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REMARKS ON SOME GENERALIZATIONS OF θ-CONTRACTION

Erdal Karapinar1, Marija Cvetković2

The concept of θ-contraction was modified and generalized in several ways
during the last decade. Some assumptions concerning the class Θ are shown to be super-

fluous in order to obtain a unique fixed point for a θ-type contraction, θ-Suzuki type and,

consequently, θ-contraction. Improvement of several previously published results are de-
rived with a modified contractive condition and we have presented an example of possible

application. The same approach was used for the F -Suzuki contraction and numerous
generalizations are made.
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1. Introduction

M. Jleli and B. Samet in [12] presented, as stated, a new generalization of Banach
contractive condition through defining a new class of contractions known as θ-contractions in
the setting of the Branciari metric space [6]. Concept of Branciari’s generalized metric space
includes a replacement of a usual triangle inequality by d(x, y) ≤ d(x, z)+d(z, w)+d(w, y) for
any pairwise distinct points known as rectangular or quadrilateral inequality. It was shown
in [12] that a θ-contraction on a complete Branciari metric space has a unique fixed point.
Continuing in the same manner, M. Jleli, E. Karapinar and B. Samet in [11] proved several
θ-contraction results by adding another requirement to the class of θ-functions, continuity,
omitting some of the previous ones and involving a more general contractive condition.
Later on, several different generalizations of the θ-contraction concept were presented and
existence and uniqueness of a fixed point of this class of contraction was proved in a different
setting (Branciari’s metric space, metric space, b-metric space, partial metric space, cone
metric space, etc.). It is important to mention that several papers were committed to the
applications in the area of image processing, differential and integral equations and so on.
The research on this topic continues which is shown by the recent publication on this topic.
(see [1, 3, 4, 9, 10], [13]-[16])

Several questions regarding the definition of θ-functions have arisen. First of them was
do we, as in the definition presented in [12], really need for θ to fulfill such a strict condition
as (θ3)? Do we need to add a continuity request or is it somehow implied? Can we loosen up
the requests for θ or at least redefine them? What is the relation between θ-contraction and
famous Banach contraction? Are some of this conclusions different depending on setting-
Branciari’s metric space, metric space or some other? Some of this questions have already
been answered, at least partially (par example [11],[14]) and some of them will be the main
point of interest in this paper.
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2. Preliminaries

The concept of θ-contraction was introduced by M. Jleli and B. Samet.

Definition 2.1. Let Θ be a set of functions θ : (0,∞) 7→ (1,∞) such that

(θ1) θ is nondecreasing, i.e., x ≤ y =⇒ θ(x) ≤ θ(y);
(θ2) for each sequence (xn) ⊆ (0,∞)

lim
n→∞

θ(xn) = 1 ⇔ lim
n→∞

xn = 0;

(θ3) there exists 0 < k < 1 and l ∈ (0,∞] such that

lim
x→0

θ(x)− 1

xk
= l.

Results of [12] concerning existence and uniqueness of a fixed point for the newly introduced
contractive mapping are derived in a setting of a Branciari metric space. (see [6])

Definition 2.2. Let X be a non-empty set and d : X × X 7→ [0,∞) a mapping such that
for all x, y, z, w ∈ X pairwise distinct points

(d1) d(x, y) = 0⇐⇒ x = y;
(d2) d(x, y) = d(y, x);
(d∗3) d(x, y) ≤ d(x, z) + d(z, w) + d(w, y).

Evidently, (complete) metric space is a (complete) Branciari metric space, but converse does
not hold in general.

Definition 2.3. Let (X, d) be a Branciari metric space. A mapping T : X 7→ X is a
θ-contraction if there exists a function θ ∈ Θ and k ∈ (0, 1) such that

(∀x, y ∈ X)Tx 6= Ty =⇒ θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k. (1)

Theorem 2.1. [12] Let (X, d) be a complete Branciari metric space and a mapping T :
X 7→ X a θ-contraction. A mapping T has a unique fixed point on X.

The class Θ and corresponding θ-contraction was modified in [11] by adding the continuity
assumption.

Definition 2.4. Let Θ′ be a set of functions θ : (0,∞) 7→ (1,∞) such that

(θ1) θ is nondecreasing, i.e., x ≤ y =⇒ θ(x) ≤ θ(y);
(θ2) for each sequence (xn) ⊆ (0,∞)

lim
n→∞

θ(xn) = 1 ⇔ lim
n→∞

xn = 0;

(θ3) there exists 0 < k < 1 and l ∈ (0,∞] such that limx→0
θ(x)−1
xk

= l;
(θ4) θ is continuous.

This modification of θ-contraction also includes a more general contractive condition.

Theorem 2.2. [11] Let (X, d) be a complete Branciari metric space and T : X 7→ X a
mapping. Suppose that there exist a θ ∈ Θ′ and k ∈ (0, 1) such that for all x, y ∈ X

θ(d(Tx, Ty)) ≤ [θ(M(x, y))]k, (2)

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}, then T has a unique fixed point.

Improvement of the results of [11] was done by J. Ahmad et al. [3] by excluding (θ3) from
the definition of Θ′ and by retaining the contractive condition (2). Denote with Θ∗ the class
of all functions θ : (0,∞) 7→ (1,∞) satisfying (θ1), (θ2) and (θ4). The main result of [3] is
the existence and uniqueness of a fixed point for a θ-contraction fulfilling (2) for k ∈ (0, 1)
and θ ∈ Θ∗, but complete Branciari metric space is replaced by a complete metric space.
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Theorem 2.3. [3] If (X, d) is a complete metric space and T : X 7→ X a θ∗-contraction for
some θ ∈ Θ∗ and k ∈ (0, 1), then T has a unique fixed point.

X. Liu et al, [14] presented the condition (θ∗2) inf θ(x) = 1 as an equivalent to (θ2) and
extended the contractive condition (2). The main results of [14] differ from previously
mentioned papers since they involve a concept of Suzuki contraction. We will retain the

same notation as in [14] and Θ̃ will gather all functions θ : (0,∞) 7→ (1,∞) such that
(θ1), (θ∗2) and (θ4) hold. Some of the further extensions of this concept where shown to be
equivalent to some well-known fixed point results like in [8].

Definition 2.5. If (X, d) is a complete metric space and T : X 7→ X a mapping such that

exists a function θ ∈ Θ̃ and k ∈ (0, 1) such that for any x, y ∈ X the following implication
holds (

1

2
d(x, Tx) < d(x, y) ∧ Tx 6= Ty

)
=⇒ θ(d(Tx, Ty)) ≤ (θ(M(x, y)))

k
, (3)

where M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty), 1

2d(x, Ty), d(y, Tx)
}
, then the mapping T

is a θ-type Suzuki contraction.

θ-type contraction will be the each mapping satisfying (3) with 1
2d(x, Tx) < d(x, y) excluded.

In this way, another generalization of the results of [11] is obtained in the complete metric
space.

Theorem 2.4. If (X, d) is a complete metric space and T : X 7→ X a θ-type Suzuki

contraction for some θ ∈ Θ̃ and k ∈ (0, 1), then T has a unique fixed point in X and for any
x0 ∈ X the sequence of successive approximations (Tnx0) converges to the fixed point of a
mapping T and for any x0 ∈ X the sequence of successive approximations (Tnx0) converges
to the fixed point of a mapping T .

Consequently, θ-type contraction also possesses a unique fixed point in a complete metric
space.
The main idea of this article is removing superfluous assumptions regarding the function
θ and acquire the unique fixed point for θ-type Suzuki contraction, θ-type contraction and
some modifications. Some results are acquired for F -Suzuki contraction. Application of the
theoretical results has been found in the area of integral equations.

3. Main results

Theorem 3.1. If (X, d) is a complete metric space and T : X 7→ X a mapping such that
exist a nondecreasing function θ : (0,∞) 7→ (1,∞) and k ∈ (0, 1) such that for any x, y ∈ X
the following implication holds(

1

2
d(x, Tx) < d(x, y) ∧ Tx 6= Ty

)
=⇒ θ(d(Tx, Ty)) ≤ (θ(M(x, y)))

k
, (4)

where M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty), 1

2d(x, Ty), d(y, Tx)
}
, and saltuses on the

left at each discontinuity t of the function θ are less than θ(t)− (θ(t))
k
, i.e., sups<t θ(s) >

(θ(t))
k
, then T has a unique fixed point in X and for any x0 ∈ X the sequence of successive

approximations (Tnx0) converges to the fixed point of a mapping T .

Proof. If x0 ∈ X is arbitrary, define the sequence of the successive approximations (xn) ⊆ X
such that xn = Txn−1, n ∈ N. If xn = xn−1 for some n ∈ N, then xn−1 is a fixed point of T ,
so we will assume that xn 6= xn−1 for any n ∈ N. Because of 1

2d(xn−1, xn) < d(xn−1, xn), the

condition (4) holds for any n ∈ N whereM(xn−1, xn) = max{d(xn−1, xn), d(xn, xn+1), 1
2d(xn−1,

xn+1), 0}. If M(xn−1, xn) = 1
2d(xn−1, xn+1) for some n ∈ N, then

M(xn−1, xn) =
1

2
d(xn−1, xn+1) ≤ max{(d(xn−1, xn), d(xn, xn+1)}.
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Thus it remains to discuss on M(xn−1, xn) = max {d(xn−1, xn), d(xn, xn+1)} . The case
M(xn−1, xn) = d(xn, xn+1) for some n ∈ N leads to the contradiction since (4) implies

θ(d(xn, xn+1)) ≤ (θ(d(xn, xn+1)))
k
. Hence, M(xn−1, xn) = d(xn−1, xn) for any n ∈ N,

implies

θ(d(xn, xn+1)) ≤ (θ(d(xn−1, xn)))
k

=⇒ θ(d(xn, xn+1)) ≤ (θ(d(x0, x1)))
kn
,

for any n ∈ N. Letting n→∞, we get

1 ≤ lim
n→∞

θ(d(xn, xn+1)) ≤ lim
n→∞

θ (d(x0, x1))
kn

= 1.

Also, θ(d(xn, xn+1)) ≤ (θ(d(xn−1, xn)))
k
< θ(d(xn−1, xn)), implies d(xn, xn+1) < d(xn−1, xn)

for any n ∈ N. As the sequence (d(xn−1, xn)) is a monotone decreasing sequence, its limit
exists and let a := lim

n→∞
d(xn−1, xn) = infn∈N d(xn−1, xn). We will prove that a = 0.

If a > 0, then θ(a) ≤ lim
n→∞

θ(d(xn, xn+1)) = 1. It cannot be the case, meaning that

lim
n→∞

d(xn, xn+1) = 0.

Assume contrary of what we intend to prove, that (xn) is not a Cauchy sequence and choose
ε > 0 out of the countable set of discontinuities of the function θ for which there exist strictly
increasing sequences (ni), (mi) ⊆ N such that ni < mi for any i ∈ N and

d(xni , xmi) ≥ ε and d(xni , xmi−1) < ε,

where ni = min{j ≥ i | d(xj , xm) ≥ ε ∧ m > j} and mi = min{j > ni | d(xni , xj) ≥ ε}.
Hence,

ε ≤ d(xni , xmi) ≤ d(xni , xmi−1) + d(xmi−1, xmi) ≤ ε+ d(xmi−1, xmi),

implying limi→∞ d(xni , xmi) = ε. Moreover,

d(xni , xmi) ≤ d(xni , xni−1) + d(xni−1, xmi−1) + d(xmi−1, xmi)

d(xni−1, xmi−1) ≤ d(xni−1, xni) + d(xni , xmi) + d(xmi , xmi−1),

leading to limi→∞ d(xni−1, xmi−1) = ε.
In a similar way we obtain limi→∞ d(xni−1, xmi) = limi→∞ d(xni , xmi−1) = ε. Considering
(4), observe that 1

2d(xni−1, xni) < d(xni−1, xmi−1) starting from some n0 ∈ N and

θ(ε) ≤ θ (d(xni , xmi)) ≤ (θ (M(xni−1, xmi−1)))
k

where

M(xni−1, xmi−1) = max{d(xni−1, xmi−1), d(xni−1, xni), d(xmi−1, xmi),

1

2
d(xni−1, xmi), d(xmi−1, xni)}.

If M(xni−1, xmi−1) = d(xni−1, xmi−1) for some i ∈ N, then

θ(ε) ≤ lim
i→∞

θ (d(xni , xmi)) ≤ lim
i→∞

(θ (d(xni−1, xmi−1)))
k

= (θ(ε))
k
, (5)

leads to the contradiction.
Limits of both subsequences limi→∞ θ(d(xmi−1, xmi)) and limi→∞ θ(d(xni−1, xni)) are equal
to 1, so if there are infinitely many i ∈ N such that M(xni−1, xmi−1) belongs to the set
{d(xni−1, xni), d(xmi−1, xmi)}, it follows that θ(ε) = 1 which is incorrect. IfM(xni−1, xmi−1)
= 1

2d(xni−1, xmi), then

θ(ε) ≤ lim
i→∞

θ (d(xni , xmi)) ≤ lim
i→∞

(
θ

(
1

2
d(xni−1, xmi)

))k
≤ (θ(ε))

k
.

Eventually, if M(xni−1, xmi−1) = d(xmi−1, xni), then

θ(ε) ≤ lim
i→∞

θ (d(xni , xmi)) ≤ lim
i→∞

(θ (d(xmi−1, xni)))
k ≤ (θ(ε))

k
.
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Since we got the contradiction in all discussed cases, (xn) must be a Cauchy sequence and
having in mind that (X, d) is a complete metric space, there exists some x∗ ∈ X satisfying
lim
n→∞

xn = x∗.

Additionally, d(Tx∗, x∗) ≤ d(Tx∗, xn+1) + d(xn+1, x
∗) ≤M(xn, x

∗) + d(xn+1, x
∗), where

M(x∗, xn) = max{d(x∗, xn), d(x∗, Tx∗), d(xn, xn+1),
1

2
d(x∗, xn+1), d(xn, Tx

∗)}.

In order to justify the last inequality and the use of (4), estimate 1
2d(xn, xn+1) and d(xn, x

∗)
by comparing their convergence rates. Assume that there are infinitely many nj ∈ N such
that 1

2d(xnj , xnj+1) ≥ d(xnj , x
∗), then

d(xnj , x
∗) ≤ 1

2
d(xnj , xnj+1) ≤ 1

2

(
d(xnj , x

∗) + d(x∗, xnj+1)
)

implying d(xnj , x
∗) < d(x∗, xnj+1) for any j ∈ N which is in a direct conflict with limj→∞ xnj =

x∗. Hence, 1
2d(xn, xn+1) < d(xn, x

∗) for any n ∈ N starting from some n0 ∈ N and (4) is
applicable.
Therefore, we will analyze the several options depending on the value of M(x∗, xn).
(i) If M(x∗, xn) = d(x∗, xn) for infinitely many n ∈ N, then

d(Tx∗, x∗) ≤ d(x∗, xn) + d(xn+1, x
∗).

Letting n→∞ leads to the conclusion that x∗ is a fixed point of T .
(ii) In the case that M(x∗, xn) = d(xn, xn+1) for infinitely many n ∈ N, we have

d(Tx∗, x∗) ≤ d(xn, xn+1) + d(xn+1, x
∗),

and lim
n→∞

d(xn, xn+1) = lim
n→∞

d(xn+1, x
∗) implies Tx∗ = x∗.

(iii) If M(x∗, xn) = 1
2d(x∗, xn+1) for infinitely many n ∈ N, then

d(Tx∗, x∗) ≤ 1

2
d(x∗, xn+1) + d(xn+1, x

∗),

implies Tx∗ = x∗.
(iv) Assume that M(x∗, xn) = d(x∗, Tx∗) for infinitely many n ∈ N. As lim

n→∞
d(Tx∗, xn) =

d(Tx∗, x∗), from the estimation of

θ(d(Tx∗, xn)) ≤ (θ(d(x∗, Tx∗)))
k
, (6)

we obtain the contradiction due to the presumption made in the statement of the theorem
regarding the saltuses on the left. Since, lim

n→∞
xn = x∗ and d(xnj , Tx

∗) < d(x∗, Tx∗) for some

subsequence (xnj ) ⊆ (xn), we have that limj→∞ d(xnj , Tx
∗) = d(x∗, Tx∗) and furthermore

θ(d(x∗, Tx∗))− lim
j→∞

θ(d(xnj , Tx
∗)) ≤ θ(d(x∗, Tx∗))− (θ(d(x∗, Tx∗)))

k

which is inconsistent with (6).
(v) Remaining, M(x∗, xn) = d(xn, Tx

∗) starting from some n0 ∈ N. Further estimations up
to n0 gives us

θ(d(Tx∗, xn)) ≤ (θ(d(xn0
, Tx∗)))

k(n−n0)

,

and by letting n→∞, θ(d(Tx∗, x∗) ≤ 1, so Tx∗ = x∗.
From all of the previous considerations, x∗ is a fixed point of the mapping T . Uniqueness
easily follows. If Ty = y and y 6= x∗, then

θ(d(x∗, y)) = θ(d(Tx∗, Ty) ≤ (M(x∗, y)))
k
,

where M(x∗, y) = max{d(x∗, y), 0}. Thus, x∗ is a unique fixed point of the mapping T . �
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Corollary 3.1. If (X, d) is a complete metric space and T : X 7→ X a mapping such that
exists a nondecreasing continuous on the left function θ : (0,∞) 7→ (1,∞) and k ∈ (0, 1)
such that for any x, y ∈ X the condition (4) holds, then T has a unique fixed point in X
and for any x0 ∈ X the sequence of successive approximations (Tnx0) converges to the fixed
point of a mapping T .

Corollary 3.2. If (X, d) is a complete metric space and T : X 7→ X a mapping such that
exists a nondecreasing continuous function θ : (0,∞) 7→ (1,∞) and k ∈ (0, 1) such that for
any x, y ∈ X the condition (4) holds, then T has a unique fixed point in and for any x0 ∈ X
the sequence of successive approximations (Tnx0) converges to the fixed point of a mapping
T .

The Corollary 3.2 is in fact the main result of [14] (Theorem 2.1), but obtained without the
explicit request that (θ2) is fulfilled. Consequently, Theorem 3.1 and listed corollaries are
the generalizations of the main result in [17].
Both the previous and the following result are a generalization of Corollary 3.6 of [11] since
(θ3) is omitted.

Corollary 3.3. If (X, d) is a complete metric space and T : X 7→ X a mapping such that
exist a nondecreasing continuous function θ : (0,∞) 7→ (1,∞) and k ∈ (0, 1) such that for
all x, y ∈ X

θ(d(Tx, Ty)) ≤ (θ(M(x, y)))
k
,

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)},

then T has a unique fixed point in X and for any x0 ∈ X the sequence of successive approx-
imations (Tnx0) converges to the fixed point of a mapping T .

By further simplification of the contractive condition, we acquire the Theorem 2.2 in [3] as
the main result of that paper.

Corollary 3.4. If (X, d) is a complete metric space and T : X 7→ X a mapping such that
exist a nondecreasing continuous function θ : (0,∞) 7→ (1,∞) and k ∈ (0, 1) such that for
any x, y ∈ X the condition that for all x, y ∈ X

θ(d(Tx, Ty)) ≤ (θ(d(x, y)))
k
,

then T has a unique fixed point in X and for any x0 ∈ X the sequence of successive approx-
imations (Tnx0) converges to the fixed point of a mapping T .

Corollary 3.5. If (X, d) is a complete metric space and T : X 7→ X a mapping such that
exist a nondecreasing function θ : (0,∞) 7→ (1,∞) and k ∈ (0, 1) such that for any x, y ∈ X
the following implication holds(

1

2
d(x, Tx) < d(x, y) ∧ Tx 6= Ty

)
=⇒ θ(d(Tx, Ty)) ≤ (θ(d(x, y)))

k
,

and saltuses on the left at each discontinuity t of the function θ are less than θ(t)− (θ(t))
k
,

i.e., sups<t θ(s) > (θ(t))
k
, then T has a unique fixed point in X and for any x0 ∈ X the

sequence of successive approximations (Tnx0) converges to the fixed point of a mapping T .

Corollary 3.6. If (X, d) is a complete metric space and T : X 7→ X a mapping such that
exist a nondecreasing continuous function θ : (0,∞) 7→ (1,∞) and k ∈ (0, 1) such that for
any x, y ∈ X the following implication holds(

1

2
d(x, Tx) < d(x, y) ∧ Tx 6= Ty

)
=⇒ θ(d(Tx, Ty)) ≤ (θ(d(x, y)))

k
, (7)
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then T has a unique fixed point in X and for any x0 ∈ X the sequence of successive approx-
imations (Tnx0) converges to the fixed point of a mapping T .

The mapping T fulfilling (7) for a nondecreasing continuous function θ : (0,∞) 7→ (1,∞)
and k ∈ (0, 1) will be called a simple θ-Suzuki contraction.

Theorem 3.2. If (X, d) is a complete metric space and T : X 7→ X a mapping such that
exist a nondecreasing function θ : (0,∞) 7→ (1,∞) and k ∈ (0, 1) such that for any x, y ∈ X
the following implication holds(

1

2
d(x, Tx) < d(x, y) ∧ Tx 6= Ty

)
=⇒ θ(d(Tx, Ty)) ≤ (θ(N(x, y)))

k
, (8)

where

N(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

1

2
(d(x, Ty) + d(y, Tx))

}
,

and saltuses on the left at each discontinuity t of the function θ are less than θ(t)− (θ(t))
k
,

i.e., sups<t θ(s) > (θ(t))
k
, then T has a unique fixed point in X and for any x0 ∈ X the

sequence of successive approximations (Tnx0) converges to the fixed point of a mapping T .

Proof. If x0 ∈ X is arbitrary, define the iterative sequence (xn) ⊆ X such that xn = Txn−1,
n ∈ N. If xn = xn−1 for some n ∈ N, then xn−1 is a fixed point of T . Thus, assume that
xn 6= xn−1 for any n ∈ N. Since 1

2 (d(xn−1, xn) + d(xn, xn)) < d(xn−1, xn), the condition
(8) holds for any n ∈ N for

N(xn−1, xn) = max{d(xn−1, xn), d(xn, xn+1),
1

2
d(xn−1, xn+1)}.

Further estimations of d(xn−1, xn) are similar as in the proof of Theorem 3.1 leading to
lim
n→∞

d(xn, xn+1) = 0. Assume that the sequence (xn) is not a Cauchy sequence, so for some

ε > 0 out of the set of discontinuities of the function θ and the sequence (ni), (mi) such
that mi > ni ≥ i, i ∈ N, we have d(xni , xmi) ≥ ε and d(xni , xmi−1) < ε, where ni and mi

are chosen to be minimal for each i ∈ N as previously described. Considerations regarding
lim
n→∞

d(xni±i, xmi±i) for i ∈ {0, 1} do not include the direct use of the contractive condition,

hence the conclusion will be the same as in the proof of Theorem 3.1, meaning

ε = lim
i→∞

d(xni , xmi) = lim
i→∞

d(xni−1, xmi−1) = lim
i→∞

d(xni , xmi−1) = lim
i→∞

d(xni−1, xmi)

Impacted by (8), observe that 1
2d(xni−1, xni) < d(xni−1, xmi−1) starting from some n0 ∈ N

and θ(ε) ≤ θ (d(xni , xmi)) ≤ (θ (N(xni−1, xmi−1)))
k
, where

N(xni−1, xmi−1) = max{d(xni−1, xmi−1), d(xni−1, xni), d(xmi−1, xmi),

1

2
(d(xni−1, xmi) + d(xmi−1, xni))}.

If N(xni−1, xmi−1) ∈ {d(xni−1, xmi−1), d(xni−1, xni), d(xmi−1, xmi)} for infinitely many n ∈
N, we have the same estimations as in the previous case since limi→∞ θ(d(xmi−1, xmi)) and
limi→∞ θ(d(xni−1, xni)) are equal to 1 and the case N(xni−1, xmi−1) = d(xni−1, xmi−1) is
impossible as it has been proven in (5).
It remains to discuss if N(xni−1, xmi−1) = 1

2 (d(xni−1, xmi) + d(xmi−1, xni)) for n ≥ n0 ∈ N.
Observe that

1

2
(d(xni−1, xmi) + d(xmi−1, xni)) ≤ max{d(xni−1, xmi), d(xmi−1, xni)}

and denote that maximum with u(xni−1, xmi−1), then θ(ε) ≤ (θ(ε))
k
. Consequently, (xn)

is a Cauchy sequence and there exists some x∗ ∈ X satisfying lim
n→∞

xn = x∗. Furthermore,



38 Erdal Karapinar, Marija Cvetković

d(Tx∗, x∗) ≤ N(xn, x
∗) + d(xn+1, x

∗) for some

N(x∗, xn) = max{d(x∗, xn), d(x∗, Tx∗), d(xn, xn+1),
1

2
(d(x∗, xn+1) + d(xn, Tx

∗))}

because (8) holds as 1
2d(xn, xn+1) < d(xn, x

∗) for n ≥ n1 is deduced in a same way as in
the proof of Theorem 3.1. As first three options for N(x∗, xn) are equivalent to those of the
proof of Theorem 3.1 (i)-(iii), we will refer the readers to the previous proof and consider
only the case that differs. Indeed, if N(x∗, xn) ∈ {d(x∗, xn), d(x∗, Tx∗), d(xn, xn+1)} for
infinitely many n, it follows Tx∗ = x∗.
Elseways, suppose that N(x∗, xn) = 1

2 (d(x∗, xn+1) + d(xn, Tx
∗)) for any n ≥ n2, then

d(Tx∗, x∗) ≤ 1

2
(d(x∗, xn+1) + d(xn, Tx

∗)) + d(xn+1, x
∗),

for any n ≥ n2. Letting n→∞, we acquire d(Tx∗, x∗) ≤ 1
2d(x∗, Tx∗), meaning Tx∗ = x∗.

All derived cases guarantee the existence of the fixed point of T and the uniqueness is
obtained analogously as in the proof of Theorem 3.1. �

We can state the analogous corollaries to Corollary 3.1 and 3.2 when (8) is fulfilled.

4. F -Suzuki contraction

As a corollary we may gather several results for F -contraction and F -Suzuki contrac-
tion on a complete metric space. Recall that the idea of F -contraction came from [18].

Definition 4.1. [18] Let F : (0,∞)→ R be a function fulfilling the following conditions:

(F1) F is strictly increasing, i.e., 0 < x < y =⇒ F (x) < F (y);
(F2) For each sequence (xn) ⊆ (0,∞),

lim
n→∞

xn = 0 ⇔ lim
n→∞

F (xn) = −∞;

(F3) There exists k ∈ (0, 1), such that lim
x→0+

xkF (x) = 0.

Denote by F the set of all functions F : (0,∞) → R satisfying (F1) − (F3), then the F -
contraction is defined as follows:

Definition 4.2. Let (X, d) be a metric space and T : X → X a mapping. If there exist
F ∈ F and τ > 0 such that, for all x, y ∈ X,

d(Tx, Ty) > 0 =⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)),

then a mapping T is called a F -contraction.

In [15], (F3) was replaced by the continuity presumption and the authors have proven that
F -Suzuki contraction has a unique fixed point on a complete metric space.

Definition 4.3. Let (X, d) be a metric space. A mapping T : X 7→ X is said to be an
F -Suzuki contraction if there exist τ > 0 and continuous mapping F ∈ F∗ fulfilling (F1) and
(F2) such that for all x, y ∈ X with Tx 6= Ty

1

2
d(x, Tx) < d(x, y) =⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)), x, y ∈ X. (9)

Theorem 4.1. [15] Let (X, d) be a complete metric space and T : X 7→ X a F ∗-Suzuki
contraction. Then T has a unique fixed point x∗ ∈ X and, for every x ∈ X, a sequence
(Tnx) is convergent to x∗.

Lemma 4.1. If a mapping T : X 7→ X is a F -Suzuki contraction on a complete metric
space, then T is a simple θ-Suzuki contraction on X.



Remarks on some generalizations of θ-contraction 39

Proof. Assume that T : X 7→ X is a F -contraction on a complete metric space (X, d)
fulfilling (9). Define θ : (0,+∞) 7→ (1,∞) as

θ(x) = ee
F (x), x ∈ (0,∞). (10)

Mapping is well-defined because ee
F (x)

> 1 for x > 0 and non-decreasing since (F1) holds.

Furthermore, if 1
2d(x, y) < d(x, Tx), then θ(d(Tx, Ty)) = ee

F (d(Tx,Ty)) ≤
(
ee
F (d(x,y))

)e−τ
.

Accordingly, T is a simple θ-Suzuki contraction. �

Taking into the account Lemma 4.1, we derive Theorem 4.1 as a direct consequence of
Theorem 3.1. Additionally, we may state the result for a newly defined class of F -Suzuki
type contractions

Definition 4.4. Let (X, d) be a metric space. A mapping T : X 7→ X is said to be an
F -Suzuki type contraction if there exist τ > 0 and continuous mapping F ∈ F∗ fulfilling
(F1) and (F2) such that for all x, y ∈ X with Tx 6= Ty

1

2
d(x, Tx) < d(x, y) =⇒ τ + F (d(Tx, Ty)) ≤ F (Md(x, y)), (11)

where

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

1

2
d(x, Ty), d(y, Tx)

}
.

Corollary 4.1. Let (X, d) be a complete metric space and T : X 7→ X a F ∗-Suzuki type
contraction. Then T has a unique fixed point x∗ ∈ X and, for every x ∈ X, a sequence
(Tnx) is convergent to x∗.

Proof. If T : X 7→ X is a F -Suzuki type contraction on a complete metric space (X, d), then,
analogously as in the proof of Lemma 4.1, we have that T is a θ-type Suzuki contraction

for θ defined by (10). As a matter of fact, θ(d(Tx, Ty)) = ee
F (d(Tx,Ty)) ≤ ee

F (M(x,y))−τ
=

(θ(M(x, y)))
e−τ

for

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

1

2
d(x, Ty), d(y, Tx)

}
.

Hence, T is a θ-type Suzuki contraction. �

Theorem 4.2. Let (X, d) be a complete metric space and a mapping T : X 7→ X. If there
exist τ > 0 and a continuous nondecreasing mapping F ∈ F∗ such that for all x, y ∈ X with
Tx 6= Ty and 1

2d(x, Tx) < d(x, y), we have

τ + F (d(Tx, Ty)) ≤ F (K(x, y)) , (12)

where
K(x, y) = αd(x, y) + βd(x, Tx) + γd(y, Ty) + δ1d(x, Ty) + δ2d(y, Tx)

for α+β+γ+ 2δ1 + δ2 ≤ 1 for α, β, γ, δ1, δ2 ≥ 0, then a mapping T has a unique fixed point
in X.

Proof. Obviously, if (12) is fulfilled, then

αd(x, y) + βd(x, Tx) + γd(y, Ty) + δ1d(x, Ty) + δ2d(y, Tx) ≤M(x, y),

whenever Tx 6= Ty for x, y ∈ X. The reaslon for this conclusion lyes in δ1 ≤ 1
2 or δ2 ≤ 1

2
and the symmetry of the inequalities (4) and (12). �

Observe that the Theorem 4.2 is generalization of the results of [7] concerning F-Hardy-
Rogers contractive condition, but also F-Kannan and F -Chatterjea only with the additional
assumption that F is continuous. We may notice, that even some requests are omitted. we
still have better results for the class F∗, then for F.
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5. Applications

The applications of presented results connected to θ-contractions, F -contractions and
also Hardy-Rogers (Kannan, Chaterrjea) contractions have been easily found mostly in the
area of differential, difference and integral equations. We will discuss on Fredholm integral
equation of the second kind but on time scales. For that purpose, we collect some basic
definitions regarding time scales.

Definition 5.1. A time scale is an nonempty closed subset of the set of real numbers.

A time scale is usually denoted by the symbol T. The forward jump operator σ : T 7→ T and
the backward jump operator ρ : T 7→ T are defined as usual along with a Hilger derivative.
(see [5])

Definition 5.2. A continuous function f : T 7−→ R is pre-differentiable with region of dif-
ferentiation D if

(i) D ⊂ Tκ,
(ii) Tκ\D is countable and contains no right-scattered elements of T,
(iii) f is differentiable at each t ∈ D.

Theorem 5.1. [5] Let t0 ∈ T, x0 ∈ R, f : Tκ 7−→ R be a given regulated function. Then
there exists the unique pre-differentiable function F satisfying

F∆(t) = f(t) for all t ∈ D, F (t0) = x0.

Definition 5.3. Assume that f : T 7→ R is a regulated function. Any function F by Theorem
5.1 is a pre-antiderivative of f . The indefinite integral of the regulated function f is defined
by ∫

f(t)∆t = F (t) + c,

where c is an arbitrary constant and F is a pre-antiderivative of f .
The Cauchy integral of f is defined by∫ s

τ

f(t)∆t = F (s)− F (τ) for all τ, s ∈ T.

A function F : T 7−→ R is called an antiderivative of f : T 7→ R provided

F∆(t) = f(t) holds for all t ∈ Tκ.

Consider the homogenous nonlinear Fredholm integral equation of the second kind as in [2]:

x(t) = λ

∫ b

a

K(s, t, σ(s), σ(t), x(s))∆s, t ∈ [a, b]T, (13)

where K : ([a, b]T)4×R→ R. If X = C[a, b]T is the set of all continuous real-valued functions
with the domain [a, b]T equipped with the metric d(x, y) = maxa≤s≤b |x(s)− y(s)|, for any
x, y ∈ X, then (X, d) is a complete metric space. Define the mapping T : X 7→ X such that

Tx(t) = λ

∫ b

a

K(s, t, σ(s), σ(t), x(s))∆s, (14)

for any t ∈ [a, b]T and x ∈ X. Clearly, the fixed point of T is a solution of the integral
equation (13) and vice versa.

Theorem 5.2. Assume that the function K : ([a, b]T)4 × R 7→ R is ∆-integrable and T :
X 7→ X is defined by (14). If, for any x, y ∈ X such that Tx 6= Ty,

|K(s, t, σ(s), σ(t), x(s))−K(s, t, σ(s), σ(t), y(s))| ≤ 1

λ(b− a)
eα(s)|x(s)− y(s)|, (15)
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where α(s) = − 1
|x(s)−y(s)|+1 , holds for any s ∈ [a, b]T and x, y ∈ X, then T has a unique

fixed point in X.

Proof. Evidently, T : X 7→ X is a well-defined function and let x, y ∈ X be arbitrary, then

|Tx(y)− Ty(t)| = λ

∣∣∣∣∣
∫ b

a

K(s, t, σ(s), σ(t), x(s))ds−
∫ t

0

K(s, t, σ(s), σ(t), y(s))ds

∣∣∣∣∣
≤ 1

b− a

∫ b

a

e−
1

(|x(s)−y(s)|+1) |x(s)− y(s)| ds

≤ e−
1

d(x,y)+1 d(x, y),

further implies d(Tx, Ty) ≤ e−
1

d(x,y)+1 d(x, y). Moreover, if θ(t) = et for t > 0 and k = e−1,
then for any x, y ∈ X such that Tx 6= Ty, we have

θ (d(Tx, Ty)) ≤ (θ (d(x, y)))
k
.

�

Theorem 5.3. Assume that the function K : ([a, b]T)4 × R 7→ R is ∆-integrable and T :
X 7→ X is defined by (14). If for any x, y ∈ X such that Tx 6= Ty

|K(s, t, σ(s), σ(t), x(s))−K(s, t, σ(s), σ(t), y(s))| ≤ 1

λ(b− a)
eα(s)M(x(s), y(s)), (16)

where α(s) = − 1
|x(s)−y(s)|+1 , holds for any s ∈ [a, b]T and x, y ∈ X, where

Mx,y(s) = max {|x(s)− y(s)|, |x(s)− Tx(s)|, |y(s)− Ty(s)|} ,

then T has a unique fixed point in X.

Proof. Similarly to the estimations made in the proof of Theorem 5.2 for θ(t) = et for t > 0
and k = e−1 such that for any x, y ∈ X such that Tx 6= Ty, we have

θ (dλ(Tx, Ty)) ≤ (θ (M(x, y)))
k
.

where M(x, y) = max {dλ(x, y), dλ(x, Tx), dλ(y, Ty)} and all assumptions of Theorem 3.1
are fulfilled, hence T has a unique fixed point in X. �

6. Conclusions

Presented results are generalizations of many results like [3, 7, 11, 14, 17] among
others. The definitions of both Θ and F are relaxed of superfluous assumptions under more
complex contractive conditions. Obviously, the same approach and similar proof techniques
may be used in other settings like Branciari metric space ([12]), partial metric spaces, cone
metric spaces, etc. The question remaining open is can the request regarding saltuses be
omitted or replaced by less demanding assumption.
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[3] J. Ahmad, A. E. Al-Mazrooeia and Y. J. Cho, Y. Yang, Fixed point results for generalized θ-contractions,

J. Nonlinear Sci. Appl. 10 (2017), 2350-–2358.

[4] I. Altun and M. Qasim, Application of Perov type fixed point results to complex partial differential

equations, Math. Meth. Appl. Sci. 44 (2021), 2059–2070.

[5] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications,
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