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A GENERALIZATION OF A CLASSICAL MONTE CARLO
ALGORITHM TO ESTIMATE T

S.C. STEFANESCU"

Algoritmul Monte Carlo clasic Al estimeazeaza valoarea numarului 7T
bazdndu-se pe faptul ca raportul dintre aria unui cerc oarecare C i aria patratului
D circumscris cercului este egal cu 7/4 .

Prezentul articol extinde procedura de simulare stocastica Al introducand
parametrii suplimentari A, a , b. Noul algoritm propus A2(A,a,b) ne conduce la
varianta clasicd pentru A =0 sau a.b=0.

Variabila aleatoare W,,, ce caracterizeaza valorile w  generate de
algoritmul A2(A,a,b) constituie un estimator nedeplasat al numdarului 7.

In lucrare sunt determinate si valorile optime A., a,, b, astfel incat variabila

aleatoare W x,«ps Sa aiba cea mai mica dispersie.
Comparat cu Al , precizia estimatiilor furnizate de algoritmul A2(A,,a,,b,)
creste de aproximativ y, = 1.38 ori.

Rezultatele teoretice obtinute au fost confirmate practic prin simulare
stocasticd pe calculator.

1t is very known that the ratio between the area of any circle C and the
corresponding area of the circumscribed square domain D of C is equal to /4.
The classical algorithm Al to estimate the number r is based on this remark.

In the present paper the standard procedure Al is extended by considering the
additional parameters A, a, b . Our suggested A2(A,a,b) procedure implies the
standard variant Al when A =0 or ab=20.

The random variable W, ., which characterize the outputs w of A2(A,a,b)
algorithm is an unbiased estimator for 7.

More, we determined the optimum values A, , a,, b, such that the variance of

the random variable W.qxp» to attain its minimum value.
The proposed A2(A,,a,,b,) algorithm is approximately y, = 1.38 times more

accurate than the classical Al Monte Carlo procedure.
The theoretical results were confirmed experimentally by stochastic
simulations on the computer.
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Introduction

In the literature there are presented many deterministic and also Monte
Carlo algorithms for estimating the unknown value of © ( Devroye [2], Dodge [3],
Sacuiu, Zorilescu [7] ). The classical probabilistic procedures which estimate the
number m is based on a rejection type method ( Bradley, Fox, Schrage [1],
Devroye [2], Gentle [4], Kleijnen [6] ).

More precisely, we generate a string of n independent random points
P,(x,y) having an uniform distribution in the square domain D = { (x,y) | 0 <x,
y <1 }. Finally we reject all those points P; which did not fall inside the circular
domainC, C={(xy) | x>0, y=>0, x2+y2£ 1 }. Obviously CcD.

In this manner are retained only m independent random points P, , with m

< n . All these selected points belong to the domain C and are also uniformly
distributed on C .

For this reason the number m/n could be considered a good

approximation of the ratio Area(C)/Area(D) , that is an appropriate estimation for
the unknown quantity z/4.

So, the value of 7 should be estimated by the quantity w=4m/n.

The classical algorithm Al determines an estimation w for the number .

Algorithm Al. ( The standard rejection procedure for 7 estimation )
Step 0. Input : the number n of simulation steps.
m=0 ; j=0 { j = the current simulation step }
Step 1. j=j+1
Generate two independent random variates X , y having a uniform
U(0,1]) distribution
Step 2. (the rejection procedure ). If X2+ y2 <1 then m=m+1
Step 3. If j<n then Goto Step I

Step 4. w=4m/n ; Print w ; STOP .

In the subsequent we'll generalize the standard algorithm Al using
additional parameters.
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Main results

1. A more general algorithm.

Let A,a,b be fixed real numbers with a>0 and b>0.

We'll define an extension A2 of Al algorithm by considering the real
numbers A, a,b as additional parameters for A2.

Algorithm A2(A, a, b). ( Extension of Al procedure )
Step 0. Inputs : n ( n = the number of simulation steps )
A,a,b(AeR,a>0,b>0,a’+b><1)
m =0 (n = the number of the points P, which fall in the

domain C)
k=0 (n=the number of the points P, belonging to
[0,a] x[0,b] domain)
j=0 { j = the current simulation step }
Step 1. j=j+1
Generate two independent random variates x ,y havinga U([ 0,1 ])
uniform distribution

Step 2. (the rejection procedure ). If X2+ y2 >1 then Goto Step 4
m=m+1
If (x<a)&(y<b) then k=k+1

Step 4. If j<n then Goto Step I

Step 5. w=4m/n+ Ak/n—Aab ; Print w ; STOP .

Particular cases :

- Considering A = 0 in A2 algorithm we just obtain the classical Al
procedure , A2(0,a,b) = Al.

- At the same conclusion we arrive if we take ab=0 forany A € R (
A2(1,a,0) = A2(A,0,b) = Al).

In the following we'll try to prove that forany A € R and a>0, b>0

with a? +b5% <1 the w value produced by A2(A,a,b) algorithm is an unbiased
estimation of 7.

More, taking into consideration different variants of A2(A,a,b) procedure
which depend on the parameters A , a , b we can choose the appropriate values A,
a., b, of these parameters such that the estimations w of w to attain a minimum
dispersion.
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2. Theoretical results.

We define the functions

4 5 if (x20,y20,x2 +y2 <1

e I yo=h ()
0 ; otherwise
1 ; if(0£x<a,0<y<h)

hy(x, )= { 0 ; otherwise @)

In the following we'll impose some restrictions for the unknown values of
the parameters a, b . So, we'll consider
HypothesisH1. 0<a,b<1.

Hypothesis H2. a>0, b>0 and a’+b*<1.

Definition 1. For any independent random variables ( r.v.-s ) X ,Y which
have an uniform distribution on the interval [0, 1], X~ U([0, 1]), Y~ U([0, 1)),
we define ther.v. W, , given by the expression

Wiap=h(X,Y)+ ﬂ(hz(X, Y)- ab) (3)
Remark 1. Analyzing the algorithm A2(A,a,b) we deduce that its output
w can be regarded as an observation from ther.v. W, ..
In the subsequent we intend to use the r.v. W, , to study the statistical
qualities of the estimations w . More precisely

Proposition 1. Forany A € R and a, b respecting the restriction H1 ,
ther.v. W, , isan unbiased estimation of 7, that is

Mean(W, 4 p)=7 4)
Proof. The probability density function (p.d.f.) f,(x,y) of the random
vector (X,Y) has the form

1 5 if(0<x<1,0<y<1)
fl(x,y)z{o ;. otherwise
So, we get
—+00 400
Mean(Wy )= | (1150 + 2006, ) — @ b)) i (x, ) dedy =
—00 —00

11 11

zjjh1(x,y)dxdy +ﬂjj(h2(x,y)—a.b)dxdy:
00 00
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1 \/ﬁ ab 1

=4I Idy dx+/1{v"jdxdy—a.b}—4j‘\/l—x2 dx =
0 0 00 0
/2

/2
5 1+ cos(2t)
=4 ot (yar=a | =

0
Proposition 2. If the hypothesis H2 is satisfied then the variance

Var(Wy 4 p) of ther.v. W, . has the expression
Var(Wy 4.p) = g1(4,a,b) = ab(1 - ab)/i2 +2ab(4— m)A + n(4— 1) &)
Proof. Indeed, for any a > 0, b >0 with a2 + b2 <1 we deduce
successively
g1(A,a,b)= Var(W q4.p) = Mean(W/lz’aab )— (Mean(W,La’b ))2 =

+00 +00

_ J' J.(hl(x,y)+l(hz(x,y)—a.b))zfl(x,y) ddy— 72 =
I[xi_oo 11
:”hf(x,y)dxdy+/12H(h2(x,y)—a.b)2dxdy+
00 00

11
+2/1“'h1(x,y)(h2(x,y)—a.b) dxdy — % =

00
ab
J' I16dy dx+/12”(1—2ab)dxdy+/12 2p2 4
0 00
ab ﬂ
+2/1J_[4dxdy ZMbI _[4dy dx — 72
00 0 0

=47+ 22ab(1 — ab) + 2Aab(4 — n) — x> = ab(1 — ab)A> + 2ab(4 — 7)A + n(4 - 1)

Remark 2. The function g;(A,a,b) defined by the formula (5) is
symmetrical one in the arguments a and b, thatis gy(4,a,b)=g|(4,b,a) for
any real values a, b which satisfy the restriction H2.
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Remark 3. The accuracy of Al outputs is given by the variance of the r.v.
Wo.ap that is  Var(Wy,p)=7(4—-7)~2.6968 for any real numbers a, b

respecting H2 hypothesis.
Proposition 3. For given real numbers a , b which verify the restriction
H2 , the minimum value of the variance Var(W, , ) , regarded as a function of

A , is attained for A = A, where

7—4
A = 6
1= 12 ah (6)
and in addition
ab
Var(Wy, a)= g2(@,h) === (4=m)* + 7 (4= 1) ()

Proof. We'll treat individually the situations a.b=0 , respectively
a.b+0.

Case 1. If a.b=0 then for any A € R we have

Var(Wy o) = g1(4,a,b)=ab(1 - ab)/i2 +2ab(4 - m)A+ (4 —rm)=n(4— 1)
and hence for A=4; we conclude
Var(W/ll,a,b) =rn(4—-n)= —%(4 - 7[)2 +7(4—-7m)=gy(a,b)

Case 2. Indeed, since a.b#0 we deduce that the polynomial function
g1(4,a,b) has the degree two in the variable A and more it takes its minimum
when

2ab(4-7) n7-4
" 2ab(1—ab)  1-ab
So, the minimum g,(a,b) of the function g,(A,a,b) has the following

A=k =

expression
gr(a,b)=g1(4,a,b)=ab(l - ab)/ll2 +2ab(4 - )4 + (4 —17) =
ab 2
=7Z(4—7Z)—m(4—ﬂ')
which finish the proposition proof.

Proposition 4. Respecting the hypothesis H2, the minimum variance of
the random variables W Aab is attained when the parameters a , b, A take the
values

ax =bs =1/2 Qe =278 (8)
and more

Var(Wy, 4, b ) =(4—m) (27— 4)~ 19599 9)
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Proof. Taking into consideration the results of Proposition 3 it remains to
find those values a., b, which minimize the function g,(a,b) given by (7).

At the end we'll consider A« =(7r—4)/ (1—axb«).

Case 1. When a.b=0 then the constant function g,(a,b)=n(4— )
has obviously its minimum value equal to 7(4 — 7).

Case 2. Now we'll find the minimum value of the function g,(a,b) for
any a>0, b>0 which respect the inequality a?+b><1.

First, we remark that the function g3(¢)=¢/(1-¢), 0<t<1,isan
increasing one. So, the minimum value for the expression g, (a,b) given by (7),

b t
g2(a,b)= (4 - 1)~ ———(4-7)> = 24— 1) - —— (4 7)°
1—ab 1-¢

is obtained when the variable ¢=ab takes its maximum value, respecting also
the restrictions: a>0,5>0, a’+b*<1.

But the maximum value of ¢> =a’b? with a® + 5% <1 is attained for
a’ =b>=1/2 ,thatis ax=b«=1/2.

Having ax =b« =1/ V2 we deduce A« =(r—-4)/(1—axbs)=27r-8 .

More

Var(W, g ) = g2 (as,bs) = 2(4 - z) — — 2

(4-1) =(4-1)(2r —4)=19599

1—axbx«
Analyzing both previous alternatives, since (4—7)2z-4)<(@d-7)x
we deduce the results mentioned by Proposition 4.

3. A Monte Carlo study.

Figure 1 presents the graphic of the function gz(a,a)zVar(Wlha,a)

which has the form (7). We mention here that g,(a,a) is a decreasing
application.

Comparing with Al, the algorithm A2(A,ab) is y(a,b) times more
accurate to estimate w. The coefficient y(a, b) is just the ratio
VarWoap) z(4-7) z
CVar(Wy, qp)  g2(ab)  m—ab(4—x)/(1-ab)
Obviously y(a,b)=y(b,a).

Table 1 lists the values of y(a,a) when 0<a< 1/42.

y(a,b) (10)
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Figure 1. The graphic of the function g2(a,a) .
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Table 1
The values of the coefficient y(a,a).
a 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
v(a,a) 1.000 1.003 1.012 1.028 1.055 1.100 1.182 1.356

The maximum value y. of the indicator y(a,b) is attained for ax =1/ NG
and bx =1/2 , thatis

Var(Wy gu.ai ) 4 -
L Jahen)  xGem x (i
VGV(WA*,G*,a* ) (272- - 4) (4 B ﬂ-) 272. B 4

Table 2 gives the optimum values A, computed with formula (6) for the
parameter A of A2(A,a,a) algorithm ( the case a=5b).

Table 2
The optimum value A, (formula (6), the case a=b).
a=h 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
L 0.0000 | -0.8687 | -0.8958 | -0.9450 | -1.0238 | -1.1467 | -1.3438 | -1.6863
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Running the algorithm AZ2(A,a,a) for n=1000 we obtained the

estimations w of = , quantities which are listed in Table 3. This process was
repeated s =20 times, the variable s counting the current simulated step.

Table 3
The outputs w of A2(A a,a) algorithm (n=1000, s=20 simulations ).

a=00|a=01]a=02 ]| a=03|a=04 | a=05]|a=06 [ a=0.7
3.156 3.153 3.153 3.163 3.149 3.138 3.136 3.124
3.052 3.054 3.052 3.053 3.054 3.051 3.076 3.064
3.056 3.058 3.055 3.062 3.058 3.062 3.075 3.044
3.148 3.150 3.147 3.151 3.138 3.155 3.169 3.188
3.084 3.081 3.075 3.075 3.083 3.095 3.095 3.108
3.144 3.143 3.139 3.133 3.141 3.151 3.140 3.142
3.196 3.198 3.203 3.202 3.188 3.190 3.183 3.179
3.200 3.196 3.199 3.191 3.195 3.193 3.208 3.192
9 3.160 3.161 3.158 3.156 3.153 3.151 3.148 3.120
10 3.184 3.187 3.180 3.178 3.179 3.163 3.164 3.165
11 3.128 3.126 3.125 3.126 3.126 3.121 3.143 3.130
12 3.184 3.186 3.184 3.177 3.166 3.167 3.149 3.122
13 3.232 3.228 3.220 3.223 3.223 3.216 3.225 3.188
14 3.104 3.102 3.098 3.099 3.098 3.095 3.088 3.082
15 3.136 3.139 3.138 3.139 3.146 3.155 3.145 3.129
16 3.072 3.069 3.079 3.082 3.070 3.058 3.077 3.084
17 3.232 3.227 3.237 3.232 3.227 3.234 3.210 3.215
18 3.204 3.203 3.198 3.197 3.192 3.176 3.162 3.155
19 3.008 3.009 3.012 3.012 3.023 3.034 3.050 3.050
20 3.088 3.089 3.088 3.087 3.099 3.106 3.107 3.122

(e} ENN o | KU, | NNy RUST | O R L [77]

Taking into consideration the outputs w, , 1 <k <s , produced after s
independent runs of A2(X,,a,a) procedure we are also computed the mean p and

. . 2 .
the dispersion ¢ of these experimental results, where
W+ Wy +w3 +...+ W

N

2 2 2 2
wp — 1)+ (wy — )+ (w3 — )" + .+ (wy —
g2 =)+ — ) + (w3 — p) (ws — 1) (12)
s
The values of p and &~ indicators obtained for different values for the
input parameter a of A2(A,,a,a) estimation procedure are presented in Table 4.
The experimental data confirm the theoretical results. More precisely, the

. . 2 .
dispersion o decreases when the values of the parameter a increase ( compare
Figure 1 with Table 4 ).

Table 4
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The mean p and the variance & for the outputs w of A2(A,,a,a)
algorithm considering s=20 simulation runs ( n=1000 ).

a=00 | a=01 [ a=02 | a=03 | a=04 | a=05 [ a=06 | a=0.7
3.138 3.138 3.137 3.137 3.135 3.136 3.138 3.130
0.00382 | 0.00374 | 0.00373 | 0.00355 | 0.00321 | 0.00302 | 0.00234 | 0.00228

QN—;

Concluding remarks

Imagining new parameters to the classical Al estimation algorithm we
obtained the extended procedure A2(A,a,b). The procedure Al is deduced from
A2(\,a,b) as a particular case, that is by considering A =0 or ab=0 ( A2(0,a,b)
= = A2(1,a,0) = A2(1,0,b) = Al).

A theoretical proof ( Proposition 1 ) confirms the good properties of w
outputs produced by A2(A,a,b) procedure to evaluate the unknown value of = (
the random variable W, , ; is an unbiased estimator for 7 ). The dispersion of the

estimator W, , 5, is also computed ( see Proposition 2 ).

More, we determined the optimum values A, , a,, b, for the parameters

of A2(A,a,b) generalized algorithm such that the outputs w to have a minimum
dispersion ( Proposition 4 ).

A Monte Carlo computer simulation confirmed the theoretical results ( see
Table 4).

In conclusion, the suggested A2(A.a.b,) algorithm is approximately 7.

=1.376 times more accurate than the standard A1 Monte Carlo procedure.
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