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RESEARCH ON SERVICE ROBOT PATH PLANNING BASED
ON OPTIMIZED A-STAR ANT COLONY ALGORITHM

Yunfei XIAL* Yang ZHENG?, Xing WANG?, Ping JIN, Liangyan WANG®

In the past, service robots planning paths based on the results of heuristic
functions did not guarantee the search for optimal paths, and there were also
problems such as more turning points in the planned paths and difficulty in effective
dynamic obstacle avoidance. In this paper, a hierarchical strategy is used for
regional path planning. An adaptive pheromone fluctuation factor is defined to
optimize the node selection method. Add the constraint of obstacles on the speed.
The improved algorithm has a wider search range and faster convergence at a later
stage. The service robot can reach the designated place faster in the environment
with different complexity.

Keywords: optimized A-star ant colony algorithm, hierarchical strategy, real-time
dynamic obstacle avoidance

1. Introduction

The current service robot achieves path planning and autonomous obstacle
avoidance in ROS environment through multi-sensor fusion, SLAM and motion
control technologies. For robots driving in environments with different
complexity such as parks and warehouses, this paper optimizes the paths through
hierarchical strategies to achieve planning the optimal paths for multiple
environments with different complexity and real-time obstacle avoidance. For
global path planning, literature [1] proposed an improved ant colony algorithm,
which updates the pheromone according to the sorting results, and plays a guiding
role in the optimal and suboptimal paths, with high robustness, but there are
problems such as large amount of computation and slow convergence speed. In
[2], the ant colony algorithm was improved by using the non-uniform initial
pheromone value, which reduced the blindness of initial search. The convergence
speed was fast, but it was not conducive to exploration. The diversity was poor,
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and it was easy to fall into local optimization. In [3], the triangulation algorithm
was used to reduce the redundant nodes of the A-star algorithm, but the
smoothness of the path was not considered. In [4] and [5], the premature and slow
convergence problems of the ant colony algorithm were optimized, but the
algorithm took a long time. A multi-objective travel planning algorithm based on
ant colony was proposed in [6], but this algorithm lacks dynamic obstacle
avoidance characteristics. The QAPF learning algorithm was proposed in [7, 8] to
calculate the optimal path of a robot, but its convergence speed to the optimal
solution is slow. An optimized artificial potential field method was proposed in
[9], which is robust to control and sensing errors, but has the disadvantage of
having local minima. Another method is to enhance the ant colony genetic
algorithm by adaptively using advanced solution pheromones, but this algorithm
is highly dependent on the advantages of the initial population, as shown in [10].
Therefore, in this paper, the region is partitioned according to the complexity of
the environment. The high-density environment is used by adaptive ant colony
algorithm, and path planning is performed in the low-density environment with
multi-objective point A-star algorithm to improve path planning efficiency and
reduce redundant turning points. The dynamic obstacle motion model is
established, and the robot motion behavior constraints are set to improve the
robustness of obstacle avoidance in dynamic environments, so that the planned
paths are more consistent with the kinematic laws of service robots and have good
obstacle avoidance functions in dynamic environments.

2. Optimized Ant Colony Algorithm

There are two main key steps in the ant colony algorithm, namely path
construction and pheromone update. Path construction is completed by storing the
path points that ants pass through in each iteration. Ants will store the pheromone
of their path and choose the planning path according to the pheromone
concentration and heuristic factor, as shown in equation (1).
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where 1 is the pheromone concentration of the selected path, and 7 is the
heuristic factor associated with the length of the selected path. o and B are used to
indicate the pheromone concentration and the importance of the heuristic factor.

All ants come back to complete one iteration, and after each iteration, the
pheromone of all the routes taken will be updated, when t+1 iterations pheromone
concentration is updated as shown in equation (2).

Tz'_;l'(r+1) =(1_p)ri}'(r)+&ri}' (2)
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At is the pheromone increment of the ant during this iteration, expressed
by the pheromone intensity Q and the total length L of the path taken by the Kth
ant in this iteration, as shown in (3).

At (t) = i 3

As in the literature [11], [12], the pheromone update rule is improved and
a reward and punishment mechanism is proposed to enhance the pheromone
concentration of optimal and better paths after each iteration, while weakening the
pheromone concentration of inferior paths to enhance the guiding effect on
superior paths, as shown in equation (4).
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T represents the current iteration number, N denotes the Nth path selected
at the Tth iteration number when the paths are sorted from best to worst, and X
denotes the total number of ants. A is a constant greater than zero.

As in the literature [13] for the pheromone volatility factor p(t), the
pheromone volatility factor as an important factor for pheromone update, this
paper uses the adaptive pheromone volatility strategy, this improves the search
range of the algorithm at the initial iteration stage and reduces the time required
for later convergence. The pheromone volatility coefficient, which decreases
adaptively with the number of iterations, does not decrease after decreasing to a
suitable range, as shown in equation (5).
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Where C is the scale factor, optionally 0.5 after experimental validation,

associated with the peak of the normal distribution, t is the number of iterations,

and o is the retardation of the normal distribution, adjustable according to the
expected rate of convergence, optionally 72.

"

3. Optimized A-star Algorithm

The A-star algorithm first needs to rasterize the map and search the
surrounding eight rasters separately from the starting point, by calculating the
minimum total generation value of the surrounding eight rasters as the starting
point for the next calculation. The cycle continues until the end of the surrounding
raster appears. The equation for the total generation value is shown in (6).

F*(i) = G(i) + H*(i) (6)
For the A-star algorithm, the common Euclidean evaluation function is
shown in equation (7).

H[:I)= dxwlll(ix_gx:]z_l_ (i}'_g}')z (7)
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Although the A-star algorithm plans paths in the raster map, it can only
satisfy the connections between adjacent rasters. Here, the global path
optimization function is achieved by removing redundant nodes and fitting the
remaining nodes. This method first needs to traverse the original A-star algorithm.
Except for each node of the start and target nodes, when the adjacent nodes before
and after the node are connected without touching obstacles, delete the node.
Loop this method and connect the remaining nodes to form a shorter path to reach
the target point, as shown in Fig. 1.

Fig. 1. Delete redundant node path planning
4. Defining Dynamic Obstacle Motion Models

First the service robot will build a speed model based on its own hardware.
Second, the robot motion trajectory is simulated in a short time slice based on the
sampled velocity model. Finally, the evaluation function of the robot moving
trajectory is set and the velocity model of the optimal path is selected. The
evaluation function established by the azimuth angle, velocity model and obstacle
distance length is shown in equation (8).

E(v,w) = f[a - deviation(v,w) + f - abstacle(v,w) + y - speed(v,w)] (8)

The deviation evaluation function represents the deviation degree of the
simulated trajectory. The obstacle distance evaluation function represents the
distance between the current track and the obstacle, and the speed evaluation
function represents the appropriateness of the speed.

The dynamic windowing method has poor robustness and cannot achieve
timely obstacle avoidance, as described in the literature [14,15]. These problems
are solved here by setting up a dynamic obstacle motion model to predict the
range of obstacle movement. When dynamic obstacles are encountered, the
dynamic obstacle motion model needs to be calculated, and the speed of the
dynamic obstacle remains constant in a shorter time slice, then the speed model of
the obstacle is obtained according to the sensor. According to the velocity model,
the range of obstacles in a time period is calculated, and the service robot needs to
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perform dynamic obstacle avoidance according to this obstacle range, and the
dynamic obstacle motion model is shown in equation (6).

x = x + vAtcos(B,) — v, At sin(6,)
y=y+ vAtsin(8,) — v, Atcos(6,) 9)
8, = 68, +wit

5. Optimized A- star Ant Colony Hybrid Algorithm

For a map of the same complexity, the corresponding path planning
algorithm can play the corresponding advantage, if for a map with different
complexity, it is necessary to improve the reliability and operational efficiency of
the planning based on the map complexity metric and the corresponding algorithm
for planning. Currently, for raster maps, a map complexity measure based on the
relative Hemming distance is used to partition the map area.

Based on environments with different complexity, such as robots working
in and out of warehouses for logistics. If path planning is performed by the same
global path planning algorithm, it leads to getting into deadlocked regions with
unreliable path planning in regions of higher complexity or increases computation
and wastes computation time in regions of lower complexity. To solve this
problem, a hierarchical strategy for path planning based on the map complexity
metric is designed here. The strategy first requires rasterizing the map, then
dividing the regions by the complexity measure, and finally using appropriate path
planning algorithms according to different complexity regions.

The raster map is represented as a two-dimensional matrix of 0,1 with
obstacle points as 1 and no obstacle points as 0. The complexity of the map is
displayed by comparing the difference in the corresponding bit positions of the
rows and columns in the matrix. Because the number of bits is the same,
comparing the bits of two adjacent columns, the more bits are different, the
greater the complexity. yy indicates the number of corresponding bits in two
columns that are 1 at the same time, yn indicates the number of corresponding bits
that are different, and nn indicates the number of corresponding bits that are 0 at
the same time. The Hemming function is shown in equation (10).

HammingDist (A, B)=Y¥YN+ NV (10)

The raster map is represented as a matrix M, M=(al,a2,a3,...,am), and m is

the length of the horizontal axis X of the map, so the X-axis directional

complexity metric of a raster map, as shown in equation (11) ,the Y-axis direction
is shown in equation (12).

x_HC(M) = X, HammingDist(a,,a._,) (11)

y_HC(M) = x_HC(MT) (12)
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When the map size is inconsistent, back affects the inconsistent results of
the Hemming distance complexity measure, in order to solve this problem, it is
necessary to pass the relative Hemming distance complexity measure, M is the
length of the horizontal axis X in the map, n is the length of the vertical axis Y,
then the matrix is M=(al,a2,a3,...,am), then the maximum Hemming distance
between map columns is n(m-1), between rows The maximum Hemming distance
is m(n-1). As shown in equation (13), the Y-axis direction is shown in equation
(14).

x_RHC(M) = m(;_lj m ! HammingDist (a; a;,,) (13)
V_RHC(M) = ’:’”:ﬂ x_RHC(MT) (14)

In practical applications, the robot moves both laterally and vertically, so
the overall relative Hemming distance complexity of the map is expressed by
obtaining the arithmetic mean of the relative Hemming distance complexity in the

X and Y directions. As shown in equation (15).
_ x HC(M)+y_HC(M)

RHC(M) = (15)
To optimize the A-star ant colony algorithm, firstly, it is necessary to carry
out area complexity grading by relative Hemming distance complexity metric to
divide the obstacle high-density area and low-density area. Secondly, the path
planning is carried out in the high-density region by optimizing the ant colony
algorithm to increase the global search range, improve the convergence speed, and
avoid the service robot from entering the deadlock region. In addition, as in the
literature [16], the optimized A-star algorithm is used for path planning in low-
density regions. Finally, the speed and stability of dynamic obstacle avoidance are
improved by the optimized DWA algorithm and obstacle avoidance based on the
motion model of the set obstacles.

-

6. Experimental Analysis

The motion model is set according to the specific performance of the ROS
robot, and the main motion parameters modeled during the robot motion are
shown in Table 1.

Table 1
Robot motion model
_ Maximum Acceleration Rotationa! Velocit)_/ Speed _
Maximum | Rotation (mis2) Acceleration | Resolution Resolution
Speed(r/s) (r/ s2) (m/s) (r/s)
1.0 80.0 0.2 20 0.01 1

Using elitist ant colony system, adaptive ant colony algorithm, and our

algorithm for path planning simulation. Compared with the elitist ant colony
system, our algorithm reduces the grid length by 6.6 units and 5 turning points.
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Compared with the adaptive ant colony algorithm, ours reduces the grid length by
5.4 units and 2 turning points. The optimized A-star ant colony algorithm has a
shorter length and smoother path, as shown in Fig. 4.
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Fig. 2. Path planning of Elitist Ant Colony System
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Comparing the changes before and after optimization, it can be seen that
the optimized algorithm has better global search ability. At the same time, it also
has good iterative convergence speed. Although our algorithm is not the fastest in
searching for the shortest path, it achieves faster convergence stability and shorter
iterations. Meet the expected convergence requirements, as shown in Fig. 7.
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Fig. 8 validates the optimised ant colony algorithm in a raster grid. This
ant colony algorithm identifies multiple key target points in the global path that
are typically identified at the edges of obstacles. The optimised DWA algorithm
uses multi-sensor techniques for path planning of key target points and avoids
obstacle points that are different from the static environment. The optimised ant
colony algorithm plans the motion trajectory and the optimised DWA algorithm
performs dynamic obstacle avoidance with home accuracy. Finally, the paths are
smoother and do not get stuck in a deadlocked state compared to the single
algorithm of the past.
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Compared to the usual choice of waiting when encountering dynamic
obstacles in the past, ours uses its own speed and the speed of the dynamic
obstacle to determine whether to maintain speed, slow down slightly, or wait.
When obstacles moving in the environment are detected, the robot slows down
slightly and sets a dynamic obstacle motion model through radar and ultrasonic
sensors. Traditional service robots use deceleration to avoid dynamic obstacles,
which often leads to path planning errors and wastes a lot of time, as shown in
Fig. 9. We validated the optimized ant colony algorithm combined with DWA.
The service robot detects the security of the path ahead in real-time through its
own speed model. And based on the robot's motion model and dynamic obstacles,
determine whether the robot's motion strategy is to maintain normal speed or slow
down and wait. Here, the robot determines that if it maintains normal speed, the
two dynamic obstacles ahead will not collide with it, so it will maintain normal
speed through the dynamic obstacles instead of choosing to slow down and wait,
as shown in Fig. 10. Compared with previous dynamic obstacle avoidance
algorithms, our algorithm has smoother speed changes and can reach the target
point faster. The speed comparison is shown in Fig. 11.
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Fig. 9. Compare ant colony algorlthm planning path before and after optimization
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Fig. 11. Comparison of dynamic obstacle avoidance speed changes
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The service robot detects obstacles in front of it at each moment and
compares the speed change of obstacles by radar and ultrasonic sensors, the
detection area is a sector in front of the path, and when a moving obstacle is
detected, the robot decelerates slightly waiting for the action policy to be issued.
Here the detected speed of the moving obstacle has no effect on the robot, then the



Research on service robot path planning based on optimized A-star ant colony algorithm 235

robot will keep moving at normal speed and avoid the obstacle. The robot
decelerates every time it encounters the corner of a static obstacle and a dynamic
obstacle, and the speed change is shown in Fig. 12.

Fig. 12. ROS environment simulation

In the past, the same path planning strategy was used for areas with
different complexities, using an elite ant colony system for path planning. There
are more transformations, longer paths, and more iterations, as shown in Fig. 13.
Although the number of iterations using adaptive ant colony algorithm is
relatively reduced, it still requires a lot of computational time for areas with lower
complexity, as shown in Fig. 14. We divide the global map into high complexity
and low complexity regions based on the relative Hemming distance map
complexity measure and mark the high complexity warehouse area with boxes. In
this paper, we use the optimized ant colony DWA algorithm for path planning,
which has better global search ability and faster and stable dynamic obstacle
avoidance function.
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Fig. 13. Path planning of Elitist Ant Colony Systems
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The service robot leaves the warehouse and uses an optimized A-star algorithm
for global path planning in areas with low complexity, saving computational time
and enabling real-time dynamic obstacle avoidance. Smooth path planning and
more stable operation. The optimized A-star ant colony algorithm simulation is
shown in Fig. 15.
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Fig. 14. Path planning of Adaptive Ant Colony algorithm
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This article conducted 30 experiments in the same environment and
recorded the optimal path length, average path length, average number of
iterations, average path planning time, and number of corners, as shown in Table
2.
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Table 2
Experimental results of four indicators
. Average Average
parameter Optllmal path | Average path numberg of numberg of
ength length . ;
iterations turns
Elitist Ant System ( 76.3 79.7 260 24
EAS)
Adaptive Ant Colony 72.2 75.6 225 20
Algorithm (AACO)
Optimized A-star Ant 71.6 74.5 150 16
Colony Algorithm

7. Conclusion

Past A-star ant colony algorithms were slow to converge, lacked global
search capability in the pre-iteration phase, and could not perform dynamic
obstacle avoidance. In addition, the previous separate DWA algorithm cannot
achieve optimal path planning and reliable dynamic obstacle avoidance.
Therefore, an optimized A-star ant colony algorithm based on the environmental
complexity index is proposed, which plans the path of the environment with
different complexity levels and adds the dynamic obstacle motion model
prediction to achieve a more effective obstacle avoidance strategy. The algorithm
firstly divides regions by environmental complexity metric and combines the
optimized A-star ant colony algorithm and the optimized DWA algorithm, which
reduces the turning points in global path planning, shortens the running time, and
can effectively perform dynamic obstacle avoidance. In this paper, the algorithms
before and after optimization are compared and analyzed by simulating
environments with different complexity and dynamic obstacles. Compared with
the previous A-star ant colony algorithm, this algorithm has wider global path
search range, faster convergence speed, shorter total path planning length, and is
suitable for environments of different complexity. In the dynamic obstacle
environment, the path is more stable and has faster and more reliable obstacle
avoidance ability.
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