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RESEARCH ON SERVICE ROBOT PATH PLANNING BASED 

ON OPTIMIZED A-STAR ANT COLONY ALGORITHM 

Yunfei XIA1,*, Yang ZHENG2, Xing WANG3, Ping JIN4, Liangyan WANG5 

In the past, service robots planning paths based on the results of heuristic 

functions did not guarantee the search for optimal paths, and there were also 

problems such as more turning points in the planned paths and difficulty in effective 

dynamic obstacle avoidance. In this paper, a hierarchical strategy is used for 

regional path planning. An adaptive pheromone fluctuation factor is defined to 

optimize the node selection method. Add the constraint of obstacles on the speed. 

The improved algorithm has a wider search range and faster convergence at a later 

stage. The service robot can reach the designated place faster in the environment 

with different complexity. 
 

Keywords: optimized A-star ant colony algorithm, hierarchical strategy, real-time 

dynamic obstacle avoidance 

1. Introduction 

The current service robot achieves path planning and autonomous obstacle 

avoidance in ROS environment through multi-sensor fusion, SLAM and motion 

control technologies. For robots driving in environments with different 

complexity such as parks and warehouses, this paper optimizes the paths through 

hierarchical strategies to achieve planning the optimal paths for multiple 

environments with different complexity and real-time obstacle avoidance. For 

global path planning, literature [1] proposed an improved ant colony algorithm, 

which updates the pheromone according to the sorting results, and plays a guiding 

role in the optimal and suboptimal paths, with high robustness, but there are 

problems such as large amount of computation and slow convergence speed. In 

[2], the ant colony algorithm was improved by using the non-uniform initial 

pheromone value, which reduced the blindness of initial search. The convergence 

speed was fast, but it was not conducive to exploration. The diversity was poor, 
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and it was easy to fall into local optimization. In [3], the triangulation algorithm 

was used to reduce the redundant nodes of the A-star algorithm, but the 

smoothness of the path was not considered. In [4] and [5], the premature and slow 

convergence problems of the ant colony algorithm were optimized, but the 

algorithm took a long time. A multi-objective travel planning algorithm based on 

ant colony was proposed in [6], but this algorithm lacks dynamic obstacle 

avoidance characteristics. The QAPF learning algorithm was proposed in [7, 8] to 

calculate the optimal path of a robot, but its convergence speed to the optimal 

solution is slow. An optimized artificial potential field method was proposed in 

[9], which is robust to control and sensing errors, but has the disadvantage of 

having local minima. Another method is to enhance the ant colony genetic 

algorithm by adaptively using advanced solution pheromones, but this algorithm 

is highly dependent on the advantages of the initial population, as shown in [10]. 

Therefore, in this paper, the region is partitioned according to the complexity of 

the environment. The high-density environment is used by adaptive ant colony 

algorithm, and path planning is performed in the low-density environment with 

multi-objective point A-star algorithm to improve path planning efficiency and 

reduce redundant turning points. The dynamic obstacle motion model is 

established, and the robot motion behavior constraints are set to improve the 

robustness of obstacle avoidance in dynamic environments, so that the planned 

paths are more consistent with the kinematic laws of service robots and have good 

obstacle avoidance functions in dynamic environments. 

2. Optimized Ant Colony Algorithm 

There are two main key steps in the ant colony algorithm, namely path 

construction and pheromone update. Path construction is completed by storing the 

path points that ants pass through in each iteration. Ants will store the pheromone 

of their path and choose the planning path according to the pheromone 

concentration and heuristic factor, as shown in equation (1). 

                                     (1) 

where τ is the pheromone concentration of the selected path, and η is the 

heuristic factor associated with the length of the selected path. α and β are used to 

indicate the pheromone concentration and the importance of the heuristic factor.  

All ants come back to complete one iteration, and after each iteration, the 

pheromone of all the routes taken will be updated, when t+1 iterations pheromone 

concentration is updated as shown in equation (2). 

                             (2) 
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∆τ is the pheromone increment of the ant during this iteration, expressed 

by the pheromone intensity Q and the total length L of the path taken by the Kth 

ant in this iteration, as shown in (3). 

                                                     (3) 

As in the literature [11], [12], the pheromone update rule is improved and 

a reward and punishment mechanism is proposed to enhance the pheromone 

concentration of optimal and better paths after each iteration, while weakening the 

pheromone concentration of inferior paths to enhance the guiding effect on 

superior paths, as shown in equation (4). 

                                   (4) 

T represents the current iteration number, N denotes the Nth path selected 

at the Tth iteration number when the paths are sorted from best to worst, and X 

denotes the total number of ants. λ is a constant greater than zero. 

As in the literature [13] for the pheromone volatility factor ρ(t), the 

pheromone volatility factor as an important factor for pheromone update, this 

paper uses the adaptive pheromone volatility strategy, this improves the search 

range of the algorithm at the initial iteration stage and reduces the time required 

for later convergence. The pheromone volatility coefficient, which decreases 

adaptively with the number of iterations, does not decrease after decreasing to a 

suitable range, as shown in equation (5). 

                                         (5) 

Where C is the scale factor, optionally 0.5 after experimental validation, 

associated with the peak of the normal distribution, t is the number of iterations, 

and σ is the retardation of the normal distribution, adjustable according to the 

expected rate of convergence, optionally 72. 

3. Optimized A-star Algorithm 

The A-star algorithm first needs to rasterize the map and search the 

surrounding eight rasters separately from the starting point, by calculating the 

minimum total generation value of the surrounding eight rasters as the starting 

point for the next calculation. The cycle continues until the end of the surrounding 

raster appears. The equation for the total generation value is shown in (6). 

                                          (6) 

For the A-star algorithm, the common Euclidean evaluation function is 

shown in equation (7). 

                        (7) 
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Although the A-star algorithm plans paths in the raster map, it can only 

satisfy the connections between adjacent rasters. Here, the global path 

optimization function is achieved by removing redundant nodes and fitting the 

remaining nodes. This method first needs to traverse the original A-star algorithm. 

Except for each node of the start and target nodes, when the adjacent nodes before 

and after the node are connected without touching obstacles, delete the node. 

Loop this method and connect the remaining nodes to form a shorter path to reach 

the target point, as shown in Fig. 1. 

 

Fig. 1. Delete redundant node path planning 

4. Defining Dynamic Obstacle Motion Models 

First the service robot will build a speed model based on its own hardware. 

Second, the robot motion trajectory is simulated in a short time slice based on the 

sampled velocity model. Finally, the evaluation function of the robot moving 

trajectory is set and the velocity model of the optimal path is selected. The 

evaluation function established by the azimuth angle, velocity model and obstacle 

distance length is shown in equation (8). 

 (8) 

The deviation evaluation function represents the deviation degree of the 

simulated trajectory. The obstacle distance evaluation function represents the 

distance between the current track and the obstacle, and the speed evaluation 

function represents the appropriateness of the speed. 

The dynamic windowing method has poor robustness and cannot achieve 

timely obstacle avoidance, as described in the literature [14,15]. These problems 

are solved here by setting up a dynamic obstacle motion model to predict the 

range of obstacle movement. When dynamic obstacles are encountered, the 

dynamic obstacle motion model needs to be calculated, and the speed of the 

dynamic obstacle remains constant in a shorter time slice, then the speed model of 

the obstacle is obtained according to the sensor. According to the velocity model, 

the range of obstacles in a time period is calculated, and the service robot needs to 
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perform dynamic obstacle avoidance according to this obstacle range, and the 

dynamic obstacle motion model is shown in equation (6). 

                                (9) 

5. Optimized A- star Ant Colony Hybrid Algorithm 

For a map of the same complexity, the corresponding path planning 

algorithm can play the corresponding advantage, if for a map with different 

complexity, it is necessary to improve the reliability and operational efficiency of 

the planning based on the map complexity metric and the corresponding algorithm 

for planning. Currently, for raster maps, a map complexity measure based on the 

relative Hemming distance is used to partition the map area. 

Based on environments with different complexity, such as robots working 

in and out of warehouses for logistics. If path planning is performed by the same 

global path planning algorithm, it leads to getting into deadlocked regions with 

unreliable path planning in regions of higher complexity or increases computation 

and wastes computation time in regions of lower complexity. To solve this 

problem, a hierarchical strategy for path planning based on the map complexity 

metric is designed here. The strategy first requires rasterizing the map, then 

dividing the regions by the complexity measure, and finally using appropriate path 

planning algorithms according to different complexity regions. 

The raster map is represented as a two-dimensional matrix of 0,1 with 

obstacle points as 1 and no obstacle points as 0. The complexity of the map is 

displayed by comparing the difference in the corresponding bit positions of the 

rows and columns in the matrix. Because the number of bits is the same, 

comparing the bits of two adjacent columns, the more bits are different, the 

greater the complexity. yy indicates the number of corresponding bits in two 

columns that are 1 at the same time, yn indicates the number of corresponding bits 

that are different, and nn indicates the number of corresponding bits that are 0 at 

the same time. The Hemming function is shown in equation (10). 

                           (10) 

The raster map is represented as a matrix M, M=(a1,a2,a3,...,am), and m is 

the length of the horizontal axis X of the map, so the X-axis directional 

complexity metric of a raster map, as shown in equation (11) ,the Y-axis direction 

is shown in equation (12). 

                      (11) 

                                   (12) 
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When the map size is inconsistent, back affects the inconsistent results of 

the Hemming distance complexity measure, in order to solve this problem, it is 

necessary to pass the relative Hemming distance complexity measure, M is the 

length of the horizontal axis X in the map, n is the length of the vertical axis Y, 

then the matrix is M=(a1,a2,a3,...,am), then the maximum Hemming distance 

between map columns is n(m-1), between rows The maximum Hemming distance 

is m(n-1). As shown in equation (13), the Y-axis direction is shown in equation 

(14). 

                  (13) 

                         (14) 

In practical applications, the robot moves both laterally and vertically, so 

the overall relative Hemming distance complexity of the map is expressed by 

obtaining the arithmetic mean of the relative Hemming distance complexity in the 

X and Y directions. As shown in equation (15). 

                                 (15) 

To optimize the A-star ant colony algorithm, firstly, it is necessary to carry 

out area complexity grading by relative Hemming distance complexity metric to 

divide the obstacle high-density area and low-density area. Secondly, the path 

planning is carried out in the high-density region by optimizing the ant colony 

algorithm to increase the global search range, improve the convergence speed, and 

avoid the service robot from entering the deadlock region. In addition, as in the 

literature [16], the optimized A-star algorithm is used for path planning in low-

density regions. Finally, the speed and stability of dynamic obstacle avoidance are 

improved by the optimized DWA algorithm and obstacle avoidance based on the 

motion model of the set obstacles. 

6. Experimental Analysis 

The motion model is set according to the specific performance of the ROS 

robot, and the main motion parameters modeled during the robot motion are 

shown in Table 1. 
Table 1 

Robot motion model 

Maximum 

Maximum 

Rotation 

Speed(r/s) 

Acceleration 

(m/s2) 

Rotational  

Acceleration 

(r/ s2) 

Velocity  

Resolution 

(m/s) 

Speed 

Resolution 

(r/s) 

1.0 80.0 0.2 20 0.01 1 

Using elitist ant colony system, adaptive ant colony algorithm, and our 

algorithm for path planning simulation. Compared with the elitist ant colony 

system, our algorithm reduces the grid length by 6.6 units and 5 turning points. 
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Compared with the adaptive ant colony algorithm, ours reduces the grid length by 

5.4 units and 2 turning points. The optimized A-star ant colony algorithm has a 

shorter length and smoother path, as shown in Fig. 4. 

 
Fig. 2. Path planning of Elitist Ant Colony System 

 
Fig. 3. Path planning of Adaptive Ant Colony Algorithm 

 
Fig. 4. Path planning of Optimized A-star Ant Colony Algorithm 
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Comparing the changes before and after optimization, it can be seen that 

the optimized algorithm has better global search ability. At the same time, it also 

has good iterative convergence speed. Although our algorithm is not the fastest in 

searching for the shortest path, it achieves faster convergence stability and shorter 

iterations. Meet the expected convergence requirements, as shown in Fig. 7. 

 
Fig. 5. Elitist Ant Colony System convergence curve 

 
Fig. 6. Adaptive Ant Colony Algorithm convergence curve 

 
Fig. 7. Optimized A-star Ant Colony Algorithm convergence curve 
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Fig. 8 validates the optimised ant colony algorithm in a raster grid. This 

ant colony algorithm identifies multiple key target points in the global path that 

are typically identified at the edges of obstacles. The optimised DWA algorithm 

uses multi-sensor techniques for path planning of key target points and avoids 

obstacle points that are different from the static environment. The optimised ant 

colony algorithm plans the motion trajectory and the optimised DWA algorithm 

performs dynamic obstacle avoidance with home accuracy. Finally, the paths are 

smoother and do not get stuck in a deadlocked state compared to the single 

algorithm of the past. 

 
Fig. 8. Integration of dynamic path planning 

Compared to the usual choice of waiting when encountering dynamic 

obstacles in the past, ours uses its own speed and the speed of the dynamic 

obstacle to determine whether to maintain speed, slow down slightly, or wait. 

When obstacles moving in the environment are detected, the robot slows down 

slightly and sets a dynamic obstacle motion model through radar and ultrasonic 

sensors. Traditional service robots use deceleration to avoid dynamic obstacles, 

which often leads to path planning errors and wastes a lot of time, as shown in 

Fig. 9. We validated the optimized ant colony algorithm combined with DWA. 

The service robot detects the security of the path ahead in real-time through its 

own speed model. And based on the robot's motion model and dynamic obstacles, 

determine whether the robot's motion strategy is to maintain normal speed or slow 

down and wait. Here, the robot determines that if it maintains normal speed, the 

two dynamic obstacles ahead will not collide with it, so it will maintain normal 

speed through the dynamic obstacles instead of choosing to slow down and wait, 

as shown in Fig. 10. Compared with previous dynamic obstacle avoidance 

algorithms, our algorithm has smoother speed changes and can reach the target 

point faster. The speed comparison is shown in Fig. 11. 
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Fig. 9. Compare ant colony algorithm planning path before and after optimization 

  
Fig. 10. Verification of dynamic obstacle avoidance strategy 

 
Fig. 11. Comparison of dynamic obstacle avoidance speed changes 

The service robot detects obstacles in front of it at each moment and 

compares the speed change of obstacles by radar and ultrasonic sensors, the 

detection area is a sector in front of the path, and when a moving obstacle is 

detected, the robot decelerates slightly waiting for the action policy to be issued. 

Here the detected speed of the moving obstacle has no effect on the robot, then the 
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robot will keep moving at normal speed and avoid the obstacle. The robot 

decelerates every time it encounters the corner of a static obstacle and a dynamic 

obstacle, and the speed change is shown in Fig. 12. 

  

Fig. 12. ROS environment simulation 

In the past, the same path planning strategy was used for areas with 
different complexities, using an elite ant colony system for path planning. There 
are more transformations, longer paths, and more iterations, as shown in Fig. 13. 
Although the number of iterations using adaptive ant colony algorithm is 
relatively reduced, it still requires a lot of computational time for areas with lower 
complexity, as shown in Fig. 14. We divide the global map into high complexity 
and low complexity regions based on the relative Hemming distance map 
complexity measure and mark the high complexity warehouse area with boxes. In 
this paper, we use the optimized ant colony DWA algorithm for path planning, 
which has better global search ability and faster and stable dynamic obstacle 
avoidance function.  

 
Fig. 13. Path planning of Elitist Ant Colony Systems 
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The service robot leaves the warehouse and uses an optimized A-star algorithm 

for global path planning in areas with low complexity, saving computational time 

and enabling real-time dynamic obstacle avoidance. Smooth path planning and 

more stable operation. The optimized A-star ant colony algorithm simulation is 

shown in Fig. 15. 

 
Fig. 14. Path planning of Adaptive Ant Colony algorithm 

 

 
Fig. 15. Path planning of A-star Ant Colony Algorithm 

 

This article conducted 30 experiments in the same environment and 

recorded the optimal path length, average path length, average number of 

iterations, average path planning time, and number of corners, as shown in Table 

2. 
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Table 2 

Experimental results of four indicators 

parameter 
Optimal path 

length 

Average path 

length 

Average 

number of 

iterations 

Average 

number of 

turns 

Elitist Ant System（

EAS） 

76.3 79.7 260 24 

Adaptive Ant Colony 

Algorithm（AACO） 

72.2 75.6 225 20 

Optimized A-star Ant 

Colony Algorithm 

71.6 74.5 150 16 

7. Conclusion 

Past A-star ant colony algorithms were slow to converge, lacked global 

search capability in the pre-iteration phase, and could not perform dynamic 

obstacle avoidance. In addition, the previous separate DWA algorithm cannot 

achieve optimal path planning and reliable dynamic obstacle avoidance. 

Therefore, an optimized A-star ant colony algorithm based on the environmental 

complexity index is proposed, which plans the path of the environment with 

different complexity levels and adds the dynamic obstacle motion model 

prediction to achieve a more effective obstacle avoidance strategy. The algorithm 

firstly divides regions by environmental complexity metric and combines the 

optimized A-star ant colony algorithm and the optimized DWA algorithm, which 

reduces the turning points in global path planning, shortens the running time, and 

can effectively perform dynamic obstacle avoidance. In this paper, the algorithms 

before and after optimization are compared and analyzed by simulating 

environments with different complexity and dynamic obstacles. Compared with 

the previous A-star ant colony algorithm, this algorithm has wider global path 

search range, faster convergence speed, shorter total path planning length, and is 

suitable for environments of different complexity. In the dynamic obstacle 

environment, the path is more stable and has faster and more reliable obstacle 

avoidance ability. 
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