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AN APPLICATION OF SUBSTRUCTURE METHOD  

Daniela DOBRE∗  

Lucrarea descrie unele aspecte matematice privind metoda substructurii 
aplicate unui sistem elastic cu mase concentrate, supus unei miscari armonice, in 
domeniul timp si frecventa. 

Prin introducerea metodei substructurii devine posibila studierea unui sistem 
discretizat in doua subsisteme, pentru care sunt scrise ecuatiile dinamice de 
echilibru. Sistemul de ecuatii este rezolvat utilizand schema explicita Newmark de 
integrare in timp, obtinandu-se astfel contributiile celor doua subsisteme. 

 

The paper deals with the mathematical description of the substructure 
method applied to an elastic lumped mass system subjected to an harmonic motion, 
in time and frequency domain. 

By introducing the substructure method, it becomes possible to study a 
system separately in two subsystems (substructures), with an interface between 
them, and for which the dynamic equilibrium equations are written. The system of 
equations is solved  using explicit Newmark time integration scheme, distinguishing 
between the quantities coming from the substructure 1 and substructure 2. 

 

Keywords: substructure method, equilibrium equations, numerical integration,  
                    Fourier transform, impedances functions 

Introduction 

In case of omogen systems it is not necessary to make distinctions between 
some component parts, but in other cases, in which these components have 
different properties, the analyse on components it is useful and then the 
subsequent assembling of the results (kinematics or topological partition). 

The substructures are disjunctive parts, with common boundary points but, 
for which  internal or external (on boundaries) degrees-of-freedom are considered. 
Through substructure method, generally the reduction of dynamic problem 
dimensions is followed, by static or dynamic condensation, related to external 
degrees-of-freedom of substructures [1, 2]. 
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An elastic lumped mass system in time and frequency domain 

The aim of this work is to identify the influence of each substructure in the 
modelling of interaction between those two substructures (subsystems) as 
matrices from the split system of equations matrix. The appropriate way to do this 
is to consider a n-degree-of-freedom liniar oscillator, supported on a rigid layer 
(substructure 1) and resting on another layer modelled with elastic isotropic 
homogenous halfspace (substructure 2), Fig.1. 

The substructure 1 has a stiffness matrix [K], mass matrix [M] and 
damping matrix [C], satisfying the condition 

1 1 1 1[ ] [ ][ ] [ ] [ ] [ ][ ] [ ]M K M C M C M K− − − −= , a necessary and sufficient condition for 
the substructure to admit decomposition into classical real modes [3]. 

The system has n+2 significant degrees of freedom, namely, horizontal 
translation of each floor, horizontal translation of the base mass and rotation of the 
system in the plane of motion. 

 
         Table 1 

Characteristics of the substructures 

Substructure 1 
Rigid layer mass m0, moment of inertia I0,  
Structure  mass [M], (moment of inertia I), stiffness 

[K], damping [C], height H 
Displacement: ( ) ( ) ( )I I

gv t h t v tθ+ +  

Substructure 2 
Elastic halfspace  Poisson’s ratio υ , mass density ρ, shear 

wave velocity cs 
Rigid massless plate on the 
surface of the halfspace 

its displacement compatibility with the 
lower surface of the rigid basemat 

Displacement: ( ) ( )I
g gv t v t+  

 
 

The equilibrium equations of motions will be developed for the general case of  n masses, 
in terms of the parameters of the overall system and the unknown displacements: 

( )gv t - deformation at free-field surface,  

( )v t - deformation of the substructure 1 relative to the base,  

( )I
gv t - base displacement caused by substructure 2-substructure 1 interaction, and  

( )I tθ - base rotation caused by substructure 2-substructure 1 interaction. 
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Fig. 1. – A lumped elastic system with n-degree-of-freedom (Substructure 1) 

 

 
Fig. 2. - Physical models to represent dynamic stiffness for Substructure 2 (translation 

motion/rotational motion/coupling of horizontal and rocking motions)Substructure 1, in the time 
domain 
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Substructure 1, in the time domain 
 

- all n masses are isolated in order to get the n horizontal force equilibrium 
equation: 

-  
1 1 1 2 1 2 1

1 1 1 2 2 1[ ( ) ( )] ( ) ( ) [ ( ) ( )] [ ( ) ( )]I I
g gm v t h v t c v t k v t c v t v t k v t v t m vθ+ ⋅ + + + − − − − = −

 
( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ] ...

2

2
23

3
23

3

12
2

12
2

2
2

g

I
g

I

vmtvtvktvtvc
tvtvktvtvctvhtvm

−=−−+−
−−++++⋅θ+

 

1 1[ ( ) ( )] [ ( ) ( )] [ ( ) ( )]n I I n n n n
n g n n n gm v t nh v t c v t v t k v t v t m vθ − −+ ⋅ + + − + − = −  

 
- the entire structure is isolated from the elastic halfspace in order to get the 

horizontal force and moments about the centroidal x-axis of the basemat 
equilibrium equations: 

-  
1

1[ ( ) ( )]I I
gm v t h v tθ+ ⋅ + + 2

2[ ( ) 2 ( )]I I
gm v t h v tθ+ ⋅ + +…+ 

[ ( ) ( )]n I I
n gm v t nh v tθ+ ⋅ + + 

1 ( )gm v t + 2 ( )gm v t +…+ ( )n gm v t + 0[ ( ) ( )]I
g gm v t v t+  = 0 ( )V t  

 
( 0 ( )V t  is the base interaction shear force) 
 

0 ( )II tθ + 1
1 [ ( ) ( )]I I

gm h v t h v tθ⋅ ⋅ + ⋅ + + 2
2 2 [ ( ) 2 ( )]I I

gm h v t h v tθ⋅ ⋅ + ⋅ + +…+ 
 

[ ( ) ( )]n I I
n gm nh v t nh v tθ⋅ ⋅ + ⋅ + + 1 ( )gm h v t⋅ ⋅ + 2 2 ( )gm h v t⋅ ⋅ +…+ 

 
( )n gm nh v t⋅ ⋅ = 0 ( )M t  

( 0 ( )M t  is the base interaction moment) 
 
In the matrix form one can obtain: 
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1 1 1

2 2 2

3 3 3

1 2 3 1 2 0 1 2
2 2 2 2

1 2 1 2 0

0 0 ... 0
0 0 ... 0 2
0 0 ... 0 3
... ... ... ... ... ... ...
0 0 0 ...

... ... 2 ...
2 3 ... 2 ... 4 ...

n n n

n n n

n n

m m hm
m m hm

m m hm

m m nhm
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⎢ ⎥
⎢ ⎥
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1 2 2

2 2 3 3

3 3 4

0 ... 0 0 0
... 0 0 0

0 ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... 0 0
0 0 0 ... 0 0 0
0 0 0 ... 0 0 0
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+ 

1 2 2

2 2 3 3

3 3 4

0 ... 0 0 0
... 0 0 0

0 ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... 0 0
0 0 0 ... 0 0 0
0 0 0 ... 0 0 0

n

k k k
k k k k

k k k

k

+ −⎡ ⎤
⎢ ⎥− + −⎢ ⎥
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⎪ ⎪
⎪ ⎪⎪ ⎪
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⎪ ⎪⎩ ⎭
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1

2

3

1 2 0

1 2

...

...
2 ...
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V t
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⎪ ⎪
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The system of equations is integrated with respect to time using explicit 

Newmark time integration scheme with 0β = , 1
2

γ =  and 

2

1 2i i i i
tv v t v v+

Δ
= + Δ ⋅ + ⋅  

1 1( )
2i i i i
tv v v v+ +

Δ
= + ⋅ +  

 
Thus: 
 

1 1 1 1i i i iMv Cv Kv P+ + + ++ + =  
 

( )
2

1 12 2 2i i i i i
t t tM C v P v K v C K t v C K+ +

⎛ ⎞Δ Δ Δ⎛ ⎞+ ⋅ = − ⋅ − ⋅ + ⋅Δ − ⋅ ⋅ + ⋅⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 
( )1 , ,i i i iv f v v v+ =  and the discrete system of linear equations at time 1nt +  is 

1 1i iM v P+ +⋅ = . 
 
Distinguishing between the quantities coming from the substructure 1 and 

substructure 2, the system 1 1i iM v P+ +⋅ = may be split into: 
 

1 11 1 1 2

22 1 2 2 2

substrsubstr substr substr substr

substrsubstr substr substr substr

v PM M
vM M P

− −

− −

⎧ ⎫⎡ ⎤ ⎧ ⎫ ⎪ ⎪=⎢ ⎥ ⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎩ ⎭ ⎪ ⎪⎣ ⎦ ⎩ ⎭

, where 
2
tM M C Δ

= + ⋅ , 

1

2

1 1 3

0 0 ... 0
0 0 ... 0
0 0 ... 0
... ... ... ... ...
0 0 0 ...

substr substr

n

m
m

M m

m

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

1 1

2 2
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... ...
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n n
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⎡ ⎤
⎢ ⎥
⎢ ⎥
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⎢ ⎥
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⎢ ⎥⎣ ⎦

,  

 

2 1 1 2
T

substr substr substr substrM M− −= , 
 

1 2 0 1 2
2 2 2 2 2 2

1 2 1 2 0

... 2 ...
2 ... 4 ...

n n
substr substr

n n

m m m m hm hm nhm
M

hm hm nhm h m h m n h m I−

+ + + + + + +⎡ ⎤
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In another simplified form, the mass matrix can be expressed as: 
 

1
1
1
...
1

I

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭
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h
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H h
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⎪ ⎪⎪ ⎪= ⎨ ⎬
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⎪ ⎪
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; 1 1 1 2

2 1 2 2

substr substr substr substr

substr substr substr substr

M M
M

M M
− −

− −

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 or  
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{ }
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0{ }

T
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T T T

M MI MH

M MI m I MI I MH

MH I MH J H MH

⎡ ⎤
⎢ ⎥
⎢ ⎥

= +⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥⎣ ⎦

 

 
Substructure 1, in the frequency domain, using the Fourier transforming 

of n+2 equations and the impedances functions (because the stiffness and 
damping properties of the substructure 2 are frequency dependent) 

 
The Fourier transform is a mathematical technique for converting time 

domain data ( ( )v t ) to frequency domain data ( ( )V ω ), and reversely, 
 

( ) ( ) i tV v t e dtωω
+∞

−

−∞

= ∫  

 
and is applied to each equilibrium equation for substructure 1. 

 
More over, the equations of motion involve only the two substructure 2-

substructure 1 interaction degrees-of-freedom, ( )I
gv t and ( )I tθ , and each 

impedances functions are expressed in terms of the halfspace: 
 

( ) ( ) ( )2 1 2 2 2
1 1 1 2 2 1 1 2 2( ) ( ) ( )I I

gm c i k c i k V i m h i m V i c i k V iω ω ω ω ω ω ω ω ω ω− + + + + − Θ − − + +
 
+ ( ) 01 =ωiVm g  
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Using the complex impedance functions (frequency dependent, having the 

form 0 0 0( ) ( ) ( )R IG ia G a iG a= + ), the interaction forces acting on substructure 1 
are given in the frequency domain by: 
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⎪ ⎪
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⎪ ⎪⎪ ⎪
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⎪ ⎪⎩ ⎭

, where 
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2

11 1 1 1 2 2G m c i k c i kω ω ω= − + + + +  

12 2 2 21( )G c i k Gω= − + =  

13 1... 0nG G= = =  
2

1, 1 1nG mω+ = −  
2

1, 2 1nG m hω+ = −  
2

22 2 2 2 3 3G m c i k c i kω ω ω= − + + + +  

( )23 3 3G c i kω= − +  

24 2... 0nG G= = =  
2

2, 1 2nG m ω+ = −  
2

2, 2 2 2nG m hω+ = −  
… 

1 2... 0n nG G −= = =  

( ), 1 1 1n n n nG c i kω− − −= − +  
2

nn n n nG m c i kω ω= − + +  
2

, 1n n nG m ω+ = −  
2

, 2n n nG m nhω+ = −  
2

1,1 1nG mω+ = −  
2

1,2 2nG m ω+ = −  
… 

2
1,n n nG m ω+ = −  
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1, 1 1 0... ( )I I

g g
n n n v v

G m m m G iω ω+ + = − + + + +  
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g
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θ

ω ω+ + = − + + + +  

2
2,1 1nG m hω+ = −  

2
2,2 2 2nG m hω+ = −  

… 
2
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( ) 2
2, 1 1 ... ( )I I

g
n n n v

G m h m nh G i
θ

ω ω+ + = − + + +  

( )2 2 2 2 2 2
2, 2 1 2 02 ... ( )I In n nG m h m h m n h I G i

θ θ
ω ω+ + = − + + + + +  
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For substructure 2,  
 

In dynamics, the dimensionless frequency 0a  is introduced, 0
0

s

ra
c
ω

= , 

with r0 representing a characteristic length and cs the shear-wave velocity from the 

motion, s
Gc
ρ

= , G shear modulus. Using the static-stiffness coefficient K , is 

formulated the dynamic stiffness coeficient,  S(a0): 
[ ]0 0 0 0( ) ( ) ( )S a K k a ia c a= +  

 
The spring with the stiffness 0( )k a  governs the force, which is in phase 

with the displacement, and the damping coefficient 0( )c a describes the force 
which is 900 out of phase. The dynamic-stiffness coefficient 0( )S a  can be 
interpreted as a spring with the frequency-dependent coefficient 0( )Kk a and a 

dashpot in parallel with the frequency-dependent coefficient 0
0( )

s

r Kc a
c

, Fig. 3. 

 

 
Fig. 3. - Interpretation of dynamic-stiffness coefficient for harmonic excitation as spring and as 

dashpot in parallel with frequency-dependent coefficients 
 
 

Using cones to model the halfspace, there are the following expressions 
for stiffness and damping (Fig. 2) [1]: 

 
2

2
0

0 02
0

( ) 1 s
oriz

z cGk a a
r cπ

= − ; 0
0

0

( ) s
oriz

z cc a
r c

= . 
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(for the horizontal motion, c = cs, G = 0 for all υ, for the vertical motion, c 

=cp, G = 0 for 1
3

υ ≤  and c = 2 cs and G ≠ 0 for 1 1
3 2

υ≤ ≤ ) 

 
2 2

20 0
0 0 22

0 20
0

0

4 1( ) 1
3 3

s
rot

s

G z c ak a a
r c r c a

z c

θ

π
= − −

⎛ ⎞
+⎜ ⎟

⎝ ⎠

;  

 
2

0 0
0 2

0 20
0

0

1( )
3

s
rot

s

z c ac a
r c r c a

z c

=
⎛ ⎞

+⎜ ⎟
⎝ ⎠

 

 
(for the torsional motion, c = cs, G = 0 for all υ, for the rocking motion, c 

=cp, G = 0 for 1
3

υ ≤  and c = 2 cs and G ≠ 0 for 1 1
3 2

υ≤ ≤ ) 
 
Also, for stiffness and damping there are the following formulae: 

 

0
8

2orizk Gr
υ

=
−

; 2
0

4.6
2oriz sc c rρ

υ
=

−
; 

3
08

3(1 )rot
Grk
υ

=
−

; 4
0

0.4
1rot sc c rρ

υ
=

−
 

Conclusions 

The theoretical analysis of a lumped elastic system with n degree-of-
freedom supported by a rigid layer resting on an elastic halfspace is presented. 
The quantities coming from the substructure 1 and the substructure 2 are put into 
evidence, being determined the matrices for and at the interface from the both 
structures. This aspect is important from mathematical point of view, but 
important too from practical point of view for the possibility to combine the 
numerical simulation of the analytical part of the system with the effective 
laboratory testing of the remaining part of the system. 

The theoretical point of view is going to be continued with some 
numerical studies related to the substructure 2-substructure 1 interaction, using the 
computer modeling of different systems.  
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