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ON AN EIGENVALUE PROBLEM INVOLVING THE VARIABLE
EXPONENT AND INDEFINITE WEIGHT

Qing-Mei Zhou!, Ke-Qi Wang*?, Bin Ge?

This paper is mainly concerned with the p(z)-Laplacian eigenvalue problem with
a indefinite weight function, that is,
—Apz)u = AV () |[ulP(®) =2y, in Q,
u =0, on 0R2.
The main result of this paper establishes that any A > 0 sufficiently small is an eigen-

value of the above nonhomogeneous quasilinear problem. The proofs will be based on the
FEkeland’s variational principle combined with adequate variational techniques.
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1. Introduction

The study of eigenvalue problems involving operators with variable exponents growth
conditions has captured a special attention in the last few years. For more details we refer
to Mihailescu et al. [1, 2, 3, 4, 5, 6, 7], Fan, Zhang and Zhao [8, 9], Kefi et al. [10, 11, 12]
and Benouhiba [13].

Recently, Ge in [14] studied the following nonhomogeneous eigenvalue problem

{ —div(a(|Vu|)Vu) = AV (z)|u|?®) =24, inQ,

u =0, on 0, (P)

where A > 0 is a real number, V is an indefinite sign-changing weight and ¢q : Q — (1, 00) is
a continuous function. In the case when a(|Vu(x)[) = |Vu(z) [P =2 with p is a continuous
function on Q, problem (P) is reduced to the following nonlinear eigenvalue problem

{ —div(|Vu|P®)=2Vu) = AV (2)|u|9®) 2y, in Q,

u =0, on 0. (P)

Thus, when 1 < g(x) < ingzp(z) < supp(x) < s(x) for any x € €, that there exists A\g > 0
z€ zeQ

such that any A € (0, A\g) is an eigenvalue for problem (P).

From the above cited contributions, we are interested in the existence of solutions for

the following the nonhomogeneous eigenvalue problem (Py) with ¢(z) = p(x)
{ —div(|Vu|P®)=2Vu) = AV (z) [u|P®) 24, inQ,

u =0, on 0f). (71)
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On the other hand, problems like (Py) have been largely considered in the literature in the
recent years. We give in what follows a concise but complete image of the actual stage of
research on this topic.
e In the case when V(z) = 1, ming(z) < mmp( ) and ¢(x) has a subcritical growth
z€Q

Mihéilescu and R&dulescu [1] used the Ekeland’s Varlatlonal principle in order to prove the

existence of a continuous family of eigenvalues which lies in a neighborhood of the origin.

e In the case when V(z) = 1, maxp( ) < mlnq( ) < maxq(z) < ]\J,Vflgz), similar
zeQ z€0) zeQ

with those used by Fan and Zhang in the proof of Theorem 4.7 in [15], can be applied in
order to show that any A > 0 is an eigenvalue of problem (Fp).
e In the case when V(z) = 1, max¢(z) < minp(z) it can be proved that the energy
e €

functional associated to problem (FPp) has a nontrivial minimum for any positive A (see
Theorem 4.3 in [15]). Clearly, in this case the result in [1] can be also applied. Consequently,
in this situation there exist two positive constants A, and A* such that any A € (0, A,) U
(A*,400) is an eigenvalue of problem (Fp).

e The same problem, for V(z) = 1 and p(xz) = ¢(z) is studied by Fan, Zhang and
Zhao in [9]. The authors established the existence of infinitely many eigenvalues for problem
(Pp) by using an argument based on the Ljusternik- Schnirelmann critical point theory.
Denoting by A the set of all nonnegative eigenvalues, they showed that sup A = +o00 and
they pointed out that only under special conditions, which are somehow connected with a
kind of monotony of the function p(z), we have inf A > 0 (this is in contrast with the case
when p(z) is a constant; then, we always have inf A > 0).

Motivated by all results mentioned above, it is very natural for us to pose an inter-
esting question, that is,

Question: In the case that V(z) is allowed to be sign-changing and p(z) = ¢(x).
Can we obtain the same results as described in [1, 14] by replacing them with some suitable
assumptions?

Few papers have treated the existence of nontrivial solutions for problem (P;). Can
we achieve the result? In the present paper, we restrict our attention to the existence of a
continuous family of eigenvalues for problem (P;) and are most interested in seeking definite
answers to Question. To be precise, we make the following hypotheses on p,r, V.

(h1) p,r € C+ (), 1 < p(z) < N, r(z) > A(Z’)(l) VreQ,Vel®Q)nC(R) and
V > 0in Qg C Q, where |Qg] > 0.

(ha) There exists an open subset U C Qg and a point xg € U such that p(z¢) < p(z)

for all x € OU.
Thus, the case considered here is different from all the cases studied before. In this new
situation we will show the existence of a continuous family of eigenvalues for problem (P;)
in a neighborhood of the origin. More precisely, we show that there exists Ay > 0 such that
any A € (0, \g) is an eigenvalue for problem (P;).

We start with some preliminary basic results on the theory of variable exponent
Sobolev space W1 P z)(Q) For more details we refer to the book by Diening-Harjulehto-
Hést6-Ruzicka [16] and the papers by Fan et al. [17, 18], Kovaéik-Rékosnik [19], and
Edmunds-Rékosnik [20, 21]. Throughout this article, we assume that p € C(Q) and p(x) > 1,
for all = € Q.

Set C4(Q) = {h | h € C(Q),h(x) > 1 forall z € Q}. For any h € C(Q) we

define h*™ = suph(z) and h~ = in?z h(z). For any p € C (), we define the generalized
zeQ z€
Lebesgue space

LP@(Q) = {u: Q — R | u is measurable and / [ulP@dz < +oo}.
Q
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(x p(z

)
0 dr < 1} makes L”(”)( )
a Banach space. We denote by Lp/(m)(ﬂ) the conjugate space of LP(®)(Q), where 7 +
<

5 (x) = 1. For any u € LP®)(Q), v € L”'(z)(Q) the Holder-type inequality ’fﬂ uvd ‘

2|up(2)|V]pr (2) holds true.
An important role in manipulating the generalized Lebesgue-Sobolev spaces is played
by the modular of the LP(*)(Q) space, which is the mapping p : LP*)(Q) — R defined by
u) = [o, [uP@dz. If u,,u € LP(*)(Q), then the following relations hold:

This Luxemburg type norm |ul,,) = inf {,u >0 [q ‘“

ot
< plu) < |U|p(x)a

v
[ulp@y < 1= [ul,) < pu) < Jull,, (1)

‘u|p(:c) >1= |U|Z(I) >

[Un, — Ulp(zy = 0 & plup —u) — 0.
Moreover, if s(x) € L>®(Q) with 1 < p(x)s(x) < 400 for all z € Q, then for any u € L*®)(Q)
with u # 0, we have

|ulp(e)ys(s) > 1= |u|§(x) o) S Ml < |“|p<x)s<s)’ @)

|u|p(m)s (s) < 1= |u| ) = ||u|p(az |5 = | |

p(w)s(s p(x)s(s)”
We also define W 1p(e) (2) as the closure of C5°(€2) under the norm ||u|| = [Vul,(,). Thus, the

space VVO1 2(®) (Q) is a separable and reflexive Banach space. Next, we recall some embedding
results regarding variable exponent Lebesgue-Sobolev spaces. We note that if a € C (Q)
and a(r) < p*(z) for all x € Q, then the embedding Wol’p(x)(ﬂ) — L°®)(Q) is compact
and continuous, where p*(x) denotes the corresponding critical Sobolev exponent, that is
p*(z) = 1\1]\7_;01()?3):) if p(x) < N or p*(z) = +oo if p(z) > N. We refer to [19] for more properties
of Lebesgue and Sobolev spaces with variable exponent.

For applications of Sobolev spaces with variable exponent we refer to Acerbi and
Mingione [22], Chen, Levine, Rao [23], Ruzicka [24], and Zhikov [25].

2. The main results and proof of the theorem

We say that A € R is an eigenvalue of problem (P;) if there exists u € Wol’p(x) ()\{0}
such that

/|Vu|p(x)_2Vqudac:)\/ V() |uP® ~2uvde,
Q Q

for all v € Wol’p(r) (©). We point out that if A is an eigenvalue of problem (P;), then the
corresponding u € Wol’p(x)(Q)\{O} is a weak solution of (Py).
Our main result is given by the following theorem.

Theorem 2.1. Assume that conditions (h1) and (ha) are fulfilled. Then there exists Ag > 0
such that any A € (0, A\o) is an eigenvalue for problem (Py).

Proof. Let E denote the generalized Sobolev space Wo Pl (). Define the functionals
J,I: E— R by

J(u) :/ |VulP@ dz and I(u / Viw) [P d.
o p(z)

(z)
Standard arguments imply that J, I € C*(E,R) with

(J'(u) /|VUIP(I) *VuVvdzr and (I'(u) /V )ulP@~2yvde,
Q
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for any u,v € E. Next, for any A > 0, we define the functional associated with problem (P),
px: E — R by
ox(u) =J(u) — M(u), Yu€E.

We divide the proof of Theorem 2.1 into three steps.

e Step 1. There exists Ag > 0 such that for any 0 < A < A\ there exist p,v > 0 such
that ¢y (u) > v for any u € E with |Ju|| = p. B

Let ﬁ + Wlm) = 1. Assumption (h;) implies that r(z) > N, Vz € Q, furthermore,
p(z)r(z) > N, Vo € Q. Thus, p(z)r'(z) < p*(x), Vo € Q it follows that the embeddings
E < Lp(’”)’"/(x)(ﬂ) is compact and continuous. So, there exists a positive constant ¢; > 0
such that

[tlp(@)r (@) < callull. (3)

We fix p € (0,1) such that p < % Then relation (3) implies |u|p@)r@) < 1, ¥V u €
E with ||u|| = p. Taking into account relations (2) and (3) we deduce that for any v € F
with [|u]] = p the following inequalities hold true:

o (u) zpi / |w|p<m>dxfi_ / IV (@)@ de

1 A
ijUHp - ZT|V|T(:1: )|

a'(z)

1
THUHP - 7|V|T(m ‘ulp(w)’!‘ '(x)
1
j|| ull?” —*|V|r(x0p lull”
1 _
=+ _;|V|r(x)0117 o
-1 o+ - A -
= (3?7 Vi)

By the above inequality we remark that if we define \g = % then for any A €
el p r(z)

(0, Ag) any u € FE with ||u|| = p there exists v = g% > 0 such that px(u) > v > 0. The Step
1 is completed.

e Step 2. There exists ) € E such that n > 0, n # 0 and ¢, (n) < 0, for ¢ > 0 small
enough.

From (hy), we may assume that U C €, then there is e; > 0 such that p(xg) <
p(x) — 4ey for any x € OU, and there is €5 > 0 such that

p(a?o) < p(a:) - 261’ Vz € BEz (aU)v (4)

where B.,(0U) = {z : Jy € 9U s.t. |z — y| < e2}, and there is 3 > 0 such that B, (z¢) C
U\ B, (0U) and

[p(z0) — p(z)| < e1, Vo € Bey(2o). (5)
From (4) and (5) it follows that
p(x) > p(y) +e1, Vo € Be,(0U),Vy € B, (o). (6)

Let n € C§° () such that |Vn(z)| < ¢, 0 <n(x) <1 for any = € Q, and

[0, 24 UUB., (),
n(@) = { 1. 2 € U\ B.,(9U).
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Thus, for all ¢ € (0,6) with § = min{1, 1}, we have

1 1
tn) = | —|Vt p(m)dx—)\/ —V(2)|tnP™ dx
oaltn) = [ =1t V@)

(x)
1 () 1 ()
= ——|VitnP' P dx — X ——V(x)|tn"'* dx
Be, (8U) p(z) Be, (20) p(z)
<o [ el @dn = 20 [ e < B QU] — 2R |B (o)),
b JB.,8U) p Beg (20) p p

where & € B.,(0U), & € B.,(z9) and Vy = min  V(z) > 0.

$E§£3 ('EO)
On the other hand, using (6) it follows that p(§1) > p(&) + €1 > p(&2). Therefore
pa(tn) < 0t > 0 small enough. The proof of Step 2 is completed.
By Step 1, we have

inf .
veé%p(O) #A(v) >0 @

On the other hand, by Step 2, there exists n € E such again ¢, (tn) < 0 for ¢ > 0 small
enough. Using (2) and (3), we have ¢ (u) > p%||u||”+—)\czf7 V] llulP, Vu € B,(0). Thus,

—oo<ey:= inf py(v) <0.Nowletebesuchthat 0 <e < inf @ (v)— inf @x(v).
vEB,(0) vEIB,(0) vEB,(0)

Then, by applying Ekeland’s variational principle to the functional ¢y : B,(0) — R, there
exist u. € B,(0) such that px(us) < inf  @r(v)+¢, and pir(ue) < oa(w) +ellu—ucl], u#
vEB,(0)

Ue. Since px(us) < inf pa(v)+e < inf pa(v)+e <  inf px(v), we deduce that
vEB,(0) vEB,(0) vEDB,(0)

us € B,(0).
Now, we define Ty : B,(0) — R by Th(u) = @a(u) + ¢llu — ucl|. It is clear that u. is
T (ue+tv) =T (ue) >0
t = Y

an minimum of Ty. Therefore, for small t > 0 and v € B1(0), we have
which implies that w—i—aﬂvﬂ > 0. Ast — 0, we have (dpy (ue)+eljv]| > 0, Vv €
B1(0). Hence, ||¢) (ue)|| g+ < e. We deduce that there exists a sequence {u,, }5° C B,(0) such
that
ox(un) — cx and @\ (uy,) — 0. (8)

It is clear that {u,}%° is bounded in E. Thus, there exists u € E such that, up to a
subsequence, u, — u in F.

e Step 3. We will show that u,, — u in E.

Let a(z) = %. Assumption (h;) implies that r(x) > N, Vo € Q. Thus,
a(z) < p*(x), Vo € Q. Using again the fact that p(z) < p*(z), Vo € Q, we deduce that the
embeddings E < L*®)(Q) and E < LP(®)(Q) are compact and continuous. So, there exists
a positive constant c; > 0 such that |ul,,) < c2||ul|, Yu € E. Thus

[Un|p(z) < c2llun| and u, — uin La(:’:)(Q). (9)

The Holder’s type inequality and relation (9) imply

|un - u|o¢(;v)

‘/ V(I)|un|P(m)*2un(un - u)dm‘ < |V|T(m)
Q

‘un|p(r)*1'

p'(z)

V)l (1 Tl ot — oy < IVl (14 &5 lual? " fn = tlagy 10
<V (15 707 ) g — ey = 0, as n — +oo.

Moreover, since dpy(u,) — 0 and {u,}5° is bounded in E, we have

[(dipa (un ), un—u)| < [{depx(un), un)|+|(dpx(un), )| < [ldpx (un)|| 2= [[un [+l dpx (un) || 2= [[ull,
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that is, BIE (dpx(un),un —u) = 0. Using (10) and the last relation we deduce that

n——+oo

lim / |Vt [P®) =2V, V (uy, — u)da = 0. (11)
Q

From (11) and the fact that u,, — v in E it follows that lim (J'(uy), un, —u) =0,

n——-+oo
and by Theorem 3.1 in Fan and Zhang [15] we deduce that u,, — u in E. Thus, in view of
(8), we obtaingy (u) = ¢y < 0 and ¢, (u) = 0. The proof of Theorem 2.1 is completed. O
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