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FORMULAS FOR THE DISCRETE-TIME ( , ')J J -SPECTRAL 
FACTORIZATION OF A GENERAL SYSTEM 

Raluca ANDREI1 

În acest articol folosim realizări de stare descriptor pentru a obţine formule 
constructive ale soluţiei factorizării (J,J’)-spectrale formulate pentru o matrice 
raţională generală (rang arbitrar, poli şi zerouri pe cercul unitate sau la infinit). 
Pentru calculul factorilor am utilizat un algoritm numeric stabil bazat pe o proiecţie 
preliminară unitară ce pune în evidenţă un subsistem, care îndeplineşte toate 
ipotezele de regularitate şi pentru care dăm soluţia factorizării. 

 
We use descriptor state–space realizations to obtain constructive formulas 

for the solutions of the (J, J’)-spectral factorization formulated for a completely 
general rational matrix function (arbitrary rank, poles and zeros on the unit circle, 
or at infinity). For the computation of the factors we use a numerically–reliable 
algorithm based on a preliminary unitary projection which reveals a subsystem 
fulfilling all regularity assumptions and for which we actually solve the 
factorizations.   

Keywords: discrete-time systems, spectral factorization, Riccati equation 

1. Introduction 

A rational matrix function with complex coefficients ( )zΘ  is called 
( )J J ′, –unitary if #( ) ( )z J z J ′Θ Θ =  (where 1( ) ( )#

z
z ∗Θ := Θ ), at every point on the 

unit circle at which Θ  is analytic, where J  and J ′  are two signature matrices, 
i.e., 1J J J− ∗= =  ( ∗  denotes conjugate transpose). By analytic continuation, 

( ) ( )#z J z J ′Θ Θ = ,  z∀ ∈ . If, in addition, ( ) ( )z J z J∗ ′Θ Θ ≤  for every point of 
analyticity of Θ  in the exterior of the closed unit disk, then Θ  is called ( J J ′, )–
lossless. If J J ′= , ( )zΘ  is called J –unitary, and J –lossless, respectively. The 
normal rank of a rational matrix function ( )G z  is its rank for almost all z∈ .  

We consider here the extension of the ( )J J ′, -spectral factorization 
problem such as to become applicable to a general p m×  rational matrix function 
with complex coefficients ( )G z  (of arbitrary rank, with poles and zeros on the 
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unit circle, possibly polynomial or improper): find a rational matrix function 
( )zΠ  which has full row normal rank and only marginally stable zeros such that  

( ) ( ) ( ) ( )# #G z JG z z J z′= Π Π ,                                               (1) 
where ( )( ) ( )G z z+Π  has no poles on the unit circle. Here ( ) ( )z+Π  stands for the 
Moore–Penrose pseudo inverse of ( )zΠ .  

This factorization plays an important role in optimal Hankel-norm model 
reduction and H ∞  optimization, transport theory, and stochastic filtering (see for 
example [1,2,3,4,5]).  

The spectral factorization has been investigated in several papers for a 
rational matrix function with full column rank and without poles/zeros on the unit 
circle or at infinity (see [6,7]) and the solution for a general rational matrix 
function was given in  [8]. Considerable research has focused on the J -spectral 
factorization in continuous-time under various hypotheses [9,10,11,12,13] and the 
problem has been solved in the most general conditions in [14]. For discrete-time 
systems, a state-space algorithm for the J -spectral factorization has been 
developed for the optimal Hankel norm model reduction problem [15], where the 
problem is reduced to a Wiener-Hopf type spectral factorization, which is then 
solved by the geometric factorization principle [16]. A discrete-time version 
closer to our approach is [17], formulated for a stable rational matrix function. In 
[17], the ( , ')J J -spectral factorization extends the technique in [18], in which a 
spectral factorization algorithm associated with the discrete-time descriptor LQ 
regulator problem is derived. 

The paper is organized as follows. In Section 2 we review briefly a couple 
of definitions and notations related to matrix pencils, rational matrix functions and 
descriptor state–space realizations of rational matrices. In Section 3 give a spectral 
decomposition of the system pencil associated with a descriptor realization which 
will be the mail tool used in the next section. Section 4 contains the main result. In 
Section 5 we give a numerical example for the ( )J J ′, –spectral factorization. We 
draw some conclusions in Section 6. For the fluidity of the presentation, the more 
technical details involved and the similarities to the continuous-time case we 
choose to skip the proofs.  

2. Preliminaries 

We denote the open unit disk and the unit circle by D  and 1(0)D , 

respectively, and by cD D=  the exterior of the closed unit disk containing 
the infinity (the “overbar" denotes closure).  

If a matrix A  in m n×  is invertible, A−∗  is its conjugate transpose inverse. 
A Hermitian matrix A  satisfies A A∗= , and we denote by 0A >  if it is in 
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addition positive definite. A  is unitary ( J –unitary) if A A I∗ =  ( A JA J∗ = ). nI  is 
the identity matrix of size n n× , and we skip the dimensions whenever they are 
irrelevant. By  we denote irrelevant matrix entries.  

Let , m nA E ×∈ . The matrix polynomial A zE−  is called a matrix pencil 
(or pencil). The pencil is called regular if it is square ( m n= ) and has a non–
vanishing determinant, i.e., det( ) 0A zE− ≡/ . A singular pencil is a pencil which is 
not regular. The normal rank of the pencil – denoted rank ( )n A zE−  – is defined 
as the rank of A zE−  for almost all z∈  (but a finite number of points). For an 
n n×  regular pencil A zE− , the normal rank r  is equal to n . If 0m rν := − >  
then we say the pencil has a (nontrivial) left singular structure. If 0r n rν := − >  
then the pencil has a (nontrivial) right singular structure.  

Two matrix pencils A zE−  and A zE− , with m nA E A E ×, , , ∈ , are called 
strictly equivalent if there are two constant invertible matrices m mQ ×∈ , 

n nZ ×∈ , such that  
( )Q A zE Z A zE− = − .                                               (2) 

The equivalence relation (2) induces a canonical form (see [19]) – called the 
Kronecker canonical form – on the set of m n×  pencils 

1

1

( )

r

f

n

KR KR
f n

T

T

L

L

I zE
A zE Q A zE Z

A zI

L

L

ν

ν

ε

ε

η

η

∞ ∞

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥− = − =

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                 

(3) 
Here kL  ( 0k ≥ ) denotes the bidiagonal ( 1)k k× +  pencil  

1

1

k

z

L

z

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

, 

and fA  and E∞  are two square matrices in the Jordan canonical form, with E∞  
nilpotent. The finite eigenstructure of A zE−  is determined by the eigenvalues of 
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fA , and the dimensions of the elementary infinite blocks of nI zE
∞ ∞−  determine 

the infinite eigenstructure of the pencil. The union of the finite and infinite 
eigenstructure of the pencil completely determines the regular part of the pencil 
and forms the spectrum of the pencil - ( )A zEΛ − . The singular part of the pencil 
is defined by the right and left singular Kronecker structure: the ( 1)i iε ε× +  
blocks ( 1 )

i rL iε ν, = ,..., , are the right elementary Kronecker blocks, and 0iε ≥  are 

called the right Kronecker indices; the ( 1)j jη η+ ×  blocks ( 1 )
j

TL jη ν, = ,..., , are 

the left elementary Kronecker blocks, and 0jη ≥  are called the left Kronecker 
indices. For more details on matrix pencils see Chapter 12 in [19]. 

For any rational matrix function ( )G z  with coefficients in p m×  one can 
write a descriptor realization of the form (see for example [20,21])  

1( ) ( ) : ( , , , , )G z D C zE A B E A B C D−= + − = ,                                               (4) 
where n nA E ×, ∈ , n mB ×∈ , p nC ×∈ , p mD ×∈ , and A zE−  is a regular 
pencil. The dimension n  of the square matrices A  and E  is called the order of 
the realization (4). With any realization (4) we associate two matrix pencils that 
play an important role in our developments: the pole pencil ( )P z A zE= −  and the 

system pencil ( )
A zE B

S z
C D
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. The realization (4) of ( )G z  is called 

irreducible if it satisfies the following conditions (see [21]):  
[ ]
[ ]

( ) rank
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i A zE B n z
ii E B n

A zE
iii n z

C
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iv n
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− = , ∀ ∈ ,
= ,
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= , ∀ ∈ ,⎢ ⎥

⎣ ⎦
⎡ ⎤

= .⎢ ⎥
⎣ ⎦

                                              (5) 

The conditions (5) are usually known as finite and infinite controllability, and 
finite and infinite observability, respectively. In contrast to standard realizations, 
irreducibility of a descriptor realization does not automatically imply its 
minimality since some simple blocks of dimension 1 at infinity (so called non–
dynamic modes) which are both controllable and observable might increase 
indefinitely the dimension of the realization while keeping its irreducibility. 
Starting from an arbitrary realization (4), one can compute an irreducible 
realization by using solely unitary transformations.  

The following result taken from [22] (see Theorem 2.4) is modified to 
cope with proper ( )J J ′, –unitary rational matrices having a descriptor realization.  
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Lemma 3. Let ( )cG z  be a proper rational matrix, having a minimal 
realization  

( ) ( , , , , )c x x x x xG z E A B C D:= .                                               (6) 
( )cG z  is ( )J J ′, –lossless on 1(0)D  if and only if there is a positive hermitian 

matrix X  such that   
0x x x x x xA XA E XE C JC∗ ∗ ∗− + = ,                                               (7) 
0x x x xD JC B XA∗ ∗+ = ,                                               (8) 

and  
x x x s xD JD B X B J∗ ∗ ′+ = .                                               (9) 

3. Spectral decomposition 

In this section we introduce a spectral decomposition of the system pencil 
with respect to the partition cD D= ∪ . The decomposition can be achieved by 
unitary transformations and will play a capital role in expressing our main results 
in the next section (for more details see [8]).  

Theorem 1. Let ( )G z  be a p m×  real rational matrix given by a 
controllable realization (4), i.e., fulfilling (i) and (ii) in (5). Then there exist two 
constant unitary matrices U  and Z  such that  

00
0 0 00
0

rg rg

b b b n n

n

b b n

A zE
A zE B B zEU A zE B

Z
BI C D

C D D

−⎡ ⎤
⎢ ⎥− −−⎡ ⎤ ⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎣ ⎦

                   (10) 

where:  
I. The pencil rg rgA zE−  has full row rank in cD  and rgE  has full row rank. 

II. bE  and nB  are invertible, the pencil  

b b b

b b

A zE B
C D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

−
                                              (11) 

has full column rank in D , the pencil b bA zE−  is regular, and the pair 

b b bA zE B⎡ ⎤
⎢ ⎥⎣ ⎦−  is controllable.  
The above theorem constructs a projection of the original system (4)  

( ) ( , , , , ),p b b b b bG z E A B C D=                                               (12) 
which fulfills all standard assumptions in the literature (is proper, has full column 
normal rank, and has no zeros on the unit circle). In the next section we will see 
that it is enough to solve the factorization problems for ( )pG z  to get the solution 
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to the corresponding factorization for ( )G z .  

4. Main result 

Once the spectral decomposition obtained, we have the coefficients of a 
Riccati equation, whose solution (when it exists) can be used directly to write the 
state-space realization of the factor ( )zΠ , solving the factorization problem under 
investigation. The following theorem gives a constructive approach for the 
spectral factor for a general rational matrix function. Due to the very technical 
details involved in the proof and to the similarities to the continuous-time case we 
have chosen to skip it here (for more details see [8,14]). 

Theorem 2. Let ( )G z  be a general rational matrix function given by a 
controllable realization (4), and let U  and Z  be two constant unitary matrices 
such that (10) holds.  

I. The ( ')J J, –spectral factorization problem (1) has a solution if and only if 
the following conditions are fulfilled:  

1. The Riccati equation  
( )b b b b b b b bA XA E XE A XB C JD∗ ∗ ∗ ∗− − +  

1( ) ( ) 0b b b b b b b b b bD JD B XB B XA D JC C JC∗ ∗ − ∗ ∗ ∗× + + + =       (13) 
has an invertible stabilizing solution sX , i.e., 

( )b b bA B F zE DΛ + − ⊂ , 
1( ) ( )b b b s b b s b b bF D JD B X B B X A D JC∗ − ∗ ∗:= − + + .   

2.  
'b b b s bD JD B X B V J V∗ ∗ ∗+ =                                               (14) 

for an appropriate constant invertible matrix V ;  
II. ( )zΠ  is given by  

[ ]( ) ( , , , , ) 0 0z E A B C D C D V F I Z ∗⎡ ⎤Π := , := − ,⎣ ⎦        (15) 

Remark 1. In particular, the above result may be applied to a polynomial 
matrix ( )G z  and provides a numerically sound state-space construction of the 
spectral factor. Moreover, if ( )G z  fulfills the usual regularity assumptions (is 
proper, full column rank, no zeros on the unit circle), Theorem 2 recovers the 
well-known result in the regular case.  

Remark 2. Besides solving a Riccati equation of indefinite sign instead of 
a positive one, the formulas for the factors resemble in detail the ones in the 
unitary case [8]. The main difference with respect to the continuous-time case is 
that we have to handle some poles and zeroes at infinity which are no longer on 
the boundary of the stability domain. Shortly, if ( )G z  has a ( ')J J, -lossless 
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factorization, then there is an invertible factor ( )lR z  which cancels in the product 
( ) ( )lR z G z  all left minimal indices and the unstable zeros of ( )G z  (see [14]), and 
( )lR z  is in particular J –lossless. Such an invertible factor may have poles at 

infinity because he has to dislocate possible zeros at infinity of ( )G z  and we 
cannot always write a proper realization for ( )lR z , but we can always write one 
for the inverse, 1 ( )lR z− .  

Remark 3. The existence of the stabilizing solution to the Riccati equation 
(13) can be checked and the equation solved by using any existing numerical 
algorithm that copes with indefinite sign matrix coefficients (see for example [3] 
and the references therein).  

5. Numerical example 

We exemplify the proposed approach on a simple but relevant system. For 
illustrative simplicity we use non–unitary transformations as well. Let  
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( )G z  has a realization (6) given by 
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2 0 0 0 0
0 0 2 0 0
0 0 0 0 1

C
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
0 0 0
0 0 0
0 2 2

D
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 
The structural elements of ( )G z  are: one pole at 1 with multiplicity 1, one 

pole at -1 with multiplicity 2, one pole at ∞ with multiplicity 1, a zero at 2 with 
multiplicity 1, a zero at ∞  with multiplicity 1, one left minimal index equal to 2, 
one right minimal index equal to 0 and normal rank 2r = .  

With  
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
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0 0 0 1 0 0 0 0

0 1 0 0 0
0 0 0 0 1 0 0 1
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, 

we get the decomposition (10) in the form  
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The Riccati equation (13) has a stabilizing positive solution.  
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38.67938045306 6.100834940383 12.20892601197 6.796702565575
6.100834940383 2.324875571834 4.966484806355 1.404285085369
12.20892601197 4.966484806355 14.77157486463 2.862568469721
6.796702565575 1.40428

Xs

− −
− −

=
− −
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⎣ ⎦
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, 

which fulfills (14) we get  
( )
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3 2z +z -z-1
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3 2z +z -z-1
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⎢
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4 3 22.703798731076z +9.504236977415z +3.906499359692z -0.4290977945998z-1.580816976594
3 2 1 .
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z z z

z z z

⎤
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⎥
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⎥

+ − − ⎦

 

Indeed ( )zΠ  fulfils (1), has full row normal rank, the same poles as ( )G z , 
zeros at 1

20 0.145898033750294, ,  and 0.2087121525220904 , each with 
multiplicity 1, and one right minimal index equal to 0 .  

6. Conclusions 

We have solved an essential factorization problem formulated for a 
completely general rational matrix function in discrete-time: ( )J J ′, –spectral 
factorization. We have provided both closed formulas and a numerically stable 
algorithm. Our approach can be viewed as a divide et impera procedure as we 
isolate from the original system that subsystem which is really needed and for 
which we can actually solve the problems. The results put ground to the solution 
of the general discrete-time singular H ∞ -control problem without any of the 
regularity assumptions. 
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