

GRAPHS OF ORDER n WITH FAULT-TOLERANT PARTITION DIMENSION $n - 1$

Imran Javaid¹, Muhammad Salman², Muhammad Anwar Chaudhry³

This paper gives the characterization of all the connected graphs G of order $n \geq 8$ having fault-tolerant partition dimension $n - 1$.

Keywords: resolving partition, fault-tolerant resolving partition, fault-tolerant partition dimension, diameter.

MSC2010: 05C12.

1. Introduction

The *distance* $d(u, v)$ between two vertices u and v in a connected graph G with vertex set $V(G)$ and edge set $E(G)$ is the minimum number of edges in a $u - v$ path. For a vertex v in G , the *eccentricity* $ecc(v)$ is the maximum distance between v and any other vertex of G . The *diameter* of G , denoted by \mathcal{D} , is the maximum eccentricity of a vertex v in G . Two vertices u and v in G are called the *diametral vertices* if $d(u, v) = \mathcal{D}$. If two vertices u and v are adjacent (form an edge) in G , then we write as $u \sim v$ and if they are non-adjacent (do not form an edge), then we write as $u \not\sim v$. We refer [1] for the general graph theoretic notations and terminology not described in this paper.

Given an ordered set W “related to $\{w_1, w_2, \dots, w_k\} \subseteq V(G)$ ”. For each $v \in V(G)$, the *representation* of v with respect to W is the k -vector $(d(v, w_1), d(v, w_2), \dots, d(v, w_k))$, denoted by $r(v|W)$. The set W is called a *resolving set* for G if all the vertices of G have distinct representations with respect to W . The minimum cardinality of a resolving set for G is called the *metric dimension* of G , denoted by $dim(G)$.

The metric dimension was first studied by Slater [2] and independently by Harary and Melter [3]. Slater described the usefulness of this notion when working with U.S. Sonar and Coast Guard Loran (Long range aids to navigation) stations. It was noted in [4] and an explicit construction was given in [5] showing that finding the metric dimension of a graph is NP-hard. For more results about the notion of metric dimension and its applications, we refer to a nice survey by Saenpholphat and Zhang [6] (see also [7, 8, 9, 10, 11, 12]).

¹ Corresponding author: Center for Advanced Studies in Pure and Applied Mathematical, Bahauddin Zakariya University Multan 60800, Pakistan, E-mail:ijavaidbzu@gmail.com

²Center for Advanced Studies in Pure and Applied Mathematical, Bahauddin Zakariya University Multan 60800, Pakistan

³Center for Advanced Studies in Pure and Applied Mathematical, Bahauddin Zakariya University Multan 60800, Pakistan

Possibly to gain insight into the metric dimension, Chartrand *et al.* introduced the notion of a resolving partition and partition dimension [13, 14]. To define the partition dimension, the distance $d(v, S)$ between a vertex v of G and $S \subseteq V(G)$ is defined as $\min_{s \in S} d(v, s)$. Let Π be an ordered k -partition “related to $\{S_1, S_2, \dots, S_k\}$ ” of $V(G)$ and v be a vertex of G , then the k -vector $(d(v, S_1), d(v, S_2), \dots, d(v, S_k))$ is called the *representation* $r(v|\Pi)$ of v with respect to the partition Π . A partition Π is called a *resolving partition* if for distinct vertices u and v of G , $r(u|\Pi) \neq r(v|\Pi)$. The *partition dimension* of G is the cardinality of a minimum resolving partition, denoted by $pd(G)$.

Based on the Chartrand et al. method of vertex-partitioning, Javaid et al. [15] partitioned the vertex set of a connected graph G into classes in such a way that any two distinct vertices in G have different distances from at least two classes of the partition. They referred this partition as a fault-tolerant resolving partition of $V(G)$, defined as follows: Let Π be an ordered k -partition “related to $\{U_1, U_2, \dots, U_k\}$ ” of $V(G)$, then Π is called a *fault-tolerant resolving partition* if for every pair of distinct vertices v, w in G , the representations $r(v|\Pi)$ and $r(w|\Pi)$ differ by at least two coordinates. The cardinality of a minimum fault-tolerant resolving partition is called the *fault-tolerant partition dimension* of G , denoted by $\mathcal{P}(G)$.

We say that a class S *distinguishes* the vertices x and y of G if $d(x, S) \neq d(y, S)$. A partition Π distinguishes x and y if a class of Π distinguishes x and y . From these definitions, it can be observed that the property of a given partition Π of a graph G to be a fault-tolerant resolving partition of G can be verified by investigating that every pair of vertices in the same class is separated by at least two classes of Π . That is, for two classes U_i and U_j ($i \neq j$) of a partition Π , $d(x, U_i) \neq d(y, U_i)$ and $d(x, U_j) \neq d(y, U_j)$ for all $x, y \in U_k$, $k \neq i, j$.

A useful property for finding the fault-tolerant partition dimension of a connected graph G is Lemma 3.1 placed in Annex-I.

The join of two graphs G_1 and G_2 , denoted by $G_1 + G_2$, is a graph with vertex set $V(G_1) \cup V(G_2)$ and an edge set $E(G_1) \cup E(G_2) \cup \{uv \mid u \in V(G_1) \text{ and } v \in V(G_2)\}$.

This paper is aim to characterize all the connected graphs G of order $n \geq 8$ having fault-tolerant partition dimension $n - 1$. In the next section, we list all the connected graphs having fault-tolerant partition dimension one less than the order of the graph and prove that these are the only graphs having this property.

2. Classification of graphs of order n with fault-tolerant partition dimension $n - 1$

The graph $G - e$ is a subgraph of G and can be obtained by deleting an edge e from G . The following is the list of graphs of order n having fault-tolerant partition dimension $n - 1$. It is worth mentioning that, in the list of graphs below, the graphs K with single subscript represent the complete graphs; and the graphs K with two subscripts separated by comma represent the complete bipartite graphs.

$G_1 := K_{1,n-1}$; $G_2 := K_1 + (K_1 \cup K_{n-2})$; $G_3 := K_n - E(P_3)$; $G_4 := K_n - E(P_4)$; $G_5 := K_n - E(K_3)$; $G_6 := K_{1,n-1} + e$; $G_7 := K_n - E(2K_2)$; $G_8 := K_n - E(3K_2)$; $G_9 := K_{n-1} - e$ and another vertex adjacent to end vertices of e ;

$G_{10} := K_{n-1}$ and a vertex adjacent to two vertices of K_{n-1} ;

$G_{11} := \overline{K_2} + K_{n-3}$ with one edge deleted between $\overline{K_2}$ and K_{n-3} and a vertex adjacent

to the vertices of $\overline{K_2}$;

$G_{12} :=$ The same construction as G_{11} with K_2 instead of $\overline{K_2}$;

$G_{13} := K_{n-1} - e$ and a vertex adjacent to two vertices of K_{n-1} , one of them being an end vertex of e ; and the following four families of graphs:

$$\mathcal{G}_1 := \{K_n - E(K_{1,p} + e), \text{ where } 3 \leq p \leq n - 2\},$$

$$\mathcal{G}_2 := \{K_n - E(K_{1,p} \text{ and a path } P_3 \text{ having one edge in common with } K_{1,p}), \text{ where } 3 \leq p \leq n - 3\},$$

$$\mathcal{G}_3 := \{K_{n-1} - e \text{ and a vertex adjacent to } p \text{ vertices of } K_{n-1}, \text{ where } 2 \leq p \leq n - 3\},$$

$$\mathcal{G}_4 := \{K_n - E(K_{1,p}), \text{ where } 2 \leq p \leq n - 3\}.$$

Figure 1, shown in Annex-II, illustrates one graph of each family mentioned above for $n = 8$ and $p = 3$.

We also list 7 graphs of order n with the fault-tolerant partition dimension $n - 2$ which will appear in the proofs of our lemmas.

$$H_1 := K_2 + \overline{K_{n-3}} \text{ and a vertex adjacent to the vertices of } \overline{K_{n-3}};$$

$$H_2 := K_{n-2} \text{ and a path } P_4 \text{ joining two vertices of } K_{n-2};$$

$$H_3 := K_{n-2} \text{ and a cycle } C_3 \text{ having a common vertex};$$

$$H_4 := K_{n-2} \text{ and a path } P_3 \text{ having in common the central vertex of } P_3;$$

$$H_5 := K_{n-2} \text{ and a path } P_3 \text{ having an end vertex common with } K_{n-2};$$

$$H_6 := K_{1,n-1} \text{ and a vertex adjacent to a diametral vertex of the star } K_{1,n-1};$$

$$H_7 := K_{n-2} \text{ and a path } P_4 \text{ having the central edge in common with } K_{n-2}.$$

The relationship between the fault-tolerant partition dimension and the diameter of a connected graph was obtained by Javaid *et al.* in [8] (see Theorem 3.1 in Annex-I). Following is a consequence of Theorem 3.1, cited in Annex-I, will help in proof of next lemmas.

Corollary 2.1. *Let G be a connected graph of order n with $\mathcal{P}(G) = n - 1$. Then diameter of G is at most three.*

The connected graphs having fault-tolerant partition dimension equal to the order of the graph have been characterized by Javaid *et al* (see Theorem 3.3 in Annex-I). Now, we show that the graphs listed above are the only graphs with fault-tolerant partition dimension $n - 1$.

Let u be a diametral vertex in G with eccentricity 2. Denote

$$V_i(u) = \{v : v \in V(G), d(u, v) = i\} \text{ for } i = 1, 2.$$

Then $u \sim u'$ for each $u' \in V_1(u)$ and for each $w \in V_2(u)$, $w \sim w'$ for at least one $w' \in V_1(u)$. Now, we prove several lemmas which will help to prove our main result Theorem 2.1.

Lemma 2.1. *Let G be a connected graph of order $n \geq 8$ with $\mathcal{P}(G) = n - 1$ and diameter $\mathcal{D} = 2$. If $\min(|V_1(u)|, |V_2(u)|) \geq 3$, then G belongs to \mathcal{G}_1 , or \mathcal{G}_3 , or \mathcal{G}_4 .*

Proof. With out loss of generality, we suppose that $3 \leq r = |V_1(u)| \leq |V_2(u)| = s = n - r - 1$. Since $n \geq 8$ and $r \geq 3$, if there are three distinct vertices x, y, z in $V_1(u)$ (or in $V_2(u)$) such that $x \sim y$ and $x \not\sim z, y \not\sim z$ in G , then for two distinct vertices a, b in $V_2(u)$ (or in $V_1(u)$), $(u)(z)(a, x)(b, y)\pi$ is a fault-tolerant resolving partition of $V(G)$ having $n - 2$ classes, where π denotes a partition of $V(G) \setminus \{u, a, b, x, y, z\}$

having all the classes consisting a single vertex (which will be called a singleton sets partition). We deduce that $\mathcal{P}(G) \leq n - 2$, a contradiction. It follows that $V_1(u)$ and $V_2(u)$ induces K_r and K_s , or $K_r - e$ and $K_s - e$, or $\overline{K_r}$ and $\overline{K_s}$, respectively. In the case when $V_1(u)$ induces $\overline{K_r}$ and $V_2(u)$ induces $\overline{K_s}$, we can chose distinct vertices $u_1, v_1 \in V_1(u)$ and $u_2, v_2 \in V_2(u)$ such that $(u)(u_1, u_2)(v_1, v_2)\pi$ is a fault-tolerant resolving partition of $V(G)$ having $n - 2$ classes, where π is a singleton sets partition of the remaining vertices, a contradiction. Now, we discuss the following two case: $V_1(u)$ induces K_r and $V_2(u)$ induces K_s or $K_s - e$ (case 1), $V_1(u)$ induces $K_r - e$ and $V_2(u)$ induces K_s or $K_s - e$ (case 2).

Case 1. If there are distinct vertices $x, y \in V_1(u)$ and $a, b \in V_2(u)$ such that $a \not\sim x$ and $b \not\sim y$ in G , then for a vertex $z \in V_1(u) \setminus \{x, y\}$, $(a)(b)(u, z)(x, y)\pi$ is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, where π is a singleton sets partition of the remaining vertices, a contradiction. We deduce that $V_1(u) \cup V_2(u)$ induces $K_r + K_s$ (subcase 1.1) or $(K_r + K_s) - e$ (subcase 1.2) or $K_r + (K_s - e)$ (subcase 1.3) or $(K_r + (K_s - e)) - e$ (subcase 1.4).

Subcase 1.1. In this case, $G \in \mathcal{G}_4$.

Subcase 1.2. In this case, $G \in \mathcal{G}_3$.

Subcase 1.3. In this case, $G \in \mathcal{G}_1$.

Subcase 1.4. Let $a \not\sim b$ and $c \not\sim x$ in G for $x \in V_1(u)$ and $a, b, c \in V_2(u)$. Then we can chose a vertex $y \in V_1(u) \setminus \{x\}$ and a vertex $d \in V_2(u) \setminus \{a, b, c\}$ such that $(u)(a)(c)(b, y)(x, d)\pi$ is a fault-tolerant resolving partition of $V(G)$ having $n - 2$ classes, where π is a singleton sets partition of the remaining vertices, a contradiction.

Case 2. By the similar arguments as Case 1, $V_1(u) \cup V_2(u)$ induces $(K_r - e) + K_s$ (subcase 2.1) or $((K_r - e) + K_s) - e$ (subcase 2.2) or $(K_r - e) + (K_s - e)$ (subcase 2.3) or $((K_r - e) + (K_s - e)) - e$ (subcase 2.4).

Subcase 2.1. In this case, $G \in \mathcal{G}_3$.

Subcase 2.2. Let $a \not\sim b$ for $a, b \in V_1(u)$ and $c \not\sim x$ for $c \in V_1(u)$, $x \in V_2(u)$. Then

(i) For $c \neq a, b$, $(b)(u, c)(a, x)\pi$ is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, where π is a singleton sets partition of the remaining vertices, a contradiction.

(ii) For $c = a$ or b , $(x)(u, d)(c, y)\pi$, where $d \in V_1(u) \setminus \{a, b, c\}$ and $y \in V_2(u) \setminus \{x\}$, is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, where π is a singleton sets partition of the remaining vertices, a contradiction.

Subcase 2.3. Let $a \not\sim b$ and $x \not\sim y$ in G for $a, b \in V_1(u)$ and $x, y \in V_2(u)$. Then for $c \in V_1(u) \setminus \{a, b\}$, $(a)(x)(u, c)(b, y)\pi$ is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, where π is a singleton sets partition of the remaining vertices, a contradiction.

Subcase 2.4. Let $a \not\sim b$, $x \not\sim y$ and $c \not\sim z$ in G for $a, b, c \in V_1(u)$ and $x, y, z \in V_2(u)$. Then

(i) For $c \neq a, b$ and $z \neq x, y$, $(a)(b)(y)(u, c)(z, x)\pi$ is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, where π is a singleton sets partition of the remaining vertices, a contradiction.

(ii) For $c \neq a, b$ and $z = x$ or y , $(a)(b)(u, c)(z, w)\pi$, where $w \in V_2(u) \setminus \{x, y, z\}$, is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, where π is a singleton sets partition of the remaining vertices, a contradiction.

(iii) For $c = a$ or b and $z \neq x, y$, $(y)(u, c)(z, x)\pi$ is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, where π is a singleton sets partition of the remaining vertices, a contradiction.

(iv) For $c = a$ or b and $z = x$ or y , $(u, d)(c, z)\pi$, where $d \in V_1(u) \setminus \{a, b, c\}$, is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, where π is a singleton sets partition of the remaining vertices, a contradiction.

Lemma 2.2. *Let G be a connected graph of order $n \geq 8$ with $\mathcal{P}(G) = n - 1$ and diameter $\mathcal{D} = 2$. If $\min(|V_1(u)|, |V_2(u)|) \leq 2$, then G belongs to $\mathcal{G} = \{G_1, G_2, \dots, G_{13}\}$, or \mathcal{G}_1 , or \mathcal{G}_2 , or \mathcal{G}_3 , or \mathcal{G}_4 .*

Proof. We shall consider the following cases:

Case 1. $|V_1(u)| = 2, |V_2(u)| = n - 3$,

Case 2. $|V_1(u)| = n - 3, |V_2(u)| = 2$,

Case 3. $|V_1(u)| = 1, |V_2(u)| = n - 2$,

Case 4. $|V_1(u)| = n - 2, |V_2(u)| = 1$.

Case 1. Suppose that $V_1(u) = \{v, w\}$. If $V_2(u)$ contains three distinct vertices x, y, z such that $x \not\sim y$ and $x \sim z$ in G , then the pair $\{y, z\}$ distinguished by x . Since $n \geq 8$, we can find another vertex $u' \in V_2(u)$ such that $(u, u')(y, z)\pi$ is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, where π is a singleton sets partition of the remaining vertices, which contradicts the hypothesis. It follows that $V_2(u)$ induces $\overline{K_{n-3}}$ (subcase 1.1), or K_{n-3} (subcase 1.2).

Subcase 1.1. If one of the vertices of $V_1(u)$, say v , has the property that there exist $x, y \in V_2(u)$ such that $v \not\sim x$ and $v \sim y$ in G , then either $v \sim w$ or $v \not\sim w$ in G , $(x)(u, v)(y, w)\pi$ is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, where π is a singleton sets partition of the remaining vertices, a contradiction. One deduce that v and w are adjacent to all the vertices in $V_2(u)$ or one of them is not adjacent to any vertex of $V_2(u)$. But in the last case, we get $\mathcal{D} = 3$ unless $v \sim w$, which contradicts the hypothesis. If $v \sim w$ in G and for example $v \not\sim v'$ for any vertex $v' \in V_2(u)$, then it follows that $w \sim w'$ for all $w' \in V_2(u)$. In this case $G \cong G_6$. If $v \sim z$ and $w \sim z$ in G for all $z \in V_2(u)$, then

(i) $G \cong K_{2, n-2}$ if $v \not\sim w$ in G , but $\mathcal{P}(G) = n - 2$, by Theorem 3.2, a contradiction.

(ii) $G \cong K_2 + \overline{K_{n-2}}$ if $v \sim w$ in G , but $\mathcal{P}(G) \leq n - 2$, Since there exists a vertex $x \in V_2(u)$ such that $(u, v)(w, x)\pi$ is a fault-tolerant resolving partition of $V(G)$ having $n - 2$ classes, where π is a singleton partition of $V(G) \setminus \{u, v, w, x\}$, a contradiction.

Subcase 1.2. If one of the vertices of $V_1(u)$, say w , has the property that there exist three vertices $x, y, z \in V_2(u)$ such that $w \not\sim x, w \not\sim y$ and $w \sim z$ in G , then either $v \sim w$ or $v \not\sim w$ in G , $(x)(y)(u, z)(v, w)\pi$ is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, where π is a singleton sets partition of the remaining vertices, a contradiction. It follows that if $v \sim c$ or $w \sim c$ for at least one vertex $c \in V_2(u)$, then it is adjacent to at least $n - 4$ vertices in $V_2(u)$. If $v \not\sim w$ one obtains that both v and w adjacent to at least $n - 4$ vertices in $V_2(u)$ since otherwise $\mathcal{D} = 3$. Consider now the case when both v and w are adjacent to at least $n - 4$ vertices in $V_2(u)$. If v and w are adjacent to all $n - 3$ vertices of $V_2(u)$, then $G \cong G_9$ if $v \not\sim w$ and $G \cong G_{10}$ if $v \sim w$. If one of v and w is adjacent to $n - 4$ vertices in $V_2(u)$ and other one is adjacent to all $n - 3$ vertices of $V_2(u)$, then $G \cong G_{11}$ if $v \not\sim w$ in G and $G \cong G_{12}$ if $v \sim w$ in G .

It is not possible that both v and w are adjacent to exactly $n - 4$ vertices of $V_2(u)$. Indeed, if there exist distinct vertices $x, y \in V_2(u)$ such that $v \not\sim x, w \not\sim y$

and both v and w are adjacent to $n - 4$ vertices of $V_2(u)$, then either $v \sim w$ in G or $v \not\sim w$ in G , there exists $z \in V_2(u) \setminus \{x, y\}$ such that $(x)(y)(u, z)(v, w)\pi$ is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, where π is a singleton sets partition of the remaining vertices, a contradiction. Consider now the case when $v \sim w$ in G and $v \not\sim v'$ for each vertex $v' \in V_2(u)$. If $w \sim w'$ for all $w' \in V_2(u)$, then $G \cong H_3$. In this case, there exist distinct vertices $x, y \in V_2(u)$ such that $(u, y)(v, x)\pi$ is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, a contradiction. If $w \not\sim t$ for one vertex $t \in V_2(u)$, then $d(u, t) = 3$ which contradicts the equality $\mathcal{D} = 2$.

Case 2. In this case, let $V_2(u) = \{s, t\}$. If $V_1(u)$ contains three distinct vertices v, w, x such that $v \sim w$ and $v \not\sim x$ in G , then we can find another vertex $y \in V_1(u) \setminus \{v, w, x\}$ such that $(v)(u, y)(w, x)\pi$ is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$ which implies that $\mathcal{P}(G) \leq n - 2$, a contradiction. It follows that $V_1(u)$ induces $\overline{K_{n-3}}$ (subcase 2.1) or K_{n-3} (subcase 2.2).

Subcase 2.1. If $s \not\sim t$ in G , since $\mathcal{D} = 2$ we obtain that $V_1(u) \cup V_2(u)$ induces a subgraph isomorphic to $K_{2,n-3}$. By considering two distinct vertices $x, y \in V_1(u)$, we deduce that $(t)(u, x)(s, y)\pi$ is a fault-tolerant resolving partition of $V(G)$ having $n - 2$ classes, contradiction. It follows that $s \sim t$ in G . Suppose that one of the vertices s, t , say t , has the property that $t \not\sim t_1$ for one vertex $t_1 \in V_1(u)$, but $t \sim t_2$ for at least one vertex t_2 of $V_1(u)$. Then $(t)(s, t_1)(u, t_2)\pi$ is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, a contradiction. Hence $s \sim v$ and $t \sim v$ in G for all $v \in V_1(u)$ and $G \cong H_1$, but $\mathcal{P}(G) \leq n - 2$ in this case. Since we can find two distinct vertices $x, y \in V_1(u)$ such that $(u)(s, x)(y, t)\pi$, where π is a singleton sets partition of $V(G) \setminus \{s, t, u, x, y\}$, is a fault-tolerant resolving partition having $n - 2$ classes, a contradiction.

Subcase 2.2. Both the vertices s and t must adjacent to at least one vertex of $V_1(u)$, otherwise $\mathcal{D} = 3$. If $s \sim y$ and $t \sim y$ in G for all $y \in V_1(u)$, then $G \cong G_3$ if $s \sim t$ in G and $G \cong G_5$ if $s \not\sim t$ in G .

Consider now the case when, for all $v \in V_1(u)$, $v \sim t$ in G . When $s \not\sim t$ and $s \not\sim v_1, s \not\sim v_2, \dots, s \not\sim v_i$ in G for $v_1, v_2, \dots, v_i \in V_1(u)$, where $i \in \{1, 2, \dots, n - 4\}$, then $G \in \mathcal{G}_1$. When $s \sim t$; if $s \not\sim s'$ in G for a single vertex $s' \in V_1(u)$, then $G \cong G_4$, if $s \not\sim v_1, s \not\sim v_2, \dots, s \not\sim v_i$ in G for $v_1, v_2, \dots, v_i \in V_1(u)$, where $i \in \{2, 3, \dots, n - 4\}$, then $G \in \mathcal{G}_2$. For $i = n - 4$, $G \cong G_{13}$. A similar situation occurs when $v \sim s$ for all $v \in V_1(u)$. The remaining subcase is that when both s and t are not adjacent to at least one vertex of $V_1(u)$.

If there exist four distinct vertices $a, b, c, d \in V_1(u)$ such that $a \not\sim s, d \not\sim t$ and $c \sim s, b \sim t$ in G , let $v \in V_1(u) \setminus \{a, b, c, d\}$. If $v \sim s$ or $v \sim t$ in G , then either $s \not\sim t$ or $s \sim t$, $(u)(s, c)(t, b)\pi$ is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, which implies that $c \sim s, b \sim t$ are only edges joining s and t to vertices in $V_1(u)$. In this case, $G \cong H_2$ if $s \sim t$, but $\mathcal{P}(G) \leq n - 2$ since $(u)(c, s)(b, t)\pi$ is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, a contradiction. If $s \not\sim t$ in G , then $d(s, t) = 3$, a contradiction.

If a and d coincide or b and c coincide, then it remains to consider only two subcases: $s \not\sim x$ and $t \not\sim x$ in G for a single vertex $x \in V_1(u)$ (subcase 2.2.1), $s \sim x'$ and $t \sim x'$ for a single vertex $x' \in V_1(u)$ (subcase 2.2.2).

Subcase 2.2.1. Either $s \not\sim t$ or $s \sim t$ (in this case $G \cong K_n - E(C_4)$), there are two distinct vertices $v, w \in V_1(u)$ such that $(u)(x)(s, v)(t, w)\pi$ is a fault-tolerant resolving partition of $V(G)$ having $n - 2$ classes, a contradiction.

Subcase 2.2.2. If $s \sim t \in E(G)$, then $G \cong H_3$ and if $s \not\sim t$, then $G \cong H_4$. In both the cases, $(u, t)(s, x)\pi$ is a fault-tolerant resolving partition of $V(G)$ having $n - 2$ classes, a contradiction.

Case 3. Let $V_1(u) = \{x\}$, it follows that $x \sim x'$ for all $x' \in V_2(u)$. If $V_2(u)$ induces $\overline{K_{n-2}}$ or K_{n-2} , then G is isomorphic to G_1 or G_2 , respectively. Otherwise, there exists a diametral vertex $y \in V_2(u)$ such that $2 \leq |V_1(y)| \leq n - 3$, hence $|V_2(y)| \in \{2, n - 3\}$ and we are again in the Case 1, or in the Case 2, relatively to y .

Case 4. Let $V_2(u) = \{v\}$. If degree of v is one, then v is a diametral vertex and $|V_1(v)| = 1$, hence Case 3 occurs again. Otherwise, let degree of v , $d(v)$, is grater than or equal to two. If there exist six distinct vertices $a, b, c, d, e, f \in V_1(u)$ (since $n \geq 8$) such that $a \not\sim d, b \not\sim e, c \not\sim f$ and $a \sim b, a \sim c, a \sim e, a \sim f, b \sim c, b \sim d, b \sim f, c \sim d, c \sim e, d \sim e, d \sim f, e \sim f$ in G , then $(u)(a, b)(c, v)\pi$ is a fault-tolerant resolving partition of $V(G)$ having $n - 2$ classes, where π is a singleton sets partition of the remaining vertices, a contradiction. It follows that $V_1(u)$ induces $K_{n-2} - e$ (subcase 4.1), or $K_{n-2} - E(2P_2)$ (subcase 4.2), or $\overline{K_{n-2}}$ (subcase 4.3), or K_{n-2} (subcase 4.4).

Subcase 4.1. Since $d(v) \geq 2$, if $v \sim v_1, v \sim v_2, \dots, v \sim v_i$ in G for $v_1, v_2, \dots, v_i \in V_1(u)$, where $i \in \{2, 3, \dots, n - 3\}$, then $G \in \mathcal{G}_3$. For $i = 2$, if $v_1, v_2 \in V_1(u)$ are end vertices of e then $G \cong G_9$ and if v_1 is end vertex of e and v_2 is not, then $G \cong G_{13}$. If $v \sim v'$ for all $v' \in V_1(u)$, then $G \cong G_7$.

Subcase 4.2. Let $a, b, c, d \in V_1(u)$ such that $a \not\sim c$ and $b \not\sim d$ in G . If there exist two distinct vertices $x, y \in V_1(u) \setminus \{a, b, c, d\}$ such that $v \sim a, v \sim y$ but $v \not\sim x$ in G , then $(u)(v)(c)(d)(a, x)(b, y)\pi$ is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, a contradiction. We deduce that $v \sim v'$ for all $v' \in V_1(u)$. In this case $G \cong G_8$.

Subcase 4.3. Since $\mathcal{D} = 2$ it follows that $v \sim v'$ for all $v' \in V_1(u)$ and $G \cong K_{2, n-2}$, but $\mathcal{P}(G) \leq n - 2$ since for every two distinct vertices s, t of $V_1(u)$, $(t, u)(s, v)\pi$ is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, a contradiction.

Subcase 4.4. If $v \not\sim v_1, v \not\sim v_2, \dots, v \not\sim v_i$ in G for $v_1, v_2, \dots, v_i \in V_1(u)$, where $i \in \{1, 2, \dots, n - 4\}$, then $G \in \mathcal{G}_4$. The case for $i = n - 3$ is not occur since $d(v) \geq 2$. If $v \sim v'$ for all $v' \in V_1(u)$, then $G \cong K_n - e$, but $\mathcal{P}(K_n - e) = n$, by Theorem 3.3.

Lemma 2.3. *Let G be a connected graph of order $n \geq 8$ with $\mathcal{P}(G) = n - 1$ and diameter $\mathcal{D} = 3$. Then $G \cong G_2$.*

Proof. Let s be a diametral vertex having $\text{ecc}(s) = 3$. Denote

$$V_i(s) = \{s' : s' \in V(G), d(s', s) = i\} \text{ for } i = 1, 2, 3.$$

Let $t \in V_1(s)$, $u \in V_2(s)$ and $v \in V_3(s)$. If there are $w, x \in V(G) \setminus \{s, t, u, v\}$ belonging to different sets from $V_1(s), V_2(s), V_3(s)$, then $(s)(x)(t, w)(u, v)\pi$ is a fault-tolerant partition of $V(G)$ having $n - 2$ classes, a contradiction. It follows that we can consider only three cases.

Case 1. $|V_1(s)| = |V_2(s)| = 1, |V_3(s)| = n - 3$,

Case 2. $|V_1(s)| = |V_3(s)| = 1, |V_2(s)| = n - 3$,

Case 3. $|V_2(s)| = |V_3(s)| = 1, |V_1(s)| = n - 3$.

Case 1. Suppose that $V_1(s) = \{t\}$, $V_2(s) = \{u\}$, then $u \sim u'$ for all $u' \in V_3(s)$ otherwise, there exists a vertex $v \in V_3(s)$ such that $d(s, v) = 4$, contradiction. If there exist three distinct vertices $x, y, z \in V_3(s)$ such that $x \not\sim y$ and $x \sim z$ in

G , then $(z)(s)(t, x)(u, y)\pi$ is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, a contradiction. Hence $V_3(s)$ induces K_{n-3} or $\overline{K_{n-3}}$. In the first case $G \cong H_5$ but $\mathcal{P}(G) \leq n - 2$ since there is a vertex $v \in V_3(s)$ such that $(s, v)(t, u)\pi$ is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, a contradiction. In the second case $G \cong H_6$ and we get a contradiction by the same argument as previous case.

Case 2. Let $V_1(s) = \{u\}$ and $V_3(s) = \{v\}$ then $u \sim u'$ for all $u' \in V_2(s)$. As above, $V_2(s)$ induces K_{n-3} (subcase 2.1) or $\overline{K_{n-3}}$ (subcase 2.2). $v \sim w$ for at least one vertex $w \in V_2(s)$. If there exist two vertices $x, y \in V_2(s) \setminus \{w\}$ such that $v \not\sim x$ and $v \sim y$ in G , then $(x)(w)(u, s)(v, y)\pi$ is a fault-tolerant resolving partition of $V(G)$ having $n - 2$ classes, a contradiction. It follows that $v \sim v'$ for all $v' \in V_2(s)$ or $v \not\sim v'$ for any vertex in $v' \in V_2(s) \setminus \{w\}$.

Subcase 2.1. If $v \sim v'$ for all $v' \in V_2(s)$, then $G \cong G_2$. Otherwise, $G \cong H_7$ but $\mathcal{P}(G) \leq n - 2$ since for every $t \in V_2(s) \setminus \{w\}$, $(w)(s, t)(u, v)\pi$ is a fault-tolerant resolving $(n - 2)$ -partition of $V(G)$, a contradiction.

Subcase 2.2. If $v \sim v'$ for all $v' \in V_2(s)$, then $G \cong K_{2, n-2} - e$. Otherwise, $G \cong H_6$. In both the cases, $\mathcal{P}(G) \leq n - 2$ since for every $t \in V_2(s) \setminus \{w\}$, $(w)(u, s)(v, t)\pi$ is a fault-tolerant resolving partition of $V(G)$ having $n - 2$ classes, a contradiction.

Case 3. Suppose that $V_2(s) = \{x\}$ and $V_3(s) = \{y\}$. In this case y is a diametral vertex and $|V_1(y)| = 1$. Hence y instead of s we have Cases 1 and 2, which completes the proof.

Now, our main result is the following:

Theorem 2.1. *Let G be a connected graph of order $n \geq 8$. Then $\mathcal{P}(G) = n - 1$ if and only if G belongs to $\mathcal{G} = \{G_1, G_2, \dots, G_{13}\}$, or \mathcal{G}_1 , or \mathcal{G}_2 , or \mathcal{G}_3 , or \mathcal{G}_4 .*

Proof. By using Lemma 3.1, it is a routine exercise to verify that all the graphs enumerated in the statement have the fault-tolerant partition dimension $n - 1$.

Conversely, let G be a connected graph of order $n \geq 8$ having $\mathcal{P}(G) = n - 1$. Then $\mathcal{D} \leq 3$, by Corollary 2.1. When $\mathcal{D} = 1$, then G is isomorphic to the complete graph K_n and $\mathcal{P}(G) = n$, by Theorem 3.3. When $\mathcal{D} = 2, 3$, then Lemmas 2.1, 2.2 and 2.3 conclude the proof.

3. Conclusion

In this paper, we considered the generalization of the fault-tolerant metric dimension “the fault-tolerant partition dimension”. Inspired by the works, done by Chartrand *et al.* in [13, 14] and by Javaid *et al.* in [8], on the characterization of all the connected graphs of order n having partition dimension (the generalization of the metric dimension) $n, n - 1, n - 2$, and the fault-tolerant partition dimension n , we classified all the connected graphs with fault-tolerant partition dimension one less than the order of the graphs.

Acknowledgements

The authors would like to express their deep gratitude to the referee(s) for careful reading of the earlier version of the manuscript and several insightful comments.

Annex-I

Lemma 3.1. [15] Let Π be a fault-tolerant resolving partition of $V(G)$ and $u, v \in V(G)$. If $d(u, w) = d(v, w)$ for all $w \in V(G) \setminus \{u, v\}$, then u and v belong to distinct classes of Π .

Theorem 3.1. [8] Let G be a connected graph of order $n \geq 3$ and diameter \mathcal{D} . Then

$$\eta(n, \mathcal{D}) \leq \mathcal{P}(G) \leq n - \mathcal{D} + 2,$$

where $\eta(n, \mathcal{D})$ is the least positive integer ν for which $n \leq (\mathcal{D} + 1)^\nu$.

Theorem 3.2. [8] If $K_{m,n}$ be the complete bipartite graph for $m, n \geq 1$, then

$$\mathcal{P}(K_{m,n}) = \begin{cases} m + 1 & \text{if } m - n = 0, \\ \max(m, n) + 1 & \text{if } |m - n| = 1, \\ \max(m, n) & \text{if } |m - n| \geq 2. \end{cases}$$

Theorem 3.3. [8] Let G be a connected graph of order n . Then $\mathcal{P}(G) = n$ if and only if G is one of the graphs K_n and $K_n - e$.

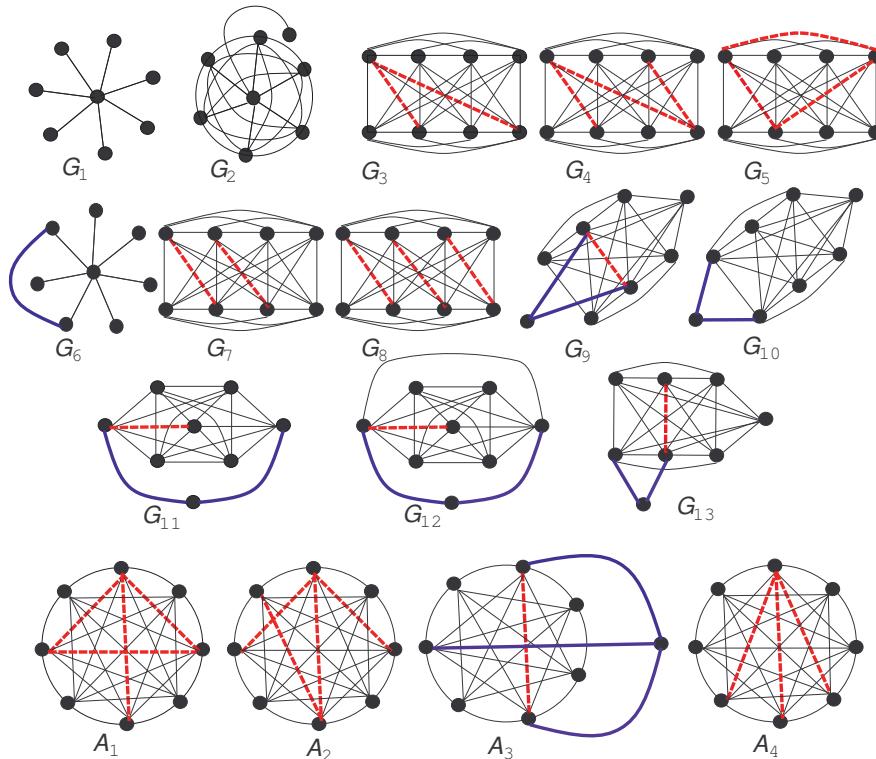
Annex-II

FIGURE 1. Illustration of the graphs for $n = 8$. $A_i \in \mathcal{G}_i$ for $i = 1, 2, 3, 4$ and $p = 3, n = 8$. Deleted edges colored by red (dotted edges) and new edges colored by blue (thick edges).

REFERENCES

- [1] G. Chartrand and L. Lesniak, Graphs and Digraphs, 3rd ed., *Chapman and Hall, London*, 1996.
- [2] P. J. Slater, Leaves of trees, *Congr. Numer.* 14(1975) 549-559.
- [3] F. Harary and R. A. Melter, On the metric dimension of a graph, *Ars Combin.* 2(1976) 191-195.
- [4] M. R. Gary and D. S. Johnson, Computers and Intractability: A guide to theory of NP-completeness, *Freeman, New York*, 1979.
- [5] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, *Disc. Appl. Math.* 70(1996) 217-229.
- [6] V. Saenpholphat and P. Zhang, Conditional resolvability in graphs: A survey, *IJMMS* 38(2004) 1997-2017.
- [7] G. Chartrand, L. Eroh, M. A. Johnson and O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, *Disc. Appl. Math.* 105(2000) 99-113.
- [8] M. A. Chaudhry, I. Javaid and M. Salman, Fault-Tolerant metric and partition dimension of graphs, *Util. Math.* 83(2010) 187-199.
- [9] C. Hernando, M. Mora, I. M. Pelayo, C. Seera and D. R. Wood, Extremal graph theory for metric dimension and diameter, *The Elec. J. of Combin.* 17(2010).
- [10] I. Javaid, M. Salman, M. A. Chaudhry and S. A. Aleem, On the metric dimension of the generalized Petersen graphs, *Quaestiones Mathematicae*, In press.
- [11] I. Javaid, M. T. Rahim and Kashif Ali, Families of regular graphs with constant metric dimension, *Util. Math.* 75(2008) 21-33.
- [12] M. Salman, I. Javaid and M. A. Chaudhry, Resolvability in circulant graphs, *Acta. Math. Sinica, English Series* 28(9)(2012) 1851-1864.
- [13] G. Chartrand, E. Salehi and P. Zhang, The partition dimension of a graph, *Aequationes Math.* 59(2000) 45-54.
- [14] G. Chartrand, E. Salehi and P. Zhang, On the partition dimension of a graph, *Congr. Numer.* 130(1998) 157-168.
- [15] I. Javaid, M. Salman, M. A. Chaudhry and S. Shokat, Fault-Tolerance in Resolvability, *Util. Math.* 80(2009) 263-275.