
U.P.B. Sci. Bull., Series A, Vol. 76, Iss. 3, 2014 ISSN 1223-7027

GRAPHS OF ORDER n WITH FAULT-TOLERANT PARTITION

DIMENSION n− 1

Imran Javaid1, Muhammad Salman2, Muhammad Anwar Chaudhry3

This paper gives the characterization of all the connected graphs G of
order n ≥ 8 having fault-tolerant partition dimension n− 1.

Keywords: resolving partition, fault-tolerant resolving partition, fault-tolerant
partition dimension, diameter.

MSC2010: 05C12.

1. Introduction

The distance d(u, v) between two vertices u and v in a connected graph G
with vertex set V (G) and edge set E(G) is the minimum number of edges in a u− v
path. For a vertex v in G, the eccentricity ecc(v) is the maximum distance between
v and any other vertex of G. The diameter of G, denoted by D, is the maximum
eccentricity of a vertex v in G. Two vertices u and v in G are called the diametral
vertices if d(u, v) = D. If two vertices u and v are adjacent (form an edge) in G, then
we write as u ∼ v and if they are non-adjacent (do not form an edge), then we write
as u ̸∼ v. We refer [1] for the general graph theoretic notations and terminology not
described in this paper.

Given an ordered set W “related to {w1, w2, . . . , wk} ⊆ V (G)”. For each
v ∈ V (G), the representation of v with respect to W is the k-vector (d(v, w1),
d(v, w2), . . . , d(v, wk)), denoted by r(v|W ). The set W is called a resolving set for
G if all the vertices of G have distinct representations with respect to W . The
minimum cardinality of a resolving set for G is called the metric dimension of G,
denoted by dim(G).

The metric dimension was first studied by Slater [2] and independently by
Harary and Melter [3]. Slater described the usefulness of this notion when working
with U.S. Sonar and Coast Guard Loran (Long range aids to navigation) stations.
It was noted in [4] and an explicit construction was given in [5] showing that finding
the metric dimension of a graph is NP-hard. For more results about the notion of
metric dimension and its applications, we refer to a nice survey by Saenpholphat
and Zhang [6] (see also [7, 8, 9, 10, 11, 12]).
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Possibly to gain insight into the metric dimension, Chartrand et al. introduced
the notion of a resolving partition and partition dimension [13, 14]. To define the
partition dimension, the distance d(v, S) between a vertex v of G and S ⊆ V (G) is
defined as min

s∈S
d(v, s). Let Π be an ordered k-partition “related to {S1, S2, . . . , Sk}”

of V (G) and v be a vertex of G, then the k-vector (d(v, S1), d(v, S2), . . . , d(v, Sk)) is
called the representation r(v|Π) of v with respect to the partitison Π. A partition Π
is called a resolving partition if for distinct vertices u and v of G, r(u|Π) ̸= r(v|Π).
The partition dimension of G is the cardinality of a minimum resolving partition,
denoted by pd(G).

Based on the Chartrand et al. method of vertex-partitioning, Javaid et al. [15]
partitioned the vertex set of a connected graph G into classes in such a way that any
two distinct vertices in G have different distances from at least two classes of the
partition. They referred this partition as a fault-tolerant resolving partition of V (G),
defined as follows: Let Π be an ordered k-partition “related to {U1, U2, . . . , Uk}”
of V (G), then Π is called a fault-tolerant resolving partition if for every pair of
distinct vertices v, w in G, the representations r(v|Π) and r(w|Π) differ by at least
two coordinates. The cardinality of a minimum fault-tolerant resolving partition is
called the fault-tolerant partition dimension of G, denoted by P(G).

We say that a class S distinguishes the vertices x and y of G if d(x, S) ̸=
d(y, S). A partition Π distinguishes x and y if a class of Π distinguishes x and y.
From these definitions, it can be observed that the property of a given partition
Π of a graph G to be a fault-tolerant resolving partition of G can be verified by
investigating that every pair of vertices in the same class is separated by at least
two classes of Π. That is, for two classes Ui and Uj (i ̸= j) of a partition Π,
d(x,Ui) ̸= d(y, Ui) and d(x, Uj) ̸= d(y, Uj) for all x, y ∈ Uk, k ̸= i, j.

A useful property for finding the fault-tolerant partition dimension of a con-
nected graph G is Lemma 3.1 placed in Annex-I.

The join of two graphs G1 and G2, denoted by G1+G2, is a graph with vertex
set V (G1)∪V (G2) and an edge set E(G1)∪E(G2)∪{uv | u ∈ V (G1) and v ∈ V (G2)}.

This paper is aim to characterize all the connected graphs G of order n ≥ 8
having fault-tolerant partition dimension n − 1. In the next section, we list all the
connected graphs having fault-tolerant partition dimension one less than the order
of the graph and prove that these are the only graphs having this property.

2. Classification of graphs of order n with fault-tolerant partition
dimension n− 1

The graph G−e is a subgraph of G and can be obtained by deleting an edge e
from G. The following is the list of graphs of order n having fault-tolerant partition
dimension n−1. It is worth mentioning that, in the list of graphs below, the graphs
K with single subscript represent the complete graphs; and the graphs K with two
subscripts separated by comma represent the complete bipartite graphs.
G1 := K1,n−1; G2 := K1 + (K1 ∪Kn−2); G3 := Kn −E(P3); G4 := Kn − E(P4);
G5 := Kn −E(K3); G6 := K1,n−1 + e; G7 := Kn −E(2K2); G8 := Kn −E(3K2);
G9:= Kn−1 − e and another vertex adjacent to end vertices of e;
G10:= Kn−1 and a vertex adjacent to two vertices of Kn−1;
G11:= K2+Kn−3 with one edge deleted between K2 and Kn−3 and a vertex adjacent
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to the vertices of K2;
G12:= The same construction as G11 with K2 instead of K2;
G13:= Kn−1 − e and a vertex adjacent to two vertices of Kn−1, one of them being
an end vertex of e; and the following four families of graphs:

G1 := {Kn − E(K1,p + e), where 3 ≤ p ≤ n− 2},
G2 := {Kn − E(K1,p and a path P3 having one adge in common with K1,p),
where 3 ≤ p ≤ n− 3},
G3 := {Kn−1 − e and a vertex adjacent to p vertices of Kn−1, where 2 ≤ p ≤
n− 3},
G4 := {Kn − E(K1,p), where 2 ≤ p ≤ n− 3}.
Figure 1, shown in Annex-II, illustrates one graph of each family mentioned above
for n = 8 and p = 3.

We also list 7 graphs of order n with the fault-tolerant partition dimension
n− 2 which will appear in the proofs of our lemmas.
H1:= K2 +Kn−3 and a vertex adjacent to the vertices of Kn−3;
H2:= Kn−2 and a path P4 joining two vertices of Kn−2;
H3:= Kn−2 and a cycle C3 having a common vertex;
H4:= Kn−2 and a path P3 having in common the central vertex of P3;
H5:= Kn−2 and a path P3 having an end vertex common with Kn−2;
H6:= K1,n−1 and a vertex adjacent to a diametral vertex of the star K1,n−1;
H7:= Kn−2 and a path P4 having the central edge in common with Kn−2.

The relationship between the fault-tolerant partition dimension and the diam-
eter of a connected graph was obtained by Javaid et al. in [8] (see Theorem 3.1 in
Annex-I). Following is a consequence of Theorem 3.1, cited in Annex-I, will helps in
proof of next lemmas.

Corollary 2.1. Lat G be a connected graph of order n with P(G) = n − 1. Then
diameter of G is at most three.

The connected graphs having fault-tolerant partition dimension equal to the
order of the graph have been characterized by Javaid et al (see Theorem 3.3 in
Annex-I). Now, we show that the graphs listed above are the only graphs with
fault-tolerant partition dimension n− 1.

Let u be a diametral vertex in G with eccentricity 2. Denote

Vi(u) = {v : v ∈ V (G), d(u, v) = i} for i = 1, 2.

Then u ∼ u′ for each u′ ∈ V1(u) and for each w ∈ V2(u), w ∼ w′ for at least one
w′ ∈ V1(u). Now, we prove several lemmas which will help to prove our main result
Theorem 2.1.

Lemma 2.1. Let G be a connected graph of order n ≥ 8 with P(G) = n − 1 and
diameter D = 2. If min(|V1(u)|, |V2(u)|) ≥ 3, then G belongs to G1, or G3, or G4.

Proof. With out loss of generality, we suppose that 3 ≤ r = |V1(u)| ≤ |V2(u)| = s =
n− r − 1. Since n ≥ 8 and r ≥ 3, if there are three distinct vertices x, y, z in V1(u)
(or in V2(u)) such that x ∼ y and x ̸∼ z, y ̸∼ z in G, then for two distinct vertices
a, b in V2(u) (or in V1(u)), (u)(z)(a, x)(b, y)π is a fault-tolerant resolving partition
of V (G) having n− 2 classes, where π denotes a partition of V (G) \ {u, a, b, x, y, z}
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having all the classes consisting a single vertex (which will be called a singleton sets
partition). We deduce that P(G) ≤ n− 2, a contradiction. It follows that V1(u) and
V2(u) induces Kr and Ks, or Kr − e and Ks − e, or Kr and Ks, respectively. In the
case when V1(u) induces Kr and V2(u) induces Ks, we can chose distinct vertices
u1, v1 ∈ V1(u) and u2, v2 ∈ V2(u) such that (u)(u1, u2)(v1, v2)π is a fault-tolerant
resolving partition of V (G) having n−2 classes, where π is a singleton sets partition
of the remaining vertices, a contradiction. Now, we discuss the following two case:
V1(u) induces Kr and V2(u) induces Ks or Ks − e (case 1), V1(u) induces Kr − e
and V2(u) induces Ks or Ks − e (case 2).
Case 1. If there are distinct vertices x, y ∈ V1(u) and a, b ∈ V2(u) such that a ̸∼ x
and b ̸∼ y in G, then for a vertex z ∈ V1(u) \ {x, y}, (a)(b)(u, z)(x, y)π is a fault-
tolerant resolving (n − 2)-partition of V (G), where π is a singleton sets partition
of the remaining vertices, a contradiction. We deduce that V1(u) ∪ V2(u) induces
Kr +Ks (subcase 1.1) or (Kr +Ks)− e (subcase 1.2) or Kr +(Ks− e) (subcase 1.3)
or (Kr + (Ks − e))− e (subcase 1.4).
Subcase 1.1. In this case, G ∈ G4.
Subcase 1.2. In this case, G ∈ G3.
Subcase 1.3. In this case, G ∈ G1.
Subcase 1.4. Let a ̸∼ b and c ̸∼ x in G for x ∈ V1(u) and a, b, c ∈ V2(u). Then
we can chose a vertex y ∈ V1(u) \ {x} and a vertex d ∈ V2(u) \ {a, b, c} such that
(u)(a)(c)(b, y)(x, d)π is a fault-tolerant resolving partition of V (G) having n − 2
classes, where π is a singleton sets partition of the remaining vertices, a contradiction.
Case 2. By the similar arguments as Case 1, V1(u) ∪ V2(u) induces (Kr − e) + Ks

(subcase 2.1) or ((Kr − e) +Ks)− e (subcase 2.2) or (Kr − e) + (Ks − e) (subcase
2.3) or ((Kr − e) + (Ks − e))− e (subcase 2.4).
Subcase 2.1. In this case, G ∈ G3.
Subcase 2.2. Let a ̸∼ b for a, b ∈ V1(u) and c ̸∼ x for c ∈ V1(u), x ∈ V2(u). Then
(i) For c ̸= a, b, (b)(u, c)(a, x)π is a fault-tolerant resolving (n−2)-partition of V (G),
where π is a singleton sets partition of the remaining vertices, a contradiction.
(ii) For c = a or b, (x)(u, d)(c, y)π, where d ∈ V1(u) \ {a, b, c} and y ∈ V2(u) \ {x},
is a fault-tolerant resolving (n − 2)-partition of V (G), where π is a singleton sets
partition of the remaining vertices, a contradiction.
Subcase 2.3. Let a ̸∼ b and x ̸∼ y in G for a, b ∈ V1(u) and x, y ∈ V2(u). Then for
c ∈ V1(u) \ {a, b}, (a)(x)(u, c)(b, y)π is a fault-tolerant resolving (n− 2)-partition of
V (G), where π is a singleton sets partition of the remaining vertices, a contradiction.
Subcase 2.4. Let a ̸∼ b, x ̸∼ y and c ̸∼ z in G for a, b, c ∈ V1(u) and x, y, z ∈ V2(u).
Then
(i) For c ̸= a, b and z ̸= x, y, (a)(b)(y)(u, c)(z, x)π is a fault-tolerant resolving (n−2)-
partition of V (G), where π is a singleton sets partition of the remaining vertices, a
contradiction.
(ii) For c ̸= a, b and z = x or y, (a)(b)(u, c)(z, w)π, where w ∈ V2(u) \ {x, y, z},
is a fault-tolerant resolving (n − 2)-partition of V (G), where π is a singleton sets
partition of the remaining vertices, a contradiction.
(iii) For c = a or b and z ̸= x, y, (y)(u, c)(z, x)π is a fault-tolerant resolving (n− 2)-
partition of V (G), where π is a singleton sets partition of the remaining vertices, a
contradiction.
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(iv) For c = a or b and z = x or y, (u, d)(c, z)π, where d ∈ V1(u)\{a, b, c}, is a fault-
tolerant resolving (n− 2)-partition of V (G), where π is a singleton sets partition of
the remaining vertices, a contradiction.

Lemma 2.2. Let G be a connected graph of order n ≥ 8 with P(G) = n−1 and diam-
eter D = 2. If min(|V1(u)|, |V2(u)|) ≤ 2, then G belongs to G = {G1, G2, . . . , G13},
or G1, or G2, or G3, or G4.

Proof. We shall consider the following cases:

Case 1. |V1(u)| = 2, |V2(u)| = n− 3,

Case 2. |V1(u)| = n− 3, |V2(u)| = 2,

Case 3. |V1(u)| = 1, |V2(u)| = n− 2,

Case 4. |V1(u)| = n− 2, |V2(u)| = 1.

Case 1. Suppose that V1(u) = {v, w}. If V2(u) contains three distinct vertices x, y, z
such that x ̸∼ y and x ∼ z in G, then the pair {y, z} distinguished by x. Since
n ≥ 8, we can find another vertex u′ ∈ V2(u) such that (u, u′)(y, z)π is a fault-
tolerant resolving (n − 2)-partition of V (G), where π is a singleton sets partition
of the remaining vertices, which contradicts the hypothesis. It follows that V2(u)
induces Kn−3 (subcase 1.1), or Kn−3 (subcase 1.2).
Subcase 1.1. If one of the vertices of V1(u), say v, has the property that there exist
x, y ∈ V2(u) such that v ̸∼ x and v ∼ y in G, then either v ∼ w or v ̸∼ w in G,
(x)(u, v)(y, w)π is a fault-tolerant resolving (n− 2)-partition of V (G), where π is a
singleton sets partition of the remaining vertices, a contradiction. One deduce that
v and w are adjacent to all the vertices in V2(u) or one of them is not adjacent to any
vertex of V2(u). But in the last case, we get D = 3 unless v ∼ w, which contradicts
the hypothesis. If v ∼ w in G and for example v ̸∼ v′ for any vertex v′ ∈ V2(u), then
it follows that w ∼ w′ for all w′ ∈ V2(u). In this case G ∼= G6. If v ∼ z and w ∼ z
in G for all z ∈ V2(u), then
(i) G ∼= K2,n−2 if v ̸∼ w in G, but P(G) = n− 2, by Theorem 3.2, a contradiction.

(ii) G ∼= K2 + Kn−2 if v ∼ w in G, but P(G) ≤ n − 2, Since there exists a
vertex x ∈ V2(u) such that (u, v)(w, x)π is a fault-tolerant resolving partition of
V (G) having n− 2 classes, where π is a singleton partition of V (G) \ {u, v, w, x}, a
contradiction.
Subcase 1.2. If one of the vertices of V1(u), say w, has the property that there
exist three vertices x, y, z ∈ V2(u) such that w ̸∼ x,w ̸∼ y and w ∼ z in G, then
either v ∼ w or v ̸∼ w in G, (x)(y)(u, z)(v, w)π is a fault-tolerant resolving (n− 2)-
partition of V (G), where π is a singleton sets partition of the remaining vertices, a
contradiction. It follows that if v ∼ c or w ∼ c for at least one vertex c ∈ V2(u),
then it is adjacent to at least n− 4 vertices in V2(u). If v ̸∼ w one obtains that both
v and w adjacent to at least n− 4 vertices in V2(u) since otherwise D = 3. Consider
now the case when both v and w are adjacent to at least n−4 vertices in V2(u). If v
and w are adjacent to all n−3 vertices of V2(u), then G ∼= G9 if v ̸∼ w and G ∼= G10

if v ∼ w. If one of v and w is adjacent to n − 4 vertices in V2(u) and other one is
adjacent to all n− 3 vertices of V2(u), then G ∼= G11 if v ̸∼ w in G and G ∼= G12 if
v ∼ w in G.

It is not possible that both v and w are adjacent to exactly n − 4 vertices of
V2(u). Indeed, if there exist distinct vertices x, y ∈ V2(u) such that v ̸∼ x,w ̸∼ y
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and both v and w are adjacent to n− 4 vertices of V2(u), then either v ∼ w in G or
v ̸∼ w in G, there exists z ∈ V2(u) \ {x, y} such that (x)(y)(u, z)(v, w)π is a fault-
tolerant resolving (n− 2)-partition of V (G), where π is a singleton sets partition of
the remaining vertices, a contradiction. Consider now the case when v ∼ w in G
and v ̸∼ v′ for each vertex v′ ∈ V2(u). If w ∼ w′ for all w′ ∈ V2(u), then G ∼= H3.
In this case, there exist distinct vertices x, y ∈ V2(u) such that (u, y)(v, x)π is a
fault-tolerant resolving (n− 2)-partition of V (G), a contradiction. If w ̸∼ t for one
vertex t ∈ V2(u), then d(u, t) = 3 which contradicts the equality D = 2.
Case 2. In this case, let V2(u) = {s, t}. If V1(u) contains three distinct vertices v, w, x
such that v ∼ w and v ̸∼ x in G, then we can find another vertex y ∈ V1(u)\{v, w, x}
such that (v)(u, y)(w, x)π is a fault-tolerant resolving (n−2)-partition of V (G) which
implies that P(G) ≤ n − 2, a contradiction. It follows that V1(u) induces Kn−3

(subcase 2.1) or Kn−3 (subcase 2.2).
Subcase 2.1. If s ̸∼ t in G, since D = 2 we obtain that V1(u) ∪ V2(u) induces a
subgraph isomorphic to K2,n−3. By considering two distinct vertices x, y ∈ V1(u),
we deduce that (t)(u, x)(s, y)π is a fault-tolerant resolving partition of V (G) having
n − 2 classes, contradiction. It follows that s ∼ t in G. Suppose that one of the
vertices s, t, say t, has the property that t ̸∼ t1 for one vertex t1 ∈ V1(u), but t ∼ t2
for at least one vertex t2 of V1(u). Then (t)(s, t1)(u, t2)π is a fault-tolerant resolving
(n − 2)-partition of V (G), a contradiction. Hence s ∼ v and t ∼ v in G for all
v ∈ V1(u) and G ∼= H1, but P(G) ≤ n−2 in this case. Since we can find two distinct
vertices x, y ∈ V1(u) such that (u)(s, x)(y, t)π, where π is a singleton sets partition
of V (G) \ {s, t, u, x, y}, is a fault-tolerant resolving partition having n− 2 classes, a
contradiction.
Subcase 2.2. Both the vertices s and t must adjacent to at least one vertex of V1(u),
otherwise D = 3. If s ∼ y and t ∼ y in G for all y ∈ V1(u), then G ∼= G3 if s ∼ t in
G and G ∼= G5 if s ̸∼ t in G.

Consider now the case when, for all v ∈ V1(u), v ∼ t in G. When s ̸∼ t and
s ̸∼ v1, s ̸∼ v2, . . . , s ̸∼ vi in G for v1, v2, . . . , vi ∈ V1(u), where i ∈ {1, 2, . . . , n− 4},
then G ∈ G1. When s ∼ t; if s ̸∼ s′ in G for a single vertex s′ ∈ V1(u), then G ∼= G4,
if s ̸∼ v1, s ̸∼ v2, . . . s ̸∼ vi in G for v1, v2, . . . , vi ∈ V1(u), where i ∈ {2, 3, . . . , n− 4},
then G ∈ G2. For i = n− 4, G ∼= G13. A similar situation occurs when v ∼ s for all
v ∈ V1(u). The remaining subcase is that when both s and t are not adjacent to at
least one vertex of V1(u).

If there exist four distinct vertices a, b, c, d ∈ V1(u) such that a ̸∼ s, d ̸∼ t and
c ∼ s, b ∼ t in G, let v ∈ V1(u) \ {a, b, c, d}. If v ∼ s or v ∼ t in G, then either
s ̸∼ t or s ∼ t, (u)(s, c)(t, b)π is a fault-tolerant resolving (n− 2)-partition of V (G),
which implies that c ∼ s, b ∼ t are only edges joining s and t to vertices in V1(u). In
this case, G ∼= H2 if s ∼ t, but P(G) ≤ n− 2 since (u)(c, s)(b, t)π is a fault-tolerant
resolving (n− 2)-partition of V (G), a contradiction. If s ̸∼ t in G, then d(s, t) = 3,
a contradiction.

If a and d coincide or b and c coincide, then it remains to consider only two
subcases: s ̸∼ x and t ̸∼ x in G for a single vertex x ∈ V1(u) (subcase 2.2.1), s ∼ x′

and t ∼ x′ for a single vertex x′ ∈ V1(u) (subcase 2.2.2).
Subcase 2.2.1. Either s ̸∼ t or s ∼ t (in this case G ∼= Kn − E(C4)), there are
two distinct vertices v, w ∈ V1(u) such that (u)(x)(s, v)(t, w)π is a fault-tolerant
resolving partition of V (G) having n− 2 classes, a contradiction.
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Subcase 2.2.2. If s ∼ t ∈ E(G), then G ∼= H3 and if s ̸∼ t, then G ∼= H4. In both
the cases, (u, t)(s, x)π is a fault-tolerant resolving partition of V (G) having n − 2
classes, a contradiction.
Case 3. Let V1(u) = {x}, it follows that x ∼ x′ for all x′ ∈ V2(u). If V2(u)
induces Kn−2 or Kn−2, then G is isomorphic to G1 or G2, respectively. Otherwise,
there exists a diametral vertex y ∈ V2(u) such that 2 ≤ |V1(y)| ≤ n − 3, hence
|V2(y)| ∈ {2, n− 3} and we are again in the Case 1, or in the Case 2, relatively to y.
Case 4. Let V2(u) = {v}. If degree of v is one, then v is a diametral vertex and
|V1(v)| = 1, hence Case 3 occurs again. Otherwise, let degree of v, d(v), is grater
than or equal to two. If there exist six distinct vertices a, b, c, d, e, f ∈ V1(u) (since
n ≥ 8) such that a ̸∼ d, b ̸∼ e, c ̸∼ f and a ∼ b, a ∼ c, a ∼ e, a ∼ f, b ∼ c, b ∼
d, b ∼ f, c ∼ d, c ∼ e, d ∼ e, d ∼ f, e ∼ f in G, then (u)(a, b)(c, v)π is a faut-tolerant
resolving partition of V (G) having n−2 classes, where π is a singleton sets partition
of the remaining vertices, a contradiction. It follows that V1(u) induces Kn−2 − e
(subcase 4.1), or Kn−2 − E(2P2) (subcase 4.2), or Kn−2 (subcase 4.3), or Kn−2

(subcase 4.4).
Subcase 4.1. Since d(v) ≥ 2, if v ∼ v1, v ∼ v2, . . . , v ∼ vi in G for v1, v2, . . . , vi ∈
V1(u), where i ∈ {2, 3, . . . , n− 3}, then G ∈ G3. For i = 2, if v1, v2 ∈ V1(u) are end
vertices of e then G ∼= G9 and if v1 is end vertex of e and v2 is not, then G ∼= G13.
If v ∼ v′ for all v′ ∈ V1(u), then G ∼= G7.
Subcase 4.2. Let a, b, c, d ∈ V1(u) such that a ̸∼ c and b ̸∼ d in G. If there exist
two distinct vertices x, y ∈ V1(u) \ {a, b, c, d} such that v ∼ a, v ∼ y but v ̸∼ x in G,
then (u)(v)(c)(d)(a, x)(b, y)π is a fault-tolerant resolving (n− 2)-partition of V (G),
a contradiction. We deduce that v ∼ v′ for all v′ ∈ V1(u). In this case G ∼= G8.
Subcase 4.3. Since D = 2 it follows that v ∼ v′ for all v′ ∈ V1(u) and G ∼= K2,n−2,
but P(G) ≤ n− 2 since for every two distinct vertices s, t of V1(u), (t, u)(s, v)π is a
fault-tolerant resolving (n− 2)-partition of V (G), a contradiction.
Subcase 4.4. If v ̸∼ v1, v ̸∼ v2, . . . , v ̸∼ vi in G for v1, v2, . . . , vi ∈ V1(u), where
i ∈ {1, 2, . . . , n−4}, then G ∈ G4. The case for i = n−3 is not occur since d(v) ≥ 2.
If v ∼ v′ for all v′ ∈ V1(u), then G ∼= Kn − e, but P(Kn − e) = n, by Theorem 3.3.

Lemma 2.3. Let G be a connected graph of order n ≥ 8 with P(G) = n − 1 and
diameter D = 3. Then G ∼= G2.

Proof. Let s be a diametral vertex having ecc(s) = 3. Denote

Vi(s) = {s′ : s′ ∈ V (G), d(s′, s) = i} for i = 1, 2, 3.

Let t ∈ V1(s), u ∈ V2(s) and v ∈ V3(s). If there are w, x ∈ V (G)\{s, t, u, v} belonging
to different sets from V1(s), V2(s), V3(s), then (s)(x)(t, w)(u, v)π is a fault-tolerant
partition of V (G) having n − 2 classes, a contradiction. It follows that we can
consider only three cases.

Case 1. |V1(s)| = |V2(s)| = 1, |V3(s)| = n− 3,

Case 2. |V1(s)| = |V3(s)| = 1, |V2(s)| = n− 3,

Case 3. |V2(s)| = |V3(s)| = 1, |V1(s)| = n− 3.

Case 1. Suppose that V1(s) = {t}, V2(s) = {u}, then u ∼ u′ for all u′ ∈ V3(s)
otherwise, there exists a vertex v ∈ V3(s) such that d(s, v) = 4, contradiction. If
there exist three distinct vertices x, y, z ∈ V3(s) such that x ̸∼ y and x ∼ z in
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G, then (z)(s)(t, x)(u, y)π is a fault-tolerant resolving (n − 2)-partition of V (G), a
contradiction. Hence V3(s) induces Kn−3 or Kn−3. In the first case G ∼= H5 but
P(G) ≤ n−2 since there is a vertex v ∈ V3(s) such that (s, v)(t, u)π is a fault-tolerant
resolving (n− 2)-partition of V (G), a contradiction. In the second case G ∼= H6 and
we get a contradiction by the same argument as previous case.
Case 2. Let V1(s) = {u} and V3(s) = {v} then u ∼ u′ for all u′ ∈ V2(s). As above,
V2(s) induces Kn−3 (subcase 2.1) or Kn−3 (subcase 2.2). v ∼ w for at least one
vertex w ∈ V2(s). If there exist two vertices x, y ∈ V2(s) \ {w} such that v ̸∼ x and
v ∼ y in G, then (x)(w)(u, s)(v, y)π ia s fault-tolerant resolving partition of V (G)
having n − 2 classes, a contradiction. It follows that v ∼ v′ for all v′ ∈ V2(s) or
v ̸∼ v′ for any vertex in v′ ∈ V2(s) \ {w}.
Subcase 2.1. If v ∼ v′ for all v′ ∈ V2(s), then G ∼= G2. Otherwise, G ∼= H7 but
P(G) ≤ n − 2 since for every t ∈ V2(s) \ {w}, (w)(s, t)(u, v)π is a fault-tolerant
resolving (n− 2)-partition of V (G), a contradiction.
Subcase 2.2. If v ∼ v′ for all v′ ∈ V2(s), then G ∼= K2,n−2 − e. Otherwise, G ∼= H6.
In both the cases, P(G) ≤ n− 2 since for every t ∈ V2(s) \ {w}, (w)(u, s)(v, t)π is a
fault-tolerant resolving partition of V (G) having n− 2 classes, a contradiction.
Case 3. Suppose that V2(s) = {x} and V3(s) = {y}. In this case y is a diametral
vertex and |V1(y)| = 1. Hence y instead of s we have Cases 1 and 2, which completes
the proof.

Now, our main result is the following:

Theorem 2.1. Let G be a connected graph of order n ≥ 8. Then P(G) = n − 1 if
and only if G belongs to G = {G1, G2, . . . , G13}, or G1, or G2, or G3, or G4.

Proof. By using Lemma 3.1, it is a routine exercise to verify that all the graphs
enumerated in the statement have the fault-tolerant partition dimension n− 1.

Conversely, let G be a connected graph of order n ≥ 8 having P(G) = n − 1.
Then D ≤ 3, by Corollary 2.1. When D = 1, then G is isomorphic to the complete
graph Kn and P(G) = n, by Theorem 3.3. When D = 2, 3, then Lemmas 2.1, 2.2
and 2.3 conclude the proof.

3. Conclusion

In this paper, we considered the generalization of the fault-tolerant metric
dimension “the fault-tolerant partition dimension”. Inspired by the works, done by
Chartrand et al. in [13, 14] and by Javaid et al. in [8], on the characterization of
all the connected graphs of order n having partition dimension (the generalization
of the metric dimension) n, n − 1, n − 2, and the fault-tolerant partition dimension
n, we classified all the connected graphs with fault-tolerant partition dimension one
less than the order of the graphs.
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Annex-I

Lemma 3.1. [15] Let Π be a fault-tolerant resolving partition of V (G) and u, v ∈
V (G). If d(u,w) = d(v, w) for all w ∈ V (G) \ {u, v}, then u and v belong to distinct
classes of Π.

Theorem 3.1. [8] Let G be a connected graph of order n ≥ 3 and diameter D. Then

η(n,D) ≤ P(G) ≤ n−D+ 2,

where η(n,D) is the least positive integer ν for which n ≤ (D+ 1)ν .

Theorem 3.2. [8] If Km,n be the complete bipartite graph for m,n ≥ 1, then

P(Km,n) =

 m+ 1 if m− n = 0,
max(m,n) + 1 if |m− n| = 1,
max(m,n) if |m− n| ≥ 2.

Theorem 3.3. [8] Let G be a connected graph of order n. Then P(G) = n if and
only if G is one of the graphs Kn and Kn − e.

Annex-II
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G12

G5

G11
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G10
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Figure 1. Illustration of the graphs for n = 8. Ai ∈ Gi for i =
1, 2, 3, 4 and p = 3, n = 8. Deleted edges colored by red (dotted
edges) and new edges colored by blue (thick edges).
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