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ON AN EIGENVALUE PROBLEM INVOLVING THE VARIABLE

EXPONENT AND INDEFINITE WEIGHT

Qing-Mei Zhou1, Ke-Qi Wang∗2, Bin Ge3

This paper is mainly concerned with the p(x)-Laplacian eigenvalue problem with
a indefinite weight function, that is,{

−∆p(x)u = λV (x)|u|p(x)−2u, in Ω,

u = 0, on ∂Ω.

The main result of this paper establishes that any λ > 0 sufficiently small is an eigen-

value of the above nonhomogeneous quasilinear problem. The proofs will be based on the
Ekeland’s variational principle combined with adequate variational techniques.
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1. Introduction

The study of eigenvalue problems involving operators with variable exponents growth
conditions has captured a special attention in the last few years. For more details we refer
to Mihăilescu et al. [1, 2, 3, 4, 5, 6, 7], Fan, Zhang and Zhao [8, 9], Kefi et al. [10, 11, 12]
and Benouhiba [13].

Recently, Ge in [14] studied the following nonhomogeneous eigenvalue problem{
−div(a(|∇u|)∇u) = λV (x)|u|q(x)−2u, in Ω,
u = 0, on ∂Ω,

(P )

where λ > 0 is a real number, V is an indefinite sign-changing weight and q : Ω→ (1,∞) is
a continuous function. In the case when a(|∇u(x)|) = |∇u(x)|p(x)−2 with p is a continuous
function on Ω, problem (P ) is reduced to the following nonlinear eigenvalue problem{

−div(|∇u|p(x)−2∇u) = λV (x)|u|q(x)−2u, in Ω,
u = 0, on ∂Ω.

(P0)

Thus, when 1 < q(x) < inf
x∈Ω

p(x) ≤ sup
x∈Ω

p(x) < s(x) for any x ∈ Ω, that there exists λ0 > 0

such that any λ ∈ (0, λ0) is an eigenvalue for problem (P0).
From the above cited contributions, we are interested in the existence of solutions for

the following the nonhomogeneous eigenvalue problem (P0) with q(x) = p(x){
−div(|∇u|p(x)−2∇u) = λV (x)|u|p(x)−2u, in Ω,
u = 0, on ∂Ω.

(P1)
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On the other hand, problems like (P0) have been largely considered in the literature in the
recent years. We give in what follows a concise but complete image of the actual stage of
research on this topic.

• In the case when V (x) ≡ 1, min
x∈Ω

q(x) < min
x∈Ω

p(x) and q(x) has a subcritical growth

Mihăilescu and Rădulescu [1] used the Ekeland’s variational principle in order to prove the
existence of a continuous family of eigenvalues which lies in a neighborhood of the origin.

• In the case when V (x) ≡ 1, max
x∈Ω

p(x) < min
x∈Ω

q(x) ≤ max
x∈Ω

q(x) < Np(x)
N−p(x) , similar

with those used by Fan and Zhang in the proof of Theorem 4.7 in [15], can be applied in
order to show that any λ > 0 is an eigenvalue of problem (P0).

• In the case when V (x) ≡ 1, max
x∈Ω

q(x) < min
x∈Ω

p(x) it can be proved that the energy

functional associated to problem (P0) has a nontrivial minimum for any positive λ (see
Theorem 4.3 in [15]). Clearly, in this case the result in [1] can be also applied. Consequently,
in this situation there exist two positive constants λ∗ and λ∗ such that any λ ∈ (0, λ∗) ∪
(λ∗,+∞) is an eigenvalue of problem (P0).

• The same problem, for V (x) = 1 and p(x) = q(x) is studied by Fan, Zhang and
Zhao in [9]. The authors established the existence of infinitely many eigenvalues for problem
(P0) by using an argument based on the Ljusternik- Schnirelmann critical point theory.
Denoting by Λ the set of all nonnegative eigenvalues, they showed that sup Λ = +∞ and
they pointed out that only under special conditions, which are somehow connected with a
kind of monotony of the function p(x), we have inf Λ > 0 (this is in contrast with the case
when p(x) is a constant; then, we always have inf Λ > 0).

Motivated by all results mentioned above, it is very natural for us to pose an inter-
esting question, that is,

Question: In the case that V (x) is allowed to be sign-changing and p(x) = q(x).
Can we obtain the same results as described in [1, 14] by replacing them with some suitable
assumptions?

Few papers have treated the existence of nontrivial solutions for problem (P1). Can
we achieve the result? In the present paper, we restrict our attention to the existence of a
continuous family of eigenvalues for problem (P1) and are most interested in seeking definite
answers to Question. To be precise, we make the following hypotheses on p, r, V .

(h1) p, r ∈ C+(Ω), 1 < p(x) ≤ N , r(x) > Np(x)
p(x)−1 , ∀x ∈ Ω, V ∈ Lr(x)(Ω) ∩ C(Ω) and

V > 0 in Ω0 ⊂ Ω, where |Ω0| > 0.
(h2) There exists an open subset U ⊂ Ω0 and a point x0 ∈ U such that p(x0) < p(x)

for all x ∈ ∂U .
Thus, the case considered here is different from all the cases studied before. In this new
situation we will show the existence of a continuous family of eigenvalues for problem (P1)
in a neighborhood of the origin. More precisely, we show that there exists λ0 > 0 such that
any λ ∈ (0, λ0) is an eigenvalue for problem (P1).

We start with some preliminary basic results on the theory of variable exponent

Sobolev space W
1,p(x)
0 (Ω). For more details we refer to the book by Diening-Harjulehto-

Hästö-Ružička [16] and the papers by Fan et al. [17, 18], Kovác̆́ık-Rákosńık [19], and
Edmunds-Rákosńık [20, 21]. Throughout this article, we assume that p ∈ C(Ω) and p(x) > 1,
for all x ∈ Ω.

Set C+(Ω) = {h | h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}. For any h ∈ C+(Ω) we
define h+ = sup

x∈Ω
h(x) and h− = inf

x∈Ω
h(x). For any p ∈ C+(Ω), we define the generalized

Lebesgue space

Lp(x)(Ω) = {u : Ω→ R | u is measurable and

∫
Ω

|u|p(x)dx < +∞}.
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This Luxemburg type norm |u|p(x) = inf
{
µ > 0 |

∫
Ω

∣∣∣u(x)
µ

∣∣∣p(x)

dx ≤ 1
}

makes Lp(x)(Ω)

a Banach space. We denote by Lp
′(x)(Ω) the conjugate space of Lp(x)(Ω), where 1

p(x) +

1
p′(x) = 1. For any u ∈ Lp(x)(Ω), v ∈ Lp

′(x)(Ω) the Hölder-type inequality
∣∣∣ ∫Ω uvdx∣∣∣ ≤

2|u|p(x)|v|p′(x) holds true.
An important role in manipulating the generalized Lebesgue-Sobolev spaces is played

by the modular of the Lp(x)(Ω) space, which is the mapping ρ : Lp(x)(Ω) → R defined by
ρ(u) =

∫
Ω
|u|p(x)dx. If un, u ∈ Lp(x)(Ω), then the following relations hold:

|u|p(x) > 1⇒ |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x),

|u|p(x) < 1⇒ |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x),

|un − u|p(x) → 0⇔ ρ(un − u)→ 0.

(1)

Moreover, if s(x) ∈ L∞(Ω) with 1 ≤ p(x)s(x) ≤ +∞ for all x ∈ Ω, then for any u ∈ Ls(x)(Ω)
with u 6= 0, we have

|u|p(x)s(s) > 1⇒ |u|p
−

p(x)s(s) ≤
∣∣|u|p(x)

∣∣
s(x)
≤ |u|p

+

p(x)s(s),

|u|p(x)s(s) < 1⇒ |u|p
+

p(x)s(s) ≤
∣∣|u|p(x)

∣∣
s(x)
≤ |u|p

−

p(x)s(s).
(2)

We also define W
1,p(x)
0 (Ω) as the closure of C∞0 (Ω) under the norm ‖u‖ = |∇u|p(x). Thus, the

space W
1,p(x)
0 (Ω) is a separable and reflexive Banach space. Next, we recall some embedding

results regarding variable exponent Lebesgue-Sobolev spaces. We note that if α ∈ C+(Ω)

and α(x) < p∗(x) for all x ∈ Ω, then the embedding W
1,p(x)
0 (Ω) ↪→ Lα(x)(Ω) is compact

and continuous, where p∗(x) denotes the corresponding critical Sobolev exponent, that is

p∗(x) = Np(x)
N−p(x) if p(x) < N or p∗(x) = +∞ if p(x) ≥ N . We refer to [19] for more properties

of Lebesgue and Sobolev spaces with variable exponent.
For applications of Sobolev spaces with variable exponent we refer to Acerbi and

Mingione [22], Chen, Levine, Rao [23], Ruzicka [24], and Zhikov [25].

2. The main results and proof of the theorem

We say that λ ∈ R is an eigenvalue of problem (P1) if there exists u ∈W 1,p(x)
0 (Ω)\{0}

such that ∫
Ω

|∇u|p(x)−2∇u∇vdx = λ

∫
Ω

V (x)|u|p(x)−2uvdx,

for all v ∈ W 1,p(x)
0 (Ω). We point out that if λ is an eigenvalue of problem (P1), then the

corresponding u ∈W 1,p(x)
0 (Ω)\{0} is a weak solution of (P1).

Our main result is given by the following theorem.

Theorem 2.1. Assume that conditions (h1) and (h2) are fulfilled. Then there exists λ0 > 0
such that any λ ∈ (0, λ0) is an eigenvalue for problem (P1).

Proof. Let E denote the generalized Sobolev spaceW
1,p(x)
0 (Ω). Define the functionals

J, I : E → R by

J(u) =

∫
Ω

1

p(x)
|∇u|p(x)dx and I(u) =

∫
Ω

V (x)

p(x)
|u|p(x)dx.

Standard arguments imply that J, I ∈ C1(E,R) with

〈J ′(u), v〉 =

∫
Ω

|∇u|p(x)−2∇u∇vdx and 〈I ′(u), v〉 =

∫
Ω

V (x)|u|p(x)−2uvdx,
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for any u, v ∈ E. Next, for any λ > 0, we define the functional associated with problem (P ),
ϕλ : E → R by

ϕλ(u) = J(u)− λI(u), ∀u ∈ E.

We divide the proof of Theorem 2.1 into three steps.
• Step 1. There exists λ0 > 0 such that for any 0 < λ < λ0 there exist ρ, ν > 0 such

that ϕλ(u) ≥ ν for any u ∈ E with ‖u‖ = ρ.
Let 1

r(x) + 1
r′(x) = 1. Assumption (h1) implies that r(x) > N , ∀x ∈ Ω, furthermore,

p(x)r(x) > N , ∀x ∈ Ω. Thus, p(x)r′(x) < p∗(x), ∀x ∈ Ω it follows that the embeddings

E ↪→ Lp(x)r′(x)(Ω) is compact and continuous. So, there exists a positive constant c1 > 0
such that

|u|p(x)r′(x) ≤ c1‖u‖. (3)

We fix ρ ∈ (0, 1) such that ρ < 1
c1

. Then relation (3) implies |u|p(x)r′(x) < 1, ∀ u ∈
E with ‖u‖ = ρ. Taking into account relations (2) and (3) we deduce that for any u ∈ E
with ‖u‖ = ρ the following inequalities hold true:

ϕλ(u) ≥ 1

p+

∫
Ω

|∇u|p(x)dx− λ

p−

∫
Ω

|V (x)||u|p(x)dx

≥ 1

p+
‖u‖p

+

− λ

p−
|V |r(x)

∣∣|u|p(x)
∣∣
q′(x)

≥ 1

p+
‖u‖p

+

− λ

p−
|V |r(x)|u|p

−

p(x)r′(x)

≥ 1

p+
‖u‖p

+

− λ

p−
|V |r(x)c

p−

1 ‖u‖p
−

=
1

p+
ρp

+

− λ

p−
|V |r(x)c

p−

1 ρp
−

=ρp
−
( 1

p+
ρp

+−p− − λ

p−
|V |r(x)c

p−

1

)
.

By the above inequality we remark that if we define λ0 = p−ρp
+−p−

2cp
−

1 p+|V |r(x)
, then for any λ ∈

(0, λ0) any u ∈ E with ‖u‖ = ρ there exists ν = ρp
+

2p+ > 0 such that ϕλ(u) ≥ ν > 0. The Step

1 is completed.
• Step 2. There exists η ∈ E such that η ≥ 0, η 6= 0 and ϕλ(η) < 0, for t > 0 small

enough.
From (h2), we may assume that U ⊂ Ω0, then there is ε1 > 0 such that p(x0) <

p(x)− 4ε1 for any x ∈ ∂U , and there is ε2 > 0 such that

p(x0) < p(x)− 2ε1, ∀x ∈ Bε2(∂U), (4)

where Bε2(∂U) = {x : ∃y ∈ ∂U s.t. |x − y| < ε2}, and there is ε3 > 0 such that Bε3(x0) ⊂
U \Bε2(∂U) and

|p(x0)− p(x)| < ε1, ∀x ∈ Bε3(x0). (5)

From (4) and (5) it follows that

p(x) > p(y) + ε1, ∀x ∈ Bε2(∂U),∀y ∈ Bε3(x0). (6)

Let η ∈ C∞0 (Ω0) such that |∇η(x)| ≤ c, 0 ≤ η(x) ≤ 1 for any x ∈ Ω0, and

η(x) =

{
0, x 6∈ U ∪Bε2(∂U),
1, x ∈ U \Bε2(∂U).
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Thus, for all t ∈ (0, δ) with δ = min{1, 1
c}, we have

ϕλ(tη) =

∫
Ω

1

p(x)
|∇tη|p(x)dx− λ

∫
Ω

1

p(x)
V (x)|tη|p(x)dx

=

∫
Bε2 (∂U)

1

p(x)
|∇tη|p(x)dx− λ

∫
Bε3 (x0)

1

p(x)
V (x)|tη|p(x)dx

≤ 1

p−

∫
Bε2(∂U)

|ct|p(x)dx− λV0

p+

∫
Bε3 (x0)

|t|p(x)dx ≤ 1

p−
|Bε2(∂U)|(ct)p(ξ1) − λV0

p+
|Bε3(x0)|tp(ξ2),

where ξ1 ∈ Bε2(∂U), ξ2 ∈ Bε3(x0) and V0 = min
x∈Bε3 (x0)

V (x) > 0.

On the other hand, using (6) it follows that p(ξ1) > p(ξ2) + ε1 > p(ξ2). Therefore
ϕλ(tη) < 0 t > 0 small enough. The proof of Step 2 is completed.

By Step 1, we have

inf
v∈∂Bρ(0)

ϕλ(v) > 0. (7)

On the other hand, by Step 2, there exists η ∈ E such again ϕλ(tη) < 0 for t > 0 small

enough. Using (2) and (3), we have ϕλ(u) ≥ 1
p+ ‖u‖

p+−λcp
−

1 |V |r(x)‖u‖p
−
, ∀u ∈ Bρ(0). Thus,

−∞ < cλ := inf
v∈Bρ(0)

ϕλ(v) < 0. Now let ε be such that 0 < ε < inf
v∈∂Bρ(0)

ϕλ(v)− inf
v∈Bρ(0)

ϕλ(v).

Then, by applying Ekeland’s variational principle to the functional ϕλ : Bρ(0) → R, there

exist uε ∈ Bρ(0) such that ϕλ(uε) ≤ inf
v∈Bρ(0)

ϕλ(v)+ε, and ϕλ(uε) < ϕλ(u)+ε‖u−uε‖, u 6=

uε. Since ϕλ(uε) ≤ inf
v∈Bρ(0)

ϕλ(v) + ε ≤ inf
v∈Bρ(0)

ϕλ(v) + ε < inf
v∈∂Bρ(0)

ϕλ(v), we deduce that

uε ∈ Bρ(0).

Now, we define Tλ : Bρ(0) → R by Tλ(u) = ϕλ(u) + ε‖u − uε‖. It is clear that uε is

an minimum of Tλ. Therefore, for small t > 0 and v ∈ B1(0), we have Tλ(uε+tv)−Tλ(uε)
t ≥ 0,

which implies that ϕλ(uε+tv)−ϕλ(uε)
t +ε‖v‖ ≥ 0. As t→ 0, we have 〈dϕλ(uε)+ε‖v‖ ≥ 0, ∀v ∈

B1(0). Hence, ‖ϕ′λ(uε)‖E∗ ≤ ε. We deduce that there exists a sequence {un}∞n ⊂ Bρ(0) such
that

ϕλ(un)→ cλ and ϕ′λ(un)→ 0. (8)

It is clear that {un}∞n is bounded in E. Thus, there exists u ∈ E such that, up to a
subsequence, un ⇀ u in E.

• Step 3. We will show that un → u in E.

Let α(x) = r(x)p(x)
r(x)−p(x) . Assumption (h1) implies that r(x) > N , ∀x ∈ Ω. Thus,

α(x) < p∗(x), ∀x ∈ Ω. Using again the fact that p(x) < p∗(x), ∀x ∈ Ω, we deduce that the
embeddings E ↪→ Lα(x)(Ω) and E ↪→ Lp(x)(Ω) are compact and continuous. So, there exists
a positive constant c2 > 0 such that |u|p(x) ≤ c2‖u‖, ∀u ∈ E. Thus

|un|p(x) ≤ c2‖un‖ and un → u in Lα(x)(Ω). (9)

The Hölder’s type inequality and relation (9) imply∣∣∣ ∫
Ω

V (x)|un|p(x)−2un(un − u)dx
∣∣∣ ≤ |V |r(x)

∣∣∣|un|p(x)−1
∣∣∣
p′(x)
|un − u|α(x)

≤|V |r(x)|
(
1 + |un|p

+−1
p(x)

)
|un − u|α(x) ≤ |V |r(x)|

(
1 + cp

+−1
2 ‖un‖p

+−1
)
|un − u|α(x)

≤|V |r(x)|
(
1 + cp

+−1
2 ρp

+−1
)
|un − u|α(x) → 0, as n→ +∞.

(10)

Moreover, since dϕλ(un)→ 0 and {un}∞n is bounded in E, we have

|〈dϕλ(un), un−u〉| ≤ |〈dϕλ(un), un〉|+|〈dϕλ(un), u〉| ≤ ‖dϕλ(un)‖E∗‖un‖+‖dϕλ(un)‖E∗‖u‖,
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that is, lim
n→+∞

〈dϕλ(un), un − u〉 = 0. Using (10) and the last relation we deduce that

lim
n→+∞

∫
Ω

|∇un|p(x)−2∇un∇(un − u)dx = 0. (11)

From (11) and the fact that un ⇀ u in E it follows that lim
n→→+∞

〈J ′(un), un−u〉 = 0,

and by Theorem 3.1 in Fan and Zhang [15] we deduce that un → u in E. Thus, in view of
(8), we obtainϕλ(u) = cλ < 0 and ϕ′λ(u) = 0. The proof of Theorem 2.1 is completed. �
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[3] M. Mihăilescu, V. Rădulescu, Continuous spectrum for a class of nonhomogeneous differential operators,
Manuscripta Math., 125 (2008), 157–167.
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[19] O. Kovác̆́ık, K. Rákosńık, On spaces Lp(x) and Wm,p(x), Czechoslov. Math. J., 41 (1991), 592–618.
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