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FORMULAS FOR THE DISCRETE-TIME (J,7")-SPECTRAL
FACTORIZATION OF A GENERAL SYSTEM

Raluca ANDREI

In acest articol folosim realizari de stare descriptor pentru a obtine formule
constructive ale solutiei factorizarii (J,J’)-spectrale formulate pentru o matrice
rationald generald (rang arbitrar, poli §i zerouri pe cercul unitate sau la infinit).
Pentru calculul factorilor am utilizat un algoritm numeric stabil bazat pe o proiectie
preliminard unitard ce pune in evidentd un subsistem, care indeplineste toate
ipotezele de regularitate i pentru care dam solutia factorizarii.

We use descriptor state-space realizations to obtain constructive formulas
for the solutions of the (J, J’)-spectral factorization formulated for a completely
general rational matrix function (arbitrary rank, poles and zeros on the unit circle,
or at infinity). For the computation of the factors we use a numerically—reliable
algorithm based on a preliminary unitary projection which reveals a subsystem
Sfulfilling all regularity assumptions and for which we actually solve the
factorizations.
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1. Introduction

A rational matrix function with complex coefficients ®(z) is called
(J,J") —unitary if ®@(z)"JO(z)=J' (where O(z)" := ©(1)"), at every point on the
unit circle at which ® is analytic, where J and J' are two signature matrices,
ie, J=J'=J" (" denotes conjugate transpose). By analytic continuation,
O(2)"JO(z)=J', VzeC. If, in addition, ©(z)"JO(z)<J' for every point of
analyticity of ® in the exterior of the closed unit disk, then ® is called (J,J")-
lossless. If J=J', ©(z) is called J—unitary, and J —lossless, respectively. The
normal rank of a rational matrix function G(z) is its rank for almost all ze C.

We consider here the extension of the (J,J')-spectral factorization
problem such as to become applicable to a general pxm rational matrix function
with complex coefficients G(z) (of arbitrary rank, with poles and zeros on the
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unit circle, possibly polynomial or improper): find a rational matrix function
I1(z) which has full row normal rank and only marginally stable zeros such that

G"(2)JG(z) =11"(2)J'TI(z), (1)
where G(z)I1™(z) has no poles on the unit circle. Here T1*(z) stands for the
Moore—Penrose pseudo inverse of I1(z).

This factorization plays an important role in optimal Hankel-norm model
reduction and H™ optimization, transport theory, and stochastic filtering (see for
example [1,2,3,4,5]).

The spectral factorization has been investigated in several papers for a
rational matrix function with full column rank and without poles/zeros on the unit
circle or at infinity (see [6,7]) and the solution for a general rational matrix
function was given in [8]. Considerable research has focused on the J -spectral
factorization in continuous-time under various hypotheses [9,10,11,12,13] and the
problem has been solved in the most general conditions in [14]. For discrete-time
systems, a state-space algorithm for the J -spectral factorization has been
developed for the optimal Hankel norm model reduction problem [15], where the
problem is reduced to a Wiener-Hopf type spectral factorization, which is then
solved by the geometric factorization principle [16]. A discrete-time version
closer to our approach is [17], formulated for a stable rational matrix function. In
[17], the (J,J")-spectral factorization extends the technique in [18], in which a
spectral factorization algorithm associated with the discrete-time descriptor LQ
regulator problem is derived.

The paper is organized as follows. In Section 2 we review briefly a couple
of definitions and notations related to matrix pencils, rational matrix functions and
descriptor state—space realizations of rational matrices. In Section 3 give a spectral
decomposition of the system pencil associated with a descriptor realization which
will be the mail tool used in the next section. Section 4 contains the main result. In
Section 5 we give a numerical example for the (J,J")—spectral factorization. We
draw some conclusions in Section 6. For the fluidity of the presentation, the more
technical details involved and the similarities to the continuous-time case we
choose to skip the proofs.

2. Preliminaries

We denote the open unit disk and the unit circle by D and D,(0),

respectively, and by D, :E\B the exterior of the closed unit disk containing
the infinity (the “overbar" denotes closure).
If amatrix 4 in C™" is invertible, A" is its conjugate transpose inverse.

A Hermitian matrix A4 satisfies 4=A4", and we denote by 4>0 if it is in
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addition positive definite. A4 is unitary (J —unitary) if 4'A=1 (A JA=J). I, is
the identity matrix of size nxn, and we skip the dimensions whenever they are
irrelevant. By * we denote irrelevant matrix entries.

Let A4, E € C™". The matrix polynomial 4—-zE is called a matrix pencil
(or pencil). The pencil is called regular if it is square (m =n) and has a non—
vanishing determinant, i.e., det(4—zE) # 0. A singular pencil is a pencil which is
not regular. The normal rank of the pencil — denoted rank, (4 —zE) — is defined
as the rank of 4—zE for almost all z € C (but a finite number of points). For an
nxn regular pencil 4—zE , the normal rank » is equal to n. If v, :=m—r>0
then we say the pencil has a (nontrivial) left singular structure. If v :=n—r>0
then the pencil has a (nontrivial) right singular structure.

Two matrix pencils 4—zE and A-zE , with 4, E, Z,E e C™", are called
strictly equivalent if there are two constant invertible matrices Qe C™",
Z e C™, such that

O(A-zE)Z = A-zE. Q)
The equivalence relation (2) induces a canonical form (see [19]) — called the
Kronecker canonical form — on the set of mxn pencils

€

A, —zE,., =0(A—zE)Z = -
kr — ZLkr o( zE) Af_ZIn,

LT

Y

LT
3)
Here L, (k=0) denotes the bidiagonal k x(k +1) pencil

z -1
L= . :
z -1

and 4, and E, are two square matrices in the Jordan canonical form, with £,

nilpotent. The finite eigenstructure of 4—zFE is determined by the eigenvalues of
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A,

the infinite eigenstructure of the pencil. The union of the finite and infinite
eigenstructure of the pencil completely determines the regular part of the pencil
and forms the spectrum of the pencil - A(A—zE) . The singular part of the pencil

and the dimensions of the elementary infinite blocks of /, —zE, determine

is defined by the right and left singular Kronecker structure: the & x(g +1)
blocks L,@i=1L..v,),are the right elementary Kronecker blocks, and ¢, >0 are

called the right Kronecker indices; the (77, +1)x7, blocks L; ,(j=1..v,), are

the left elementary Kronecker blocks, and 7, >0 are called the left Kronecker
indices. For more details on matrix pencils see Chapter 12 in [19].
For any rational matrix function G(z) with coefficients in C”" one can
write a descriptor realization of the form (see for example [20,21])
G(z)=D+C(zE—-A)'B=(E,A,B,C,D), 4)
where 4, E€C"™, BeC", CeC’, DeC”, and A—-zE is a regular

pencil. The dimension n of the square matrices A and E is called the order of
the realization (4). With any realization (4) we associate two matrix pencils that
play an important role in our developments: the pole pencil P(z)= A—zE and the

A-zE B
system pencil S(z)={ CZ D} The realization (4) of G(z) is called

irreducible if it satisfies the following conditions (see [21]):
(@) rank[A —zE B] = n, VzeC(C,

(i) rank[E B] = n,

{A—zE}

(#ii) rank = n, VzeC, %)
C

. K E _

(iv) ran c = n

The conditions (5) are usually known as finite and infinite controllability, and
finite and infinite observability, respectively. In contrast to standard realizations,
irreducibility of a descriptor realization does not automatically imply its
minimality since some simple blocks of dimension 1 at infinity (so called non—
dynamic modes) which are both controllable and observable might increase
indefinitely the dimension of the realization while keeping its irreducibility.
Starting from an arbitrary realization (4), one can compute an irreducible
realization by using solely unitary transformations.

The following result taken from [22] (see Theorem 2.4) is modified to
cope with proper (J,J")—unitary rational matrices having a descriptor realization.
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Lemma 3. Let G.(z) be a proper rational matrix, having a minimal
realization
G.(2)=(E,,4,B,.C.D,). (6)

G.(z) is (J,J")—lossless on D,(0) if and only if there is a positive hermitian
matrix X such that

A XA -EXE +C.JC, =0, @)
D.JC. +B. XA =0, (8)

and
D.JD . +B. X B =J' )]

3. Spectral decomposition

In this section we introduce a spectral decomposition of the system pencil
with respect to the partition C= DU D,. The decomposition can be achieved by

unitary transformations and will play a capital role in expressing our main results
in the next section (for more details see [8]).

Theorem 1. Let G(z) be a pxm real rational matrix given by a
controllable realization (4), i.e., fulfilling (i) and (ii) in (5). Then there exist two
constant unitary matrices U and Z such that

A, -zE, * * *
{U OMA —zE B}Z _ 0 A, -zE,, B, B, -zE, (10)
0 7 cC D 0 0 0 B,
O Ch(/‘ Dhé Dn
where:

I The pencil 4,, —zE,, has full row rank in D, and E,, has full row rank.

II. E,, and B, are invertible, the pencil

4, —zE, B, (11)
C D

bl bl
has full column rank in D, the pencil A,,—zE,, is regular, and the pair
[AM -zE,, BM} is controllable.
The above theorem constructs a projection of the original system (4)
G,, (2)=(E,, 4,,B,,,Cy, D), (12)

which fulfills all standard assumptions in the literature (is proper, has full column
normal rank, and has no zeros on the unit circle). In the next section we will see
that it is enough to solve the factorization problems for G,(z) to get the solution
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to the corresponding factorization for G(z).

4. Main result

Once the spectral decomposition obtained, we have the coefficients of a
Riccati equation, whose solution (when it exists) can be used directly to write the
state-space realization of the factor Il(z), solving the factorization problem under
investigation. The following theorem gives a constructive approach for the
spectral factor for a general rational matrix function. Due to the very technical
details involved in the proof and to the similarities to the continuous-time case we
have chosen to skip it here (for more details see [8,14]).

Theorem 2. Let G(z) be a general rational matrix function given by a
controllable realization (4), and let U and Z be two constant unitary matrices
such that (10) holds.

I.  The (J,J")—spectral factorization problem (1) has a solution if and only if
the following conditions are fulfilled:
1. The Riccati equation
A;Mma - E;(:XEM - (A;/XBM + CZzJDh(;)

X(D;IJDM + BZ/,XBM )71 (BZ€Mbé + DZ/.JCb[) + CZfJCbI = O (13)
has an invertible stabilizing solution X, i.e.,
A(A,, + B, F—zE,)c D,
F = _(D;/JDh/ + Bb(:Xvak )_1 (B;/‘XsAb(z + DZ(JCM) .

D;/,JDM +B;(:XYB})1’, =VJwv (14)
for an appropriate constant invertible matrix V ;
II. TI(z) is given by

H(z)::(E,A,B,é,B),[E B]::V[o ~F I 0]Z', (15)

Remark 1. In particular, the above result may be applied to a polynomial
matrix G(z) and provides a numerically sound state-space construction of the

spectral factor. Moreover, if G(z) fulfills the usual regularity assumptions (is

proper, full column rank, no zeros on the unit circle), Theorem 2 recovers the
well-known result in the regular case.

Remark 2. Besides solving a Riccati equation of indefinite sign instead of
a positive one, the formulas for the factors resemble in detail the ones in the
unitary case [8]. The main difference with respect to the continuous-time case is
that we have to handle some poles and zeroes at infinity which are no longer on
the boundary of the stability domain. Shortly, if G(z) has a (J,J")-lossless
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factorization, then there is an invertible factor R,(z) which cancels in the product
R, (2)G(z) all left minimal indices and the unstable zeros of G(z) (see [14]), and
R/(z) is in particular J—lossless. Such an invertible factor may have poles at
infinity because he has to dislocate possible zeros at infinity of G(z) and we
cannot always write a proper realization for R (z), but we can always write one
for the inverse, R™',(z).

Remark 3. The existence of the stabilizing solution to the Riccati equation
(13) can be checked and the equation solved by using any existing numerical
algorithm that copes with indefinite sign matrix coefficients (see for example [3]
and the references therein).

5. Numerical example

We exemplify the proposed approach on a simple but relevant system. For
illustrative simplicity we use non—unitary transformations as well. Let

1 0 0

, [1 0}
J=(0 1 0|, J =
0 -1
0 0 -1
and
- _
0 B 1
z—1 z—1
z z=2 2

G(2) =

(41?2 (z+1)?  (z+1)
-3z z—2 4z -2

G(z) has a realization (6)_ given by

] 1y 1
I-z 0 0 0 O ) 2
0 -z -1 0 0 0 -1 -1
A-zE=| 0 2-z 0 0, B=|1 1 |
o 0 0 10 2 2
0 0 0 -z 1] 3 -1 4
0 0 0
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20 000 0 0 O
C=/0 0 2 0 O,D={0 0 O
0 0 0 01 0 -2 =2

The structural elements of G(z) are: one pole at 1 with multiplicity 1, one
pole at -1 with multiplicity 2, one pole at co with multiplicity 1, a zero at 2 with
multiplicity 1, a zero at oo with multiplicity 1, one left minimal index equal to 2,
one right minimal index equal to 0 and normal rank » =2.

With

0O 1 00 0 O OO
_ _ 0O 01 00 0 OO

1 00 0O
0O 001 0 O0O0TUDO

01 0 0O
0O 00 01 0 01
u=/0 01 0 0/,Z= ,
0O 00 02160

00 0 01
-1 0001 0 40

00 010
- - 1 00 0 0 0 OO
-1 0001 0 3 0

we get the decomposition (10) in the for;n

Arg — zErg B—zF, B,—zF, B,—zF,
0 Ay —zEy, B, B, —zF, |
0 0 0 B, |
L 0 CbL’ Db[ Dn
0 1-z O 0 0 0 % 0
0O 0 -z -1 -1 0 -3 0
0O 0 1 2-z l 0o 2 0
2
0 O 0 0 2-z 1 6 -z
0 0 0 0 0 0 0 1
0o 2 0 0 0 0O 0 o0
0O O 0 2 0 0O 0 O
0 0 0 0 0 1 0 0]

The Riccati equation (13) has a stabilizing positive solution.



Formulas for the discrete-time (J,.J") -spectral factorization of a general system 51

38.67938045306  6.100834940383 —12.20892601197 —6.796702565575
| 6.100834940383 2324875571834 4966484806355 —1.404285085369
s | —12.20892601197 —4.966484806355 14.77157486463  2.862568469721
—6.796702565575 —1.404285085369 2.862568469721  1.366831275157
With

1 0.6759496827692  17.78498299827
1 0.3001278035743  —9.059057226919 |

which fulfills (14) we get
I(z) =

2027849048307z -3.695856507642°-6.03587561734722 2345039123688z
3,2

z7+z7-z-1

20.90038341072302%+1.8970179793872° +7.8146782656 1022 +4.71423017598 17
3,2

z7+z7-z-1

+6.48433015253722 +4.3549538948822+1.580816976594

0.67594968276922°

22+22+1

13.95215287234322-6.9012127182882-3.103502091648

22+22+1

2703798731076z +9.5042369774152°+3.9064993596922% -0.42909779459982-1.580816976594

3.2

zm+z5—z-1

0.30012780357432°

1200511214292 -6.14929865530423 -10.7637381115522-0.91651954934172+3.10350209164

z3+22—z—1

Indeed I1(z) fulfils (1), has full row normal rank, the same poles as G(z),
zeros at 0,4,0.145898033750294 and 0.2087121525220904, each with

52

multiplicity 1, and one right minimal index equal to 0.

6. Conclusions

We have solved an essential factorization problem formulated for a
completely general rational matrix function in discrete-time: (J,J')—spectral

factorization. We have provided both closed formulas and a numerically stable
algorithm. Our approach can be viewed as a divide et impera procedure as we
isolate from the original system that subsystem which is really needed and for
which we can actually solve the problems. The results put ground to the solution
of the general discrete-time singular H* -control problem without any of the
regularity assumptions.
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