

ON AN EIGENVALUE PROBLEM INVOLVING THE VARIABLE EXPONENT AND INDEFINITE WEIGHT

Qing-Mei Zhou¹, Ke-Qi Wang^{*2}, Bin Ge³

This paper is mainly concerned with the $p(x)$ -Laplacian eigenvalue problem with a indefinite weight function, that is,

$$\begin{cases} -\Delta_{p(x)}u = \lambda V(x)|u|^{p(x)-2}u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega. \end{cases}$$

The main result of this paper establishes that any $\lambda > 0$ sufficiently small is an eigenvalue of the above nonhomogeneous quasilinear problem. The proofs will be based on the Ekeland's variational principle combined with adequate variational techniques.

Keywords: Eigenvalue problem, Variable exponent, Indefinite weight, Weak solution.

MSC2010: 35D 05, 35J 60, 35P 30.

1. Introduction

The study of eigenvalue problems involving operators with variable exponents growth conditions has captured a special attention in the last few years. For more details we refer to Mihăilescu et al. [1, 2, 3, 4, 5, 6, 7], Fan, Zhang and Zhao [8, 9], Kefi et al. [10, 11, 12] and Benouhiba [13].

Recently, Ge in [14] studied the following nonhomogeneous eigenvalue problem

$$\begin{cases} -\operatorname{div}(a(|\nabla u|)\nabla u) = \lambda V(x)|u|^{q(x)-2}u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases} \quad (P)$$

where $\lambda > 0$ is a real number, V is an indefinite sign-changing weight and $q : \overline{\Omega} \rightarrow (1, \infty)$ is a continuous function. In the case when $a(|\nabla u(x)|) = |\nabla u(x)|^{p(x)-2}$ with p is a continuous function on $\overline{\Omega}$, problem (P) is reduced to the following nonlinear eigenvalue problem

$$\begin{cases} -\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u) = \lambda V(x)|u|^{q(x)-2}u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega. \end{cases} \quad (P_0)$$

Thus, when $1 < q(x) < \inf_{x \in \Omega} p(x) \leq \sup_{x \in \Omega} p(x) < s(x)$ for any $x \in \overline{\Omega}$, that there exists $\lambda_0 > 0$ such that any $\lambda \in (0, \lambda_0)$ is an eigenvalue for problem (P_0) .

From the above cited contributions, we are interested in the existence of solutions for the following the nonhomogeneous eigenvalue problem (P_0) with $q(x) = p(x)$

$$\begin{cases} -\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u) = \lambda V(x)|u|^{p(x)-2}u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega. \end{cases} \quad (P_1)$$

¹Library, Northeast Forestry University, Harbin, 150040, P.R. China, e-mail: zhouqm@nefu.edu.cn

²College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, 150040, P.R. China, e-mail: wangkqnefu@163.com (Correspondence author)

³School of Mathematical Sciences, Harbin Engineering University, Harbin, 150001, P.R. China, e-mail: gebin791025@hrbeu.edu.cn

On the other hand, problems like (P_0) have been largely considered in the literature in the recent years. We give in what follows a concise but complete image of the actual stage of research on this topic.

- In the case when $V(x) \equiv 1$, $\min_{x \in \bar{\Omega}} q(x) < \min_{x \in \bar{\Omega}} p(x)$ and $q(x)$ has a subcritical growth Mihăilescu and Rădulescu [1] used the Ekeland's variational principle in order to prove the existence of a continuous family of eigenvalues which lies in a neighborhood of the origin.
- In the case when $V(x) \equiv 1$, $\max_{x \in \bar{\Omega}} p(x) < \min_{x \in \bar{\Omega}} q(x) \leq \max_{x \in \bar{\Omega}} q(x) < \frac{Np(x)}{N-p(x)}$, similar with those used by Fan and Zhang in the proof of Theorem 4.7 in [15], can be applied in order to show that any $\lambda > 0$ is an eigenvalue of problem (P_0) .
- In the case when $V(x) \equiv 1$, $\max_{x \in \bar{\Omega}} q(x) < \min_{x \in \bar{\Omega}} p(x)$ it can be proved that the energy functional associated to problem (P_0) has a nontrivial minimum for any positive λ (see Theorem 4.3 in [15]). Clearly, in this case the result in [1] can be also applied. Consequently, in this situation there exist two positive constants λ_* and λ^* such that any $\lambda \in (0, \lambda_*) \cup (\lambda^*, +\infty)$ is an eigenvalue of problem (P_0) .
- The same problem, for $V(x) = 1$ and $p(x) = q(x)$ is studied by Fan, Zhang and Zhao in [9]. The authors established the existence of infinitely many eigenvalues for problem (P_0) by using an argument based on the Ljusternik- Schnirelmann critical point theory. Denoting by Λ the set of all nonnegative eigenvalues, they showed that $\sup \Lambda = +\infty$ and they pointed out that only under special conditions, which are somehow connected with a kind of monotony of the function $p(x)$, we have $\inf \Lambda > 0$ (this is in contrast with the case when $p(x)$ is a constant; then, we always have $\inf \Lambda > 0$).

Motivated by all results mentioned above, it is very natural for us to pose an interesting question, that is,

Question: In the case that $V(x)$ is allowed to be sign-changing and $p(x) = q(x)$. Can we obtain the same results as described in [1, 14] by replacing them with some suitable assumptions?

Few papers have treated the existence of nontrivial solutions for problem (P_1) . Can we achieve the result? In the present paper, we restrict our attention to the existence of a continuous family of eigenvalues for problem (P_1) and are most interested in seeking definite answers to **Question**. To be precise, we make the following hypotheses on p, r, V .

(h_1) $p, r \in C_+(\bar{\Omega})$, $1 < p(x) \leq N$, $r(x) > \frac{Np(x)}{p(x)-1}$, $\forall x \in \bar{\Omega}$, $V \in L^{r(x)}(\Omega) \cap C(\Omega)$ and $V > 0$ in $\Omega_0 \subset \Omega$, where $|\Omega_0| > 0$.

(h_2) There exists an open subset $U \subset \Omega_0$ and a point $x_0 \in U$ such that $p(x_0) < p(x)$ for all $x \in \partial U$.

Thus, the case considered here is different from all the cases studied before. In this new situation we will show the existence of a continuous family of eigenvalues for problem (P_1) in a neighborhood of the origin. More precisely, we show that there exists $\lambda_0 > 0$ such that any $\lambda \in (0, \lambda_0)$ is an eigenvalue for problem (P_1) .

We start with some preliminary basic results on the theory of variable exponent Sobolev space $W_0^{1,p(x)}(\Omega)$. For more details we refer to the book by Diening-Harjulehto-Hästö-Ružička [16] and the papers by Fan et al. [17, 18], Kováčik-Rákosník [19], and Edmunds-Rákosník [20, 21]. Throughout this article, we assume that $p \in C(\bar{\Omega})$ and $p(x) > 1$, for all $x \in \bar{\Omega}$.

Set $C_+(\bar{\Omega}) = \{h \mid h \in C(\bar{\Omega}), h(x) > 1 \text{ for all } x \in \bar{\Omega}\}$. For any $h \in C_+(\bar{\Omega})$ we define $h^+ = \sup_{x \in \Omega} h(x)$ and $h^- = \inf_{x \in \Omega} h(x)$. For any $p \in C_+(\bar{\Omega})$, we define the generalized Lebesgue space

$$L^{p(x)}(\Omega) = \{u : \Omega \rightarrow \mathbb{R} \mid u \text{ is measurable and } \int_{\Omega} |u|^{p(x)} dx < +\infty\}.$$

This Luxemburg type norm $|u|_{p(x)} = \inf \left\{ \mu > 0 \mid \int_{\Omega} \left| \frac{u(x)}{\mu} \right|^{p(x)} dx \leq 1 \right\}$ makes $L^{p(x)}(\Omega)$ a Banach space. We denote by $L^{p'(x)}(\Omega)$ the conjugate space of $L^{p(x)}(\Omega)$, where $\frac{1}{p(x)} + \frac{1}{p'(x)} = 1$. For any $u \in L^{p(x)}(\Omega)$, $v \in L^{p'(x)}(\Omega)$ the Hölder-type inequality $\left| \int_{\Omega} uv dx \right| \leq 2|u|_{p(x)}|v|_{p'(x)}$ holds true.

An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by the modular of the $L^{p(x)}(\Omega)$ space, which is the mapping $\rho : L^{p(x)}(\Omega) \rightarrow \mathbb{R}$ defined by $\rho(u) = \int_{\Omega} |u|^{p(x)} dx$. If $u_n, u \in L^{p(x)}(\Omega)$, then the following relations hold:

$$\begin{aligned} |u|_{p(x)} > 1 &\Rightarrow |u|_{p(x)}^{p^-} \leq \rho(u) \leq |u|_{p(x)}^{p^+}, \\ |u|_{p(x)} < 1 &\Rightarrow |u|_{p(x)}^{p^+} \leq \rho(u) \leq |u|_{p(x)}^{p^-}, \\ |u_n - u|_{p(x)} &\rightarrow 0 \Leftrightarrow \rho(u_n - u) \rightarrow 0. \end{aligned} \quad (1)$$

Moreover, if $s(x) \in L^{\infty}(\Omega)$ with $1 \leq p(x)s(x) \leq +\infty$ for all $x \in \bar{\Omega}$, then for any $u \in L^{s(x)}(\Omega)$ with $u \neq 0$, we have

$$\begin{aligned} |u|_{p(x)s(s)} > 1 &\Rightarrow |u|_{p(x)s(s)}^{p^-} \leq \left| |u|^{p(x)} \right|_{s(x)} \leq |u|_{p(x)s(s)}^{p^+}, \\ |u|_{p(x)s(s)} < 1 &\Rightarrow |u|_{p(x)s(s)}^{p^+} \leq \left| |u|^{p(x)} \right|_{s(x)} \leq |u|_{p(x)s(s)}^{p^-}. \end{aligned} \quad (2)$$

We also define $W_0^{1,p(x)}(\Omega)$ as the closure of $C_0^{\infty}(\Omega)$ under the norm $\|u\| = |\nabla u|_{p(x)}$. Thus, the space $W_0^{1,p(x)}(\Omega)$ is a separable and reflexive Banach space. Next, we recall some embedding results regarding variable exponent Lebesgue-Sobolev spaces. We note that if $\alpha \in C_+(\bar{\Omega})$ and $\alpha(x) < p^*(x)$ for all $x \in \bar{\Omega}$, then the embedding $W_0^{1,p(x)}(\Omega) \hookrightarrow L^{\alpha(x)}(\Omega)$ is compact and continuous, where $p^*(x)$ denotes the corresponding critical Sobolev exponent, that is $p^*(x) = \frac{Np(x)}{N-p(x)}$ if $p(x) < N$ or $p^*(x) = +\infty$ if $p(x) \geq N$. We refer to [19] for more properties of Lebesgue and Sobolev spaces with variable exponent.

For applications of Sobolev spaces with variable exponent we refer to Acerbi and Mingione [22], Chen, Levine, Rao [23], Ruzicka [24], and Zhikov [25].

2. The main results and proof of the theorem

We say that $\lambda \in \mathbb{R}$ is an eigenvalue of problem (P_1) if there exists $u \in W_0^{1,p(x)}(\Omega) \setminus \{0\}$ such that

$$\int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \nabla v dx = \lambda \int_{\Omega} V(x) |u|^{p(x)-2} uv dx,$$

for all $v \in W_0^{1,p(x)}(\Omega)$. We point out that if λ is an eigenvalue of problem (P_1) , then the corresponding $u \in W_0^{1,p(x)}(\Omega) \setminus \{0\}$ is a weak solution of (P_1) .

Our main result is given by the following theorem.

Theorem 2.1. *Assume that conditions (h_1) and (h_2) are fulfilled. Then there exists $\lambda_0 > 0$ such that any $\lambda \in (0, \lambda_0)$ is an eigenvalue for problem (P_1) .*

Proof. Let E denote the generalized Sobolev space $W_0^{1,p(x)}(\Omega)$. Define the functionals $J, I : E \rightarrow \mathbb{R}$ by

$$J(u) = \int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} dx \text{ and } I(u) = \int_{\Omega} \frac{V(x)}{p(x)} |u|^{p(x)} dx.$$

Standard arguments imply that $J, I \in C^1(E, \mathbb{R})$ with

$$\langle J'(u), v \rangle = \int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \nabla v dx \text{ and } \langle I'(u), v \rangle = \int_{\Omega} V(x) |u|^{p(x)-2} uv dx,$$

for any $u, v \in E$. Next, for any $\lambda > 0$, we define the functional associated with problem (P) , $\varphi_\lambda : E \rightarrow \mathbb{R}$ by

$$\varphi_\lambda(u) = J(u) - \lambda I(u), \quad \forall u \in E.$$

We divide the proof of Theorem 2.1 into three steps.

• **Step 1.** There exists $\lambda_0 > 0$ such that for any $0 < \lambda < \lambda_0$ there exist $\rho, \nu > 0$ such that $\varphi_\lambda(u) \geq \nu$ for any $u \in E$ with $\|u\| = \rho$.

Let $\frac{1}{r(x)} + \frac{1}{r'(x)} = 1$. Assumption (h_1) implies that $r(x) > N, \forall x \in \bar{\Omega}$, furthermore, $p(x)r(x) > N, \forall x \in \bar{\Omega}$. Thus, $p(x)r'(x) < p^*(x), \forall x \in \bar{\Omega}$ it follows that the embeddings $E \hookrightarrow L^{p(x)r'(x)}(\Omega)$ is compact and continuous. So, there exists a positive constant $c_1 > 0$ such that

$$|u|_{p(x)r'(x)} \leq c_1 \|u\|. \quad (3)$$

We fix $\rho \in (0, 1)$ such that $\rho < \frac{1}{c_1}$. Then relation (3) implies $|u|_{p(x)r'(x)} < 1, \forall u \in E$ with $\|u\| = \rho$. Taking into account relations (2) and (3) we deduce that for any $u \in E$ with $\|u\| = \rho$ the following inequalities hold true:

$$\begin{aligned} \varphi_\lambda(u) &\geq \frac{1}{p^+} \int_{\Omega} |\nabla u|^{p(x)} dx - \frac{\lambda}{p^-} \int_{\Omega} |V(x)| |u|^{p(x)} dx \\ &\geq \frac{1}{p^+} \|u\|^{p^+} - \frac{\lambda}{p^-} |V|_{r(x)} \|u\|^{p(x)}|_{q'(x)} \\ &\geq \frac{1}{p^+} \|u\|^{p^+} - \frac{\lambda}{p^-} |V|_{r(x)} \|u\|_{p(x)r'(x)}^{p^-} \\ &\geq \frac{1}{p^+} \|u\|^{p^+} - \frac{\lambda}{p^-} |V|_{r(x)} c_1^{p^-} \|u\|^{p^-} \\ &= \frac{1}{p^+} \rho^{p^+} - \frac{\lambda}{p^-} |V|_{r(x)} c_1^{p^-} \rho^{p^-} \\ &= \rho^{p^-} \left(\frac{1}{p^+} \rho^{p^+ - p^-} - \frac{\lambda}{p^-} |V|_{r(x)} c_1^{p^-} \right). \end{aligned}$$

By the above inequality we remark that if we define $\lambda_0 = \frac{p^- \rho^{p^+ - p^-}}{2c_1^{p^-} p^+ |V|_{r(x)}}$, then for any $\lambda \in (0, \lambda_0)$ any $u \in E$ with $\|u\| = \rho$ there exists $\nu = \frac{\rho^{p^+}}{2p^+} > 0$ such that $\varphi_\lambda(u) \geq \nu > 0$. The Step 1 is completed.

• **Step 2.** There exists $\eta \in E$ such that $\eta \geq 0, \eta \neq 0$ and $\varphi_\lambda(\eta) < 0$, for $t > 0$ small enough.

From (h_2) , we may assume that $\bar{U} \subset \Omega_0$, then there is $\varepsilon_1 > 0$ such that $p(x_0) < p(x) - 4\varepsilon_1$ for any $x \in \partial U$, and there is $\varepsilon_2 > 0$ such that

$$p(x_0) < p(x) - 2\varepsilon_1, \quad \forall x \in B_{\varepsilon_2}(\partial U), \quad (4)$$

where $B_{\varepsilon_2}(\partial U) = \{x : \exists y \in \partial U \text{ s.t. } |x - y| < \varepsilon_2\}$, and there is $\varepsilon_3 > 0$ such that $B_{\varepsilon_3}(x_0) \subset U \setminus B_{\varepsilon_2}(\partial U)$ and

$$|p(x_0) - p(x)| < \varepsilon_1, \quad \forall x \in B_{\varepsilon_3}(x_0). \quad (5)$$

From (4) and (5) it follows that

$$p(x) > p(y) + \varepsilon_1, \quad \forall x \in B_{\varepsilon_2}(\partial U), \forall y \in B_{\varepsilon_3}(x_0). \quad (6)$$

Let $\eta \in C_0^\infty(\Omega_0)$ such that $|\nabla \eta(x)| \leq c, 0 \leq \eta(x) \leq 1$ for any $x \in \Omega_0$, and

$$\eta(x) = \begin{cases} 0, & x \notin U \cup B_{\varepsilon_2}(\partial U), \\ 1, & x \in U \setminus B_{\varepsilon_2}(\partial U). \end{cases}$$

Thus, for all $t \in (0, \delta)$ with $\delta = \min\{1, \frac{1}{c}\}$, we have

$$\begin{aligned} \varphi_\lambda(t\eta) &= \int_{\Omega} \frac{1}{p(x)} |\nabla t\eta|^{p(x)} dx - \lambda \int_{\Omega} \frac{1}{p(x)} V(x) |t\eta|^{p(x)} dx \\ &= \int_{B_{\varepsilon_2}(\partial U)} \frac{1}{p(x)} |\nabla t\eta|^{p(x)} dx - \lambda \int_{B_{\varepsilon_3}(x_0)} \frac{1}{p(x)} V(x) |t\eta|^{p(x)} dx \\ &\leq \frac{1}{p^-} \int_{B_{\varepsilon_2}(\partial U)} |ct|^{p(x)} dx - \frac{\lambda V_0}{p^+} \int_{B_{\varepsilon_3}(x_0)} |t|^{p(x)} dx \leq \frac{1}{p^-} |B_{\varepsilon_2}(\partial U)| (ct)^{p(\xi_1)} - \frac{\lambda V_0}{p^+} |B_{\varepsilon_3}(x_0)| t^{p(\xi_2)}, \end{aligned}$$

where $\xi_1 \in B_{\varepsilon_2}(\partial U)$, $\xi_2 \in B_{\varepsilon_3}(x_0)$ and $V_0 = \min_{x \in \overline{B_{\varepsilon_3}(x_0)}} V(x) > 0$.

On the other hand, using (6) it follows that $p(\xi_1) > p(\xi_2) + \varepsilon_1 > p(\xi_2)$. Therefore $\varphi_\lambda(t\eta) < 0$ $t > 0$ small enough. The proof of Step 2 is completed.

By Step 1, we have

$$\inf_{v \in \partial B_\rho(0)} \varphi_\lambda(v) > 0. \quad (7)$$

On the other hand, by Step 2, there exists $\eta \in E$ such again $\varphi_\lambda(t\eta) < 0$ for $t > 0$ small enough. Using (2) and (3), we have $\varphi_\lambda(u) \geq \frac{1}{p^+} \|u\|^{p^+} - \lambda c_1^{p^-} |V|_{r(x)} \|u\|^{p^-}$, $\forall u \in B_\rho(0)$. Thus, $-\infty < c_\lambda := \inf_{v \in \overline{B_\rho(0)}} \varphi_\lambda(v) < 0$. Now let ε be such that $0 < \varepsilon < \inf_{v \in \partial B_\rho(0)} \varphi_\lambda(v) - \inf_{v \in B_\rho(0)} \varphi_\lambda(v)$.

Then, by applying Ekeland's variational principle to the functional $\varphi_\lambda : \overline{B_\rho(0)} \rightarrow \mathbb{R}$, there exist $u_\varepsilon \in \overline{B_\rho(0)}$ such that $\varphi_\lambda(u_\varepsilon) \leq \inf_{v \in \overline{B_\rho(0)}} \varphi_\lambda(v) + \varepsilon$, and $\varphi_\lambda(u_\varepsilon) < \varphi_\lambda(u) + \varepsilon \|u - u_\varepsilon\|$, $u \neq u_\varepsilon$. Since $\varphi_\lambda(u_\varepsilon) \leq \inf_{v \in \overline{B_\rho(0)}} \varphi_\lambda(v) + \varepsilon \leq \inf_{v \in B_\rho(0)} \varphi_\lambda(v) + \varepsilon < \inf_{v \in \partial B_\rho(0)} \varphi_\lambda(v)$, we deduce that $u_\varepsilon \in B_\rho(0)$.

Now, we define $T_\lambda : \overline{B_\rho(0)} \rightarrow \mathbb{R}$ by $T_\lambda(u) = \varphi_\lambda(u) + \varepsilon \|u - u_\varepsilon\|$. It is clear that u_ε is an minimum of T_λ . Therefore, for small $t > 0$ and $v \in B_1(0)$, we have $\frac{T_\lambda(u_\varepsilon + tv) - T_\lambda(u_\varepsilon)}{t} \geq 0$, which implies that $\frac{\varphi_\lambda(u_\varepsilon + tv) - \varphi_\lambda(u_\varepsilon)}{t} + \varepsilon \|v\| \geq 0$. As $t \rightarrow 0$, we have $\langle d\varphi_\lambda(u_\varepsilon) + \varepsilon \|v\|, v \rangle \geq 0$, $\forall v \in B_1(0)$. Hence, $\|\varphi'_\lambda(u_\varepsilon)\|_{E^*} \leq \varepsilon$. We deduce that there exists a sequence $\{u_n\}_n^\infty \subset B_\rho(0)$ such that

$$\varphi_\lambda(u_n) \rightarrow c_\lambda \quad \text{and} \quad \varphi'_\lambda(u_n) \rightarrow 0. \quad (8)$$

It is clear that $\{u_n\}_n^\infty$ is bounded in E . Thus, there exists $u \in E$ such that, up to a subsequence, $u_n \rightharpoonup u$ in E .

• **Step 3.** We will show that $u_n \rightarrow u$ in E .

Let $\alpha(x) = \frac{r(x)p(x)}{r(x)-p(x)}$. Assumption (h₁) implies that $r(x) > N$, $\forall x \in \overline{\Omega}$. Thus, $\alpha(x) < p^*(x)$, $\forall x \in \overline{\Omega}$. Using again the fact that $p(x) < p^*(x)$, $\forall x \in \overline{\Omega}$, we deduce that the embeddings $E \hookrightarrow L^{\alpha(x)}(\Omega)$ and $E \hookrightarrow L^{p(x)}(\Omega)$ are compact and continuous. So, there exists a positive constant $c_2 > 0$ such that $|u|_{p(x)} \leq c_2 \|u\|$, $\forall u \in E$. Thus

$$|u_n|_{p(x)} \leq c_2 \|u_n\| \text{ and } u_n \rightarrow u \text{ in } L^{\alpha(x)}(\Omega). \quad (9)$$

The Hölder's type inequality and relation (9) imply

$$\begin{aligned} &\left| \int_{\Omega} V(x) |u_n|^{p(x)-2} u_n (u_n - u) dx \right| \leq |V|_{r(x)} \left| |u_n|^{p(x)-1} \right|_{p'(x)} |u_n - u|_{\alpha(x)} \\ &\leq |V|_{r(x)} \left(1 + |u_n|_{p(x)}^{p^+-1} \right) |u_n - u|_{\alpha(x)} \leq |V|_{r(x)} \left(1 + c_2^{p^+-1} \|u_n\|^{p^+-1} \right) |u_n - u|_{\alpha(x)} \\ &\leq |V|_{r(x)} \left(1 + c_2^{p^+-1} \rho^{p^+-1} \right) |u_n - u|_{\alpha(x)} \rightarrow 0, \text{ as } n \rightarrow +\infty. \end{aligned} \quad (10)$$

Moreover, since $d\varphi_\lambda(u_n) \rightarrow 0$ and $\{u_n\}_n^\infty$ is bounded in E , we have

$$|\langle d\varphi_\lambda(u_n), u_n - u \rangle| \leq |\langle d\varphi_\lambda(u_n), u_n \rangle| + |\langle d\varphi_\lambda(u_n), u \rangle| \leq \|d\varphi_\lambda(u_n)\|_{E^*} \|u_n\| + \|d\varphi_\lambda(u_n)\|_{E^*} \|u\|,$$

that is, $\lim_{n \rightarrow +\infty} \langle d\varphi_\lambda(u_n), u_n - u \rangle = 0$. Using (10) and the last relation we deduce that

$$\lim_{n \rightarrow +\infty} \int_{\Omega} |\nabla u_n|^{p(x)-2} \nabla u_n \nabla (u_n - u) dx = 0. \quad (11)$$

From (11) and the fact that $u_n \rightharpoonup u$ in E it follows that $\lim_{n \rightarrow +\infty} \langle J'(u_n), u_n - u \rangle = 0$, and by Theorem 3.1 in Fan and Zhang [15] we deduce that $u_n \rightarrow u$ in E . Thus, in view of (8), we obtain $\varphi_\lambda(u) = c_\lambda < 0$ and $\varphi'_\lambda(u) = 0$. The proof of Theorem 2.1 is completed. \square

REFERENCES

- [1] *M. Mihăilescu, V. Rădulescu*, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, *Proc. Amer. Math. Soc.*, **135** (2007), 2929–2937.
- [2] *M. Mihăilescu, V. Rădulescu*, Concentration phenomena in nonlinear eigenvalue problems with variable exponents and sign-changing potential, *J. Anal. Math.*, **111** (2010), 267–287.
- [3] *M. Mihăilescu, V. Rădulescu*, Continuous spectrum for a class of nonhomogeneous differential operators, *Manuscripta Math.*, **125** (2008), 157–167.
- [4] *M. Mihăilescu, V. Rădulescu, D. Repovš*, On a non-homogeneous eigenvalue problem involving a potential: an Orlicz-Sobolev space setting, *J. Math. Pures Appl.*, **93** (2010), 132–148.
- [5] *M. Mihăilescu, D. Stancu-Dumitru*, On an eigenvalue problem involving the $p(x)$ -Laplace operator plus a non-local term, *Diff. Equ. Appl.*, **3** (2009), 367–378.
- [6] *M. Bocea and M. Mihăilescu*, On the continuity of the Luxemburg norm of the gradient in $L^p(\cdot)$ with respect to $p(\cdot)$, *Proc. Amer. Math. Soc.*, **142** (2014), 507–517.
- [7] *M. Bocea and M. Mihăilescu*, The principal frequency of Δ_∞ as a limit of Rayleigh quotients involving Luxemburg norms, *Bull. Sci. Math.*, **138** (2014), 236–252.
- [8] *X. L. Fan*, Remarks on eigenvalue problems involving the $p(x)$ -Laplacian, *J. Math. Anal. Appl.*, **352** (2009), 85–98.
- [9] *X. L. Fan, Q. H. Zhang, D. Zhao*, Eigenvalues of $p(x)$ -Laplacian Dirichlet problem, *J. Math. Anal. Appl.*, **302** (2005), 306–317.
- [10] *K. Benali, K. Kefi*, Mountain pass and Ekeland's principle for eigenvalue problem with variable exponent, *Complex Var. Elliptic Eqns.*, **54** (2009), 795–809.
- [11] *M. Bouslimi, K. Kefi*, Existence of solution for an indefinite weight quasilinear problem with variable exponent, *Complex Var. Elliptic Eqn.*, **58** (2013), 1655–1666.
- [12] *K. Kefi*, $p(x)$ -Laplacian with indefinite weight, *Proc. Amer. Math. Soc.*, **139** (2011), 4351–4360.
- [13] *N. Benouhiba*, On the eigenvalues of weighted $p(x)$ -Laplacian on \mathbb{R}^N , *Nonlinear Analysis.*, **74** (2011), 235–243.
- [14] *B. Ge*, On an eigenvalue problem with variable exponents and sign-changing potential, *Electron. J. Qual. Theory Differ. Equ.*, **92** (2015), 1–10.
- [15] *X.L. Fan, Q.H. Zhang*, Existence of solutions for $p(x)$ -Laplacian Dirichlet problems, *Nonlinear Anal.*, **52** (2003), 1843–1852.
- [16] *L. Diening, P. Harjulehto, P. Hästö, and M. Ružička*, Lebesgue and Sobolev spaces with variable exponents, *Lecture Notes in Mathematics*, vol. 2017, Springer-Verlag, Berlin, 2011.
- [17] *X.L. Fan, J. S. Shen, D. Zhao*, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, *J. Math. Anal. Appl.*, **262** (2001), 749–760.
- [18] *X.L. Fan, D. Zhao*, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, *J. Math. Anal. Appl.*, **263** (2001), 424–446.
- [19] *O. Kováčik, K. Rákosník*, On spaces $L^{p(x)}$ and $W^{m,p(x)}$, *Czechoslov. Math. J.*, **41** (1991), 592–618.
- [20] *D.E. Edmunds, J. Rákosník*, Sobolev embedding with variable exponent, *Studia Math.*, **143** (2000), 267–293.
- [21] *D.E. Edmunds, J. Rákosník*, Density of smooth functions in $W^{k,p(x)}(\Omega)$, *Proc. Roy. Soc. London Ser. A*, **437** (1992), 229–236.
- [22] *E. Acerbi, G. Mingione*, Gradient estimates for the $p(x)$ -Laplacean system, *J. Reine Angew. Math.*, **584** (2005), 117–148.
- [23] *Y.M. Chen, S. Levine, M. Rao*, Variable exponent, linear growth functionals in image restoration, *SIAM J. Appl. Math.*, **66** (2006), 1383–1406.
- [24] *M. Ružička*, *Electrorheological fluids: modeling and mathematical theory*, *Lecture Notes in Mathematics*, Vol. 1748, Springer-Verlag, Berlin, 2000.
- [25] *V.V. Zhikov*, Averaging of functionals of the calculus of variations and elasticity theory, *Math. USSR Izv.*, **29** (1987), 33–66.