
weaken the definition of partial order. We say that a partial preorder is a relation
which satisfies conditions reflexivity and transitivity.

An algebraic system (G,.,<) is called a partially preordered (ordered)
groupoid if (G,.) is a groupoid and (G,<) is a partially preordered (ordered) set
which satisfies monotone condition as follows: if x<y, then ax<a.y and
xa<ya forevery x,y,aeG.

A term “po-groupoid” is used for partially ordered groupoid. A po-groupoid
(G,.,<) is a po-(semi)group if (G,.) is a (semi)group.

The notion of I' -semigroups was introduced by Sen in [13]. Let S and I
be non-empty sets. Then S is called a I' -semigroup if there exists a mapping
SxI'x§ — 8, written (a,y,b) by ayb, such that satisfies the identities

(aab)fc=aa(bfc) for all a,b,ceS and a,Bel. Let S be an arbitrary

semigroup and I' be a non-empty set. Define a mapping SxI'xS—>S by
aob=ab for all a,be S and a Tl It is easy to see that S is a I" -semigroup.

Thus a semigroup can be considered as a I" -semigroup.
2. Partially ordered semihypergroups

In this section we introduce the concept of partially preordered (ordered)
semihypergroups and prove some results. First, we recall some preliminaries of
semihypergroups.

Let (S,0) be a semihypergroup and / be a subset of S. Then [ is called a
left (right) hyperideal if So/ c I(I-S c ), and [ is called an ideal of S ifitisa

left and a right ideal.
Strongly regular relations have an important role in the theory of
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hyperstructures. Starting from a (semi)hypergroup and using a strongly regular
relation we can constract a (semi)group on the quotient set.

Let (S,0) be a semihypergroup and R be an equivalence relation on S. If
A and B are non-empty subsets of S, then ARB means that for all a € 4, there
exists b € B such that aRb and for all b’ € B, there exists a’' € A such that a'Rb'.

Also, ARB means that forall ae 4 and b e B, we have aRb.
Definition 2.1 The equivalence relation R is called

(1) regular on the right (on the left) if for all x €S, from aRb, it follows
that (ao x)ﬁ(b ox)((xo a)ﬁ(x ob) respectively);

(2) strongly regular on the right (on the left) if for all x €S, from aRb, it

follows that (aox)R(box)((xoa)R(xob) respectively);

(3) R is called regular (strongly regular) if it is regular (strongly regular) on
the right and on the left.
Theorem 2.2 [6] Let (S,0) be a (semi)hypergroup and R be an equivalence

relation on S.

(1) If R is regular, then S/R is a (semi)hypergroup, with respect to the
following hyperoperation: x® ; = {Z |zexoy}

(2) If the above hyperoperation is well defined on S/R, then R is regular.
Theorem 2.3 [6] Let (S,0) be a (semi)hypergroup and R be an equivalence
relation on S.

(1) If R is strongly regular, then S/R is a (semi)group, with respect to the
following operation: ;@; = {Z| z€exoyh

(2) If the above operation is well defined on S/R, then R is strongly

regular.

Definition 2.4 An algebraic hyperstructure (H,,<) is called a partially
preordered (ordered) semihypergroup, if (H,) is a semihypergroup and < is a
partial preorder (order) relation on H such that the monotone condition holds as
follows:

x<y=aox<aoy forall x,y,aes,

where, if 4 and B are non-empty subsets of H, then we say that 4 < B if for
every a € A there exists b € B such that a <b.

Obviously, every po-semigroup is a po-semihypergroup. In the following
we give some other examples of po-semihypergroups.
Example 1 Let (X,<) be a poset and D =Q < X . If for every x,ye X, we
define xo y =0, then (X,e,<) is a po-semihypergroup.
Example 2 Let (S,.,<) be a po-semigroup. If for every x,yeS, we define
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Xoy= {xi e N} , then (S,0,<) is a po-semihypergroup.
Example 3 Let (S,.,<) be a po-semigroup. If for every x,yeS, we define
Xoy=<x,y> where <Xx,y> is the ideal of § generated by {x, y} , then
(S,0,<) is a po-semihypergroup.
Definition 2.5 A non-empty subset / of a po-semihypergroup (S,0,<) is called a
left (right) ideal of S if the following conditions hold:

(1) SelcI(IeSci);

(2)If ael and b<a, then bel forevery beS.

I is called an ideal of S if it is a left and a right ideal.

If (S,0,<) is a po-semihypergroup and 4 c S, then (A4] is the subset of S

defined as follows:
(A]={teS:t<a, for some ac A}.

Let A be a non-empty subset of S. Then the left, right and two-sided ideals
of S generated by A are denoted by <A4>,, <A> and < 4>, respectively. It
is easy to see that

<A>=  (Alu(SeoAlu(AoSTU(SeA-ST;
<A>= (4]u(S-4];
<A> = (A]u(4-S].

Example 4 Consider Example 1. If 4 is a non-empty subset of X containing Q,
then (4] is an ideal of po-semihypergroup (S, o, <).
Example 5 In the Example 2, every right ideal of po-semigroup (S,.,<) is a right
ideal of po-semihypergroup (5,0,<) and S is the only left ideal.
Lemma 2.6 Let (S,0,<) be a po-semihypergroup. Then the following assertions
hold:

(1) A< (4] forevery A S.

(2)If Ac B, then (4] < (B] forevery A,Bc S.

(3) (A]°(B]< (A4~ B] forevery A,BC S.

(4) ((A]]=(A4] forevery A S.

(5)If 4 and B are ideals of S, then (40 B] and 4 U B are ideals of S.

(6) Forevery ae S, (SoaoS] is anideal of S.

(7)If 4,B,C < S suchthat Ac B, then Co4Ac CoB and AoC c BoC.
Proof. The proof is straightforward.
Definition 2.7 Let (S,,0,,<,) and (S,,0,,<,) be two po-semihypergroups. A map
@:S, — S, is called a homomorphism if for all x,y e S, we have
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(1) @(xeo; y) S @(x)o, p(¥); Q) If x <, y, then (x) <, (y);
and ¢ is called a good homomorphism if @(xo, ¥)=@(x)o, @(y).

Example 6 Let (N,o,[) and (N,0,,<) be two po-semihypergroups, where
Xo, y:{xk} k runs in a subset of N, xozy:{xi :ieN}, | is the relation of
divisibility and < is the usual order relation on N. Then the identity map
¢:(N,o,|) > (N,o,<) is a homomorphism.
Theorem 2.8 Let (S,0,<) be a partially preordered semihypergroup and R be a
strongly regular relation on S. Then (S/R,®,X) is a partially preordered
semigroup, with respect to the following operation:
;®;={;|zexoy}

and for all ;,; € S/R a preordere relation < defined as follows:

x=y < Vx, € x Jy, € y such that x, <.
Proof. By Theorem 2.2, (S/R,®) is a semigroup. First, we prove that the binary
relation < is a partial preorder on S/R. Since x<x so x=x for every xeS/R.
Thus < is reflexive. If )_cj; and )_/jg, then for every x, e x there exists Y e;
such thatx, < y,.Since y, € y<z there exists z ez such that ¥, <z,. Hence
x<z thus =< is transitive.
Suppose that )_c, ;,5 e S/R such that )_cj;. Ift= 5@5, then for every ¢, et there
exist a, € a and X, € x such that #, g, ox,. Since X € x=y there exists » ey
such that x, < y,. So a, ox, <q,cy,. Thus there exists s, € q, oy, such that ¢, <s,.
So t= Z = s_1 = 5@;. Therefore, (S/R,®,=) is a partially preordered semigroup.

Let (S,,0,,<,) and (S,,0,,<,) be two po-semihypergroups. Then (S, xS,,°)
is a semihypergroup, where the hyperoperation o defined as follows:

(x, %) 0 (¥, 1,) = (X0 ¥, %, 0 ).

The lexicographical order defined on S, xS, as follows: (x,,x,)<(y,,¥,)
if and only if x, <, y, or x;, =y, and x, <, y,. In the following we prove that
(S, xS,,0,<) is a po-semihypergroup and is called the direct product of po-
semihypergroups (S,,¢,,<,) and (S,,°,,<,).

Theorem 2.9 Let (S,,0,,<,) and (S,,0,,<,) be two po-semihypergroups. Then
(S, x8§,,0) is a po-semihypergroup.
Proof. Suppose that (x,,x,)<(y,y,) for (x,x,),(»,y,)eS xS, and

(t,t,) €(a,,a,)o(x,,x,) for (a,a,)e S, xS,. Then ¢, €a o x and ¢, €a,o, x,.
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Since (x,,x,)<(),,y,), so we have two cases:

Case (1) x, <y,. Then t, €q, o, x, <, a, 0 y,, so there exists s, €q, o, y, such
that ¢, <, s5,. Now, if 5, €a, o, y,, then (¢,,2,) <(s,,5,) €(a,,a,) o (¥, ,)-

Case (2) x, =y, and x, <, y,. Then ¢, €a, 0, x, <, a,°, y, so there exists
S, €a,°, y, such that ¢, <, s,. Thus (¢,,t,) <(¢,s,) €(a,,a,)°(y,,y,). Therefore,
(S, %x8,,0,%) is a po-semihypergroup.

Notice that the mapping 7x,:8, xS, —>S,(x,x,)—x, is a good
homomorphism, but the mapping =, : S, xS, = S,,(x,,x,) = x, isnot.

3. Partially ordered hypergroups

In this section we study the concept of partially preordered (ordered) hypergroups.
Also, we consider some well-known hypergroups such as the ordering
hypergroups, mentioned by Chvalina [1], and the hypergroups associated to a
binary relation, mentioned by Rosenberg [12], and define a partial preorder or
order on them such that become preordered hypergroups or po-hypergroups.
Definition 3.1 The po-semihypergroup (H,,<) is called a po-hypergroup if
(H o) is a hypergroup.

Example 7 Let (X,<) be a poset. If for every x,y e X we define xoy={x,y},
then (X,0,<) is a po-hypergroup.

Example 8 Let (X,<) be a poset. If for every x,y € X we define xo y= X, then
(X ,0,<) is a po-hypergroup.

The following example gives an extensive class of partial preorderd
hypergroups and po-hypergroups.

Example 9 Let (G,.,<) be a partially preordered (ordered) group and P be a non-
empty subset of G. Then (G, ,,<) is a preordered (ordered) hypergroup, where
o, is the P -hyperoperation defined as: xo, y =xPy for every x,y €G.

Since, let x< yfor x,ye€G. Then for every a € G we should prove that
ac,x<ao,y. If zeao,x=aPx, then there exists fe P such that z=atx.
Now, since (G,.,<) is a partially preordered (ordered) group, we get
arx<atyeaPy=ac,y. Thus ao,x<ao,y. Therefore, (Go,,<) is a partially
preordered (ordered) hypergroup.

Next, we will construct a partially preordered (ordered) hypergroup from a
topological group. A topological group is a group with a topology on it. More
exactly, let (G,.) be a group and (G,7) be a topological space. Then the triple
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(G,.,7) is called a topological group if the mappings (x,y) — xy and x — x'

are continuous.
A topology is said to be satisfy the axiom 7] if for any two distinct points

x and y, there is an open set containing one of them but not another.

Theorem 3.2 Let (G,.,7) be a topological group and P be a non-empty subset of

G. Then there exists a binary relation < on G such that (G,e,,<)) is a

preordered hypergroup, where o, is the P -hyperoperation. Furthermore, if 7 is

T, , then (G,0,,<,) is a po-hypergroup.

Proof. For every x,y € G we define the binary relation <_ defined as follows:
xL,yeoxeU=yelU, VUer).

It is easy to see that <_ is reflexive and transitive so <_ is a partial preorder
relation on G.

Now, we prove that (G,.,< ) is a preordered group. Suppose that x<_y
and aeG. If axeU for Uer, then xea'Uer. Since x<. y we get
yea'U. Thus ayeU. Hence ax<_ay. Thus (G,.,<.) is a partial preordered
group and similar to Example 8, (G,¢,,<,) is a partially preordered hypergroup.

Supose that 7 is 7, and x<_y and y<_ x for x,yeG. If x#y, then
there exists an open subset of G, say U, such that contains only one of x and y.
If xeU and y e U, then by definition of relation <, we have x £ y Similarly in
the case of yeU and x¢U we have y £, x. This is a contradiction so we

conclude that x = y. So <_ is antisymmetric thus <_ is a partially ordered relation

T

on G. Therefore, (G,.,<,) isa po-group so (G,¢,,< ) is a po-hypergroup.

In the following we recal an special class of hypergroups that studied by
Chvalina [1] and called ordering hypergroups.
Definition 3.3 [1] A hypergroup (H o) is said to be a quasi-ordering hypergroup,
if for every x,y e H, wehave xex’ =x’ and xoy=x" Uy’

Moreover, if x> = y* implies x = y for every x,y e H, then (H o) is called
an ordering hypergroup.

Let (H,o) be a quasi-ordering hypergroup. Then we define a binary relation

<, on H asfollows: x<, y < xey’, forall x,ye H.

Lemma 3.4 Let (H,°) be a quasi-ordering hypergroup. Then the binary relation
<, is a partial preorder on H . Furthermore, if (H,°) is an ordering hypergroup,
then <, is a partial ordere on H .



92 D. Heidari, B. Davvaz

Proof. Suppose that (H,c) is a quasi-ordering hypergroup. Then for every x € H,
from x e x> we have x < x so <, isreflexive. If x, y,z e H such that x<_ y and
y<. z, then xey® and yez’. So we have xey’ cz’ oz’ =2, thus x< z.
Hence <, is transitive. Therefore, < is a partial preorder on H.

Suppose that (H,e) is an ordering hypergroup. If x< y and y< x for
x,yeH, then xey’ and yex’. So y ' cx’ox’=x>cy’oy’=y’. Thus
x* = y*, so by hypothesis we get x = y. Hence <, is an antisymmetric relation.
Therefore, <, is a partial ordere on H.

Theorem 3.5 Let (H,0) be a quasi-ordering hypergroup. Then (H,,<)) is a
partially preordered hypergroup. Furthermore, if (H,°) is an ordering hypergroup,
then (H,0,<)) is a po-hypergroup.

Proof. Suppose that x <, y, for x,ye H. Then for every a e H we should prove
that aox< aoy. If teaox=a’ Ux?, then either € a’ or t e x*. If t € a’, then
t<,teaoy.If tex’, then we have t< x< y. So t< yeaoy. Therefore, if
(H,) is a quasi-ordering (ordering) hypergroup, then (H,,<)) is a partially

preordered (ordered) hypergroup.
Next, we want to find some conditions on a hypergroup such that becomes a

po-hypergroup.
Theorem 3.6 Let (H,o) be a hypergroup such that there exists an element 0 € H

and the following conditions hold:
(1) 00={0}; (2) {0,x} c xo0 forevery xe H;
(3)If xo0=yo0, then x=y forevery x,ye H.
Then there exists a binary relation < on H such that (H,o,<) is a po-hypergroup.
Proof. We define a partially ordered relation < on H as follows:
x<y<xeyol, forevery x,ye H.
By condition (2), x e x00 so x < x for every x € H. Thus < is reflexive.
If x<y and y<x, for x,ye H, then xe yo0 and y € xo0. So we have
x00c (¥00)e0=yo(000)=yo0c(x00)c0=x0(000)=x00.
Thus xo0=yo0 and by condition (3), x = y. So < is antisymmetric.

If x<y and y<z for x,y,zeH, then xeyo0 and yezo0. So
x€yo0c(z00)o0=2z00. Thus x<z and < is transitive. Therefore, < is a
partially ordered relation on H.

Now, suppose that x<y for x,y e H. Then for every ae€ H we should
prove that acx<aoy. Let teacx. Since x<yp so xe yo0. Thus

teaoxcao(ye0)=(acy)e0.
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So there exists s € aoy such that 1€ s00. Hence ¢ <seaoy and the proof

is complete.
Example 10 Let H ={0,x, y} and the hyperoperation o defined in the following

table:

o 0 X y
0 {0} {0, x} H
X {0, x} H H
Y H H H

Then (H,o) satisfies the pervious theorem so (H,o,<) is a po-hypergroup,

where <= {(0,0,(0,.x),(0, ), (x,x), (x, ), (3, 1)} .
In [12], Rosenberg associated to each binary relation R on a non-empty set H is
a partial hypergroupoid H, =(H,o,), where for any x,y € H the hyperoperation
o, defined as follows: xoex=L_ ={z|(x,z)€R} and xoy=xoxUyo}.

Let R be a binary relation on a non-empty set / . Then an element x € H
is called an outer element of R if there exists 4 € H such that (/,x) ¢ R.
Theorem 3.7 [12] Let R be a binary relation on a non-empty set H . Then H, is
a hypergroup if and only if

(1) R has full domain; (2) R has full range; (3) R < R’;

(4) If (a,x) € R*, then (a,x) € R, whenever x is an outer element of R.
Lemma 3.8 Let R be a partiallyl preordered relation on a non-empty set H. Then
H, is a hypergroup.

Proof. We verify the conditions of previous theorem. Since R is reflexive so the
conditions (1) and (2) hold. From reflexivity and transitivity of R we conclude

that R*=R so the conditions (3) and (4) hold. Therefore, (H,,o,,R) is a
hypergroup.

Theorem 3.9 Let R be a partially ordered relation on a non-empty set H. Then
(Hy,o4,R) 1s a po-hypergroup.

Proof. By previous lemma, H, is a hypergroup. Now, we prove the monotone
condition for H,. Suppose that xRy for x,ye H. We should prove that
aoypxRao, y forevery aeH. Let teao,x=L, UL . Then tel, orteL . In
the former case, tRa and since a€ao, y the result holds. In the later case, we
have tRx since xRy so tRyeao, y. Therefore, (H,,,,R) is a po-hypergroup.

4. Hyperstructures associated to I" -semigroups

In this section we associated to each I -groupoid a I'-hypergroupoid and
prove some results. Let us recall some notations.
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The notions of an ordered I -groupoid (shortly, po-I" -groupoid) and an
ordered I -semigroup (shortly, po-T" -semigroup) were defined by Sen and Seth in
[14]. A po-T -groupoid (po-TI -semigroup) is a I'-groupoid (I -semigroup) S
together with an order relation < on S such that x <y implies ayx <ayyand
xya < yya,forall x,y,aeSand yel.

Definition 4.1 Let S be a I" -groupoid. Then we define the hyperoperation o on
S as follows:
xory=xly={xpy|yel} forall x,yeS.
Then (S,o.) is called the hypergroupoid associated to I'-semigroup S and is
denoted by S.
Lemma4.2 If S isa I' -semigroup, then S is a semihypergroup.
Proof. We prove the associativity condition for S;.. For every x, y,z € S we have
xor (yor 2)=xop (2) =T ()T2) = ATz = (xo; y)op 2.
So S} is a semihypergroup.
Lemma 4.3 Let S be a I -semigroup. Then the following assertions hold:

(1) If § is a commutative I -semigroup, then S is a commutative
semihypergroup.

(2) If §, is a monoid with identity element e, for o €I, then e, is a unit
element of §.

(3) § 1is a regular I -semigroup if and only if S, is a regular
semihypergroup.

(4) The non-empty subset / of S is an ideal of S if and only if 7 is a
hyperideal of ;.

(5) § is simple if and only if S, is simple.

Proof. (1) It is evident.

(2) For every xe§ we have x =xae, =e,ax €x o.e,Me, o. X SO e, 1S
a unit element of S..

(3) The T' -semigroup S is regular if and only if for every x € .S there exist
veS and a,f el such that x =xayfx if and only if there exists y € S such
that x e xo yo. x if and only if S;. is a regular semihypergroup.

(4) Suppose that / is an ideal of S. Then for every ae/ and s€S§ we
have so.a=sT'ac /. Similarly ao.sc/l. So I 1is a hyperideal of S..
Conversely, suppose that / is a hyperideal of S.. Then for every ael, se§

and y eI” we have sya c so.ac . Similarly ays c 1. So I is an ideal of §.
(5) It gets from (4).
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Proposition 4.4 If S is a I" -group, then Sy is a hypergroup.

Proof. It is sufficient to check the reproduction axiom for semihypergroup S;.
Since S is a I'-group so S, is a group for every a €I'. Then for every x € S. we
have S=xaScxo. ScS. So xo.§=S. Similarly, we get So.x=S. Thus
(S,op) is a hypergroup.

Proposition 4.5 Let S be a commutative I' -semigroup and M be a minimal
ideal of S. Then (M o) is a hypergroup.

Proof. For every xe M since xo. M =xI'M c M so xo. M is an ideal of §
contained in M . Since M is a minimal ideal of § so we have xo. M =M. By a
similar way we have M o. x = M .Thus the reproduction axiom holds. Therefore,
(M ,0.) is a hypergroup.

Theorem 4.6 Let (S,<) be a po-I"-semigroup. Then (S,o,<) is a po-
semihypergroup.

Proof. Suppose that x <y for x,y e S.. Then for every a € S. we should prove
that ao. x<ao_ y. If teao, x, then there exists y eI' such that = ayx. Now,
since S is a po-I" -semigroup we have t=ayx<ayyeao. y. It is complete the

proof.
Theorem 4.7 Let S be a I' -semigroup and R be a congruence relation on S.

Then R is a regular relation on semihypergroup S;. Furthermore, (S./R,®) is a
semihypergroup, where the hyperoperation ® defined on S./R as follows:
;®; = {; :zexop y} for every ;,; e S./R.

Proof. Suppose that x,y €S, such that xRy. Then for every a S, we should
prove that ao xRa o. y. If teao x, then there exists y €' such that t=ajx.
Since R is a congruence relation on S we have ayxRayy € ao. y. Similarly, if
teao. y, then there exists y eI’ such that #=ayy. Since R is a congruence
relation on § we have ayyRayx eaco.x. Thus R is a regular relation on .
Now, by Theorem 2.2, (S./R,®) is a semihypergroup.

Let S be a I -semigroup and R be a congruence relation on S. Let
I'={y:yeTl}. Then for every x,yeS/R the operation 7 defined on S/R as
follows: ;72;=%. Suppose that x,Rx and yRy. Since R is a congruence
relation on S we have xyyRxyy, and xyyRxyy for every yel. So
%:%. Thus the operation y is well-defined for every y eI'. Also, S/R
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satisfies the associativity condition. Since for every ;,;,E eS/R and a,B el we
have

xa(ypz) = xa(ypz) = xa(ypz) = (xay) fz = (xay)pz = (xa y) fz.
Therefore, S/R is a I -semigroup.
Theorem 4.8 Let S be a I' -semigroup and R be a congruence relation on S.
Then the semihypergroups (S./R,®) and ((S/R);,o.) are same.

Proof. Since R is a congruence relation on S, by pervious theorem, we have

.. 0.
r>r

S./R is a semihypergroup. Also, by the above argument S/R is a I" -semigroup.

Thus by Lemma 4.2, (S/R);. is a semihypergroup. Also, for every },;e S/R we
have

x®y={xyy:yelt=={xyy:yel}=xopy
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