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STABILIZATION OF A TWO-WHEELED INVERTED 
PENDULUM ROBOT 

Mihai Valentin PREDOI1*,  Sergiu STRĂTILĂ2, Catalina-Ilinca DAN3,                                   
Roxana-Alexandra PETRE4, Daniel-Eugeniu CRUNȚEANU5 

In recent years, the interest in sending exploration robots on other planets, 
satellites or smaller celestial bodies, has increased considerably. While the now 
classical configuration with six wheels remains as primary option for such missions, 
we investigate in the present paper a simpler exploration robot, moving on only two 
wheels. The advantages of higher mobility in narrow spaces and lower mass come 
with an inconvenience: the stability of such a robot. In the present paper is 
investigated the stability problem of such a robot.     
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1. Introduction 

Nowadays, mobile robots are becoming a common presence, even in space 
missions. They are used for various tasks, such as exploration, object manipulation, 
search and rescue in hard-to-reach human-accessible spaces, and entertainment, 
especially among young people. Legged robots have more degrees of freedom than 
other types of robots, making them more challenging to design and control, even 
though they can overcome some obstacles. 

Wheeled robots require less dynamics and energy than legged robots to establish 
contact with the ground and provide propulsion, given their direct contact with it 
[1]. They also have a simpler mechanical structure, which allows for significant 
size reduction and higher energy efficiency. 
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Due to their advantages, such as the ability to make zero-radius turns and agility 
in tight and crowded spaces, the two-wheeled inverted pendulum (TWIP) robot has 
become a significant research subject in recent decades [2]. In recent years, an 
TWIP robot has become an attractive option for urban patrols or daily commuting, 
such as Segways, due to the increasing severity of urban traffic congestion. By 
improving their mobility and requiring less space, TWIP robots, like Anybots QB 
[3], can also be selected as service robot platforms. An TWIP robot can be used as 
a learning tool or as a research object for various experiments that can help future 
space missions, given that it represents an underactuated and nonlinear system [2]. 

Being underactuated, the robot has more degrees of freedom than control inputs. 
Dynamics can be greatly simplified by having robots with at least three wheels, 
which allows for static stability. A four-wheel design is also widespread; this is 
particularly noticeable in vehicles, as the larger support plane improves stability at 
high speeds [1]. However, when there are more than three wheels, the mechanism 
becomes too restricted, and except for flat terrain, a suspension system is necessary. 
Therefore, the statically unstable type of two-wheeled robots is the subject of this 
research. Due to their two coaxial wheels positioned on each side of an intermediate 
body and their center of mass being above the wheel axles, these robots are at risk 
of toppling over and therefore need to be actively stabilized [4]. 

Two-wheeled robots are still much easier to maneuver than legged ones, even 
though they pose a greater operational challenge than statically stable wheeled 
robots. Due to their wheel arrangement, which allows them to make quick turns like 
differential drive robots, they are extremely maneuverable [5], [1]. Their ability to 
spin on the spot compensates for their unstable nature. Through active stabilization, 
even a robot with a larger center of mass can compensate for any disturbances that 
could otherwise cause a statically stable robot to topple over. Due to their ability to 
navigate tight spaces and short hallways, two-wheeled robots can be taller and have 
a smaller footprint, making them ideal for indoor environments. 

The manuscript is organized as follows: from the classical inverted Kapitsa 
pendulum studied in paragraph 2, to which we replace the controlled vertical 
displacement of the hinge by a controlled force, we investigate the inverted 
pendulum with horizontal motion of the hinge which is acted by a harmonic force, 
and we deduce the stability domains in paragraph 3. In paragraph 4 is investigated 
the two-wheels robot which is acted by controlled motor torques. The Proportional-
Differential- Integral (PID) controller is described, and the practical obtained results 
are presented in the 5-th paragraph. All mechanical models are followed by 
numerical examples using Partial-Differential-Equations (PDE) solvers applied to 
our systems of PDE.  

One objective of this study on two-wheeled robots is their motion in 
environments with obstacles, where robots need to accomplish additional actions.  
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2. The inverted pendulum stabilized by forced vertical motion 

An inverted mathematical pendulum made of a material point of mass m at 
the end of a mass-less rod, stabilized by a harmonic vertical motion of the hinge 
was first investigated by P.L Kapitsa [6]. Many researchers developed this problem, 
e.g. refs. [7], [8], [9]. 

In this paragraph is studied an inverted physical pendulum, which is made of 
a rigid rod of mass m and length l, having the pivot joint moving along the vertical 
direction. The rod is hinged to a slider on mass M, which is moved by an applied 
vertical force F(t) (Fig. 1). This is a generalization of the classical Kapitsa 
pendulum, with forces acting the slider instead of imposed displacements.  
 

Fig. 1. The inverted pendulum with vertical hinge motion. O0x0y0 is a fixed frame, Oxy is a 
moving frame  

Using as generalized parameters the position y(t) of the hinge and the angle θ(t) of 
the rod with the vertical direction, the kinetic energy of the mechanical system is: 

 ( )
2

2 21 sin
2 6 2

ml mT m M y lyθ θ θ= + + −    . (1) 

The generalized forces associated to the selected parameters are :  
 ( ) ( ) ; sin

2y
lQ F t m M g Q mgθ θ= − + =   (2) 

The Lagrange equations [10] for this mechanical system can be written: 
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0
g
l

ω = , the angular frequency of the equivalent simple pendulum. With these 

notations, the first of eq. (3) becomes : 
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  
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Considering small angles θ, the usual approximation sinθ θ  holds and the 
previous equation takes the form of a classical Kapitsa pendulum differential 
equation [11]: 

 
2

2
0 21 sin 0e p pt

l
θ ω θ

ω

 
− − = 

 
 .  (5) 

Clearly, one condition for stability applies to the hinge motion: 2 2ep lω> .  
In the following are used the differential equations (3), which are considering an 

applied force ( ) 0 sinF t F pt= moving the system and not an imposed displacement, 
taking into account the mass M of the slider. The nonlinear differential equations 
are numerically integrated using the ode45 function of Matlab [12] for the following 
numerical values: M = 0.3 kg , m=0.3 kg, l=0.12 m and a harmonic vertical force 

0 sinF F pt= with F0 ∈ [0.2 5] N and p = 2πf, in which the forced motion frequency 
is in the range f = 0.25 – 5 Hz. The initial conditions used for the numerical 
integration are: ( ) ( ) ( ) ( )0 1 0.0175 ; 0 0 ; 0 0 ; 0 0rad rad s x m x m sθ θ= ° = = = =  . 

The numerical solutions shown on  Fig. 2 represent an unstable motion F0=2N, 
f= 1Hz (a) and a stabilized motion for F0=2N, f= 2Hz (b). Since the mechanical 
system has no damping, the motion cannot be asymptotically stable. Consequently, 
the system is considered stable if it corresponds to a quasi-stationary motion during 
the integration lapse of time.   

 
 Fig. 2 The angular displacement for an inverted pendulum with F0=2N: unstable for f=1Hz (a) and 

stable for f = 2Hz (b)  
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  It is interesting to note that the spectral analysis of the signal in  Fig. 2b includes 
peaks at 0.4 Hz, 1.6 Hz and 2.4 Hz which indicates a sort of beat phenomenon 
around f=2 Hz. The dependency of the stability, considered as oscillations with 
bounded limits, on the set of parameters (f, F0) is shown on Fig. 3 for two initial 
angles θ0 =1° and 5°. The stability boundary is a smooth curve and the stability sets 
are marked by dots, showing a weak influence of the initial angle. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Stability domain (dots) in the frequency-force analysis: initial angle θ0 =1° (a); θ0 =5° (b)  

The stability problem for the horizontal motion of the slider will be studied in the 
next paragraph. 
 

3. The inverted pendulum stabilized by forced horizontal motion 

The inverted pendulum with horizontal motion of the hinge was less studied, and 
only a few references can be found, among which it is mentioned ref. [13].  
 
 
 
 
 
 
 
 
 
 
Fig. 4. The inverted pendulum with horizontal hinge forced motion. O0x0y0 is a fixed frame, Oxy 

is a moving frame. 
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For the mechanical system shown on Fig. 4 in which the mechanical parameters 
are the same as in the previous paragraph, the kinetic energy is: 

 ( )
2

2 21 cos
2 6 2

ml mT m M x lxθ θ θ= + + +   .  (6) 

The generalized forces associated to the selected parameters are :  
 ( ) ; sin

2x
lQ F t Q mgθ θ= = ,  (7) 

in which ( ) 0 sinF t F pt= , with F0 [N] the amplitude of the harmonic stabilizing 
force and p [rad/s] its angular frequency. The Lagrange equations [10] deduced for 
this mechanical system can be written as: 
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  (8) 

We keep the nonlinear terms in the system and the temporal solution is obtained 
by numerical integration using the ode45 function in Matlab [12].  

As a numerical example, the same parameters were taken:  M = 0.3 kg , m=0.3 
kg, l=0.12 m and a harmonic horizontal force 0 sinF F pt= with F0 = 0.2 … 5 N 
and p = 2πf, in which the forced motion frequency is in the range f = 0.01 – 0.5 Hz. 
The initial conditions used for the numerical integration are: 
( ) ( ) ( ) ( )0 1 0.0175 ; 0 0 ; 0 0 ; 0 0rad rad s x m x m sθ θ= ° = = = =  . 
For the particular case F0 =2N and frequency f1 = 0.05 Hz, a stabilized motion 

was obtained, as shown on Fig. 5a. On the contrary, for F0 =2N and f2=0.15 Hz, the 
motion becomes unstable (Fig. 5b). 

 
Fig. 5 Pendulum angle evolution in time: stable motion (a), unstable motion (b) 
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a dot for each pair (F0, f). It can be remarked that the system can be stabilized by 
small forces over a wider range of frequencies. As the amplitude of the force 
increases, the instability domain (without dots) widens, but not in a regular manner: 
the instability boundary a rugged curve. Moreover, the influence of the initial θ 
angle from 1° in Fig. 6a increased to 5° in Fig. 6b, is not important, the widening 
of the instability domain is limited.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Stability domain (dotted) in the frequency-force analysis: initial θ angle 1°(a) and 5°(b). 

One important remark concerns the spectral analysis of the stabilized signals. For 
the motion shown on Fig. 5a there are two dominant frequencies: f = 0.05 Hz and 
fp = 0.12 Hz. The first one is the excitation frequency, which is expected. However, 
the second frequency fp, is an interesting result since this mechanical system has as 
natural frequency fn=2.23 Hz for the free oscillations, which do not correspond to 
the identified frequency fp.  

4. The two-wheeled robot with active control 

In the previous two paragraphs, was studied the stability of mechanical structures 
exhibiting inverted physical pendulums. However, this is a passive stabilization, 
requiring a permanent oscillatory acting force, which implies a large energy 
consumption. In view of space robots applications, a structure with two wheels and 
the robot body like an inverted physical pendulum is an interesting option. It 
requires less space for maneuvers and less energy consumption if the stability is 
actively controlled, acting only when possible loss of balance is detected.  

The two-wheeled robot can be associated with more or less simplified models. 
We consider the 2-DOF model shown on Fig. 7: Two identical wheels (radius r and 
mass m) can roll without sliding on the horizontal surface Ox0, with sliding 
coefficient µ and rolling friction coefficient s, under the action of two identical 
motors, each giving a torque Mm. The robot body is defined by its weight Mg, 
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applied at the mass center OC = d and its mechanical moment of inertia about the 
central axis Oz: JC. 

The positional parameters are the position x(t) of the wheels centers, relative to 
the fixed frame (O0x0y0) and the pitch angle θ(t) of the robot’s body, relative to the 
vertical direction (O0y0). 

 
Fig. 7. The two-wheeled robot in perspective drawing (a) and the mechanical model (b). O0x0y0 is 
a fixed frame, Oxy is a moving frame. The motor moment Mm is in a control loop with an inertial 

measurement unit (IMU) and a microcontroller ATmega328.  

It is assumed that the wheels are rolling without sliding, so that the wheels 
rotations φ(t) are linked to the displacements of their centers: ( ) ( )x t r tϕ= . The 
kinetic energy of the robot is: 

 ( )2 2 23 1cos
2 2 C

M mT x Mx d Md Jθ θ θ+
= + + +     (9) 
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It has been included, using the principle of d’Alembert, the influence of robot pitch 
motion on the normal reaction. However, for the slow motions around equilibrium 
positions, this term can be neglected. Consequently: 
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The Lagrange equations for this model of robot become: 

 ( ) ( ) ( ) ( )
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This system of nonlinear differential equations was integrated using an algorithm 
written in MATLAB. The two electric motors with reduction gears have a linear 
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characteristic torque-angular velocity as: 0 max
max

1m
x xM M
r rω

   = −  
   

   in which Mmax 

= 0.438 Nm and ωmax=36.65 rad/s, taken as numerical examples from the existing 
robot investigated in the following.  

The robot is controlled by a proportional-differential (PD) control loop. The 
information andθ θ  are provided by an inertial measurement unit (IMU) fixed to 
the robot chassis. These information are used by microcontroller ATmega328 on 
which was programmed the code which controls the voltage applied to the two 
motors, providing the corresponding torque Mm: 

 ( ) ( )0m m p d
xM M k t k t
r

θ θ   = +    

  .  (12) 

The two constants of the PD controller are determined by successive tests, since 
the available torque already depends on the instantaneous angular velocity of the 
wheels. The mechanical properties of the robot are similar to those used in the 
previous paragraphs. A sliding friction coefficient µ>0.1 is sufficient to provide 
rolling without sliding for both wheels. For the existing robot, the constructive data 
are summarized in Table 1. 

Table 1 
Robot constructive data 

Wheels radius (mm) Wheel mass (g) Chassy mass (kg) 
25 80 0.445 

  
We determined using the CAD model shown on Fig. 7a the central moment of 

inertia about an axis parallel to the wheel’s axis: JC = 0.0041 kg.m2 and we used an 
estimated rolling friction coefficient s=0.5 mm. The initial conditions are: θ(0) = 
5°; ( )0 0θ = ; x = 0; 0x = . 

 
Fig. 8 Robot’s inclination as function of time, for two values of kp.  
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The following numerical tests were the most suggestive, for a simulation time of 
3s. Using kp=0.5 Nm/rad; kd=0.001 Nms/rad was obtained the dependency shown 
on Fig. 8a. 

Doubling the proportionality constant to kp=1 Nm/rad produces the plot in Fig. 
8b which indicates an increased frequency of oscillation of the robot, but the final 
values remains relatively constant. 

The differential constant kd was changed to kd=0.01 Nms/rad for the same kp 
values and the results are shown on Fig. 9. The strong damping effect of kd is 
apparent. It can be considered that practically after 2s the robot is stabilized, which 
is an acceptable duration. 

Moreover, the influence of kp can be seen on the asymptotic value of the 
inclination, which is decreasing form 0.3° to 0.1°. It can be considered that as a 
minimal requirement  kp=1 Nm/rad and kd=0.01 Nms/rad, are providing acceptable 
results. Certainly, higher values can get the final value of the inclination closer to 
zero and much faster.  

 
Fig. 9 Robot’s inclination as function of time, for two values of kd.  

Fig. 10 Simulation of the accepted robot inclination vs. time 
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For example on Fig. 10 is shown the obtained θ(t) for kp=2 Nm/rad and kd=0.05 
Nms/rad, which is the selected set of parameters implemented on the physical robot. 
 

5. Conclusions 

The possible use of two wheeled robots for space exploration has the 
advantage of less space for maneuvers and less energy consumption if the stability 
is actively controlled. In this work was investigated the inverted physical pendulum 
with vertical and horizontal forced motion of the slider on which is hinged the body 
of the robot. The Lagrange equations for these cases were deduced and numerical 
examples were provided. Stability domains are determined for sets frequency-force 
for both the vertical and horizontal harmonic forced motions.  

However, rendering stable an inverted pendulum -like robot is not energy 
efficient and we have developed a mechanical model for a robot stabilized by a 
control loop.  

In the case of a two-wheeled robot with controlled torque applied to the 
wheels, were deduced the nonlinear differential equations of motion. The PD 
controller was introduced in the numerical simulation and several examples were 
investigated. We have shown that the frequency of oscillation of the motor increases 
with increasing kp and the damping of oscillations is increasing with increasing kd. 
For practical reasons, were selected for the real robot, higher values for kp and kd 
which produce a strong damping (final value of the inclination is close to zero and 
is reached after 0.6s).  

The investigated case of a TWIP robot opens the perspective of further 
studies for the controlled forward-backward motions and for rotations around the 
vertical axis. 
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