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SOLITARY WAVE AND SHOCK WAVE SOLUTIONS OF THE
VARIANTS OF BOUSSINESQ EQUATIONS

Houria Triki1, Abhinandan Chowdhury2,3 and Anjan Biswas2,4

This paper obtains the solitary wave as well as the shock wavesolutions
of the variants of the Boussinesq equations in both (1+1) and (1+2) dimensions.
The domain restrictions are also identified in the process.
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1. Introduction

The theory of nonlinear evolution equations (NLEEs) is a very important area
of research in the fields of Applied Mathematics and Theoretical Physics [1-15].
There are various issues of NLEEs that need to be addressed. These include the
integrability aspect, conservation laws, wave interactions and many more. In this
paper, the first aspect is going to be studied in detail for a few generalized versions
of familiar NLEEs.

There are various tools that have been developed in the past couple of decades
that enables the issue of integrability of NLEEs to be addressed with ease. Some
of these familiar tools of integrability are variational iteration method, semi-inverse
variational principle,G′/G−expansion method, exponential function method, Fan’s
F-expansion method, simple equation method,tanh-coth method, just to name a
few of these techniques. These techniques lead to several kinds of solutions that the
Theoretical Physicists and Applied Mathematicians need tocarry out further studies
in these areas.

Once these solutions are available, it is not a difficult taskto carry out further
studies related to NLEEs, including the computation of conserved quantities, wave-
wave interactions, quasi-stationary solutions in presence of perturbations and many
other aspects of NLEEs. Therefore it is of prime importance to first focus on the
integrability aspects of NLEEs to retrieve various solutions of NLEEs, for example
the cnoidal and snoidal waves, solitary waves, peakons, cuspons and others.
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2. Governing Equations

This paper is going to focus on the integration of a generalized version of
Boussinesq equation (BE) that comes with three variants. These generalized vari-
ants will be studied in both (1+1) and (1+2) dimensions. These three variants
will be respectively labeled as Variants I, II and III. The focus, in this paper, will
be on solving these variants of the BE for solitary wave solutions and shock wave
solutions.

These equations arise in the area of Applied Mathematics as ageneralized
version of the regular BE. Rosenau generalized the KdV equation to formulate
theK(m,n) equation. Later this equation was further generalized to formulate the
K(m,n) with generalized evolution. Similarly the BE was generalized to formulate
theB(m,n) equation, that was solved in 2009 [1]. Another kind of generalization
of the BE was given by Wazwaz in 2005 [10, 11]. In this paper, the three variants
are a further study of the three variants given by Wazwaz in 2005, with generalized
evolution. It is well known that both KdV equation and BE study the shallow water
waves.

3. Variant-I

We first consider the Variant I of the improved Boussinesq-type equation:

utt −k2
1uxx−k2

2uyy−a
(

u2n)

xx−b[un(un)xx]xx = 0, (1)

whereu(x,y, t) represents the wave profile, depending on the space coordinatesx
andy, and the time variablet. The subscriptsx, y andt denote partial derivatives
with respect to these variables, anda,b∈ R are constants.

In (1), the first term is the evolution term, the second and thethird terms
represent the dispersion terms in thex- andy-directions respectively, while the last
two terms are the nonlinear dispersion terms.

3.1. Solitary Waves. We start the analysis by assuming a solitary wave ansatz of
the form [1-4]

u(x,y, t) =
A

coshpτ
(2)

where

τ = B1x+B2y−vt (3)

and

p> 0 (4)

for solitons to exist. Here, in (2) and (3),A represents the amplitude of the soliton,
v is the velocity of the soliton whileB1 andB2 are the inverse widths in thex andy
directions, respectively. The exponentp is unknown at this point and its value will
be evaluated in the process of deriving the solution of this equation. Substituting
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(2) into (1) yields

p2A
(

v2−k2
1B2

1−k2
2B2

2

)

coshpτ
−

p(p+1)A
(

v2−k2
1B2

1−k2
2B2

2

)

coshp+2 τ
(5)

+
2npA2nB2

1

{

a+2anp+bB2
1

(

4n3p3+7n2p2+6np+2
)}

cosh2np+2 τ

−
4n2p2B2

1A2n
(

a+bn2p2B2
1

)

cosh2npτ
− 2A2nB4

1bnp(np+1)2(2np+3)

cosh2np+4 τ
= 0.

From (5), equating the exponentsp and(2pn+2) gives

p= 2pn+2 (6)

that leads to
p= 2/(1−2n) (7)

which is also obtained by equating the exponents pair(p+2) and(2pn+4).
Now, the functions, 1/coshnp+ j τ for j = 0,2,4 in (5) are linearly indepen-

dent. Thus, their respective coefficients must vanish. Setting their coefficients to
zero gives the system of algebraic equations:

p2A
(

v2−k2
1B2

1−k2
2B2

2

)

+2npA2nB2
1

{

a(1+2np)

+bB2
1

(

4n3p3+7n2p2+6np+2
)

}

= 0 (8)

p(p+1)A
(

v2−k2
1B2

1−k2
2B2

2

)

+2A2nB4
1bnp(np+1)2(2np+3) = 0 (9)

4n2p2B2
1A2n(a+bn2p2B2

1

)

= 0. (10)
Solving the above system yields:

v=

{

k2
1B2

1+k2
2B2

2−nA2n−1B2
1

[

a+2an+
2bB2

1

(

4n3+2n2+1
)

(1−2n)2

]}
1
2

(11)

v=

{

k2
1B2

1+k2
2B2

2−
2bnA2n−1B4

1

(1−2n)2

}

1
2

(12)

and

B1 =
(1−2n)

2n

√

−a
b
. (13)

Now, equating the two values of the velocityv from (11) and (12) yields the expres-
sion of the inverse widthB1 that is given by (13). This shows the consistency of the
used method.

Further, the expression (13) implies that the soliton will exist for

ab< 0. (14)

Therefore the bright soliton solution of Boussinesq equation (1) is given by

u(x,y, t) =
A

cosh
2

1−2n (B1x+B2y−vt)
(15)
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where the velocity of the soliton is given by (11) or (12) and the inverse widthB1
of the soliton is given by (13).

Finally, it is necessary to haven< 1/2 as seen from (4) and (7). Notice that
the bright soliton solution (15) exists provided thatab< 0.

3.2. Shock Waves. In order to look for the shock waves solution to (1), the starting
assumption is [8]

u(x,y, t) = Atanhp(B1x+B2y−vt) (16)

where
τ = B1x+B2y−vt (17)

and
p> 0 (18)

for solitons to exist. HereA, B1 andB2 are free parameters, whilev represents the
velocity of the soliton. The value of the unknown exponentp will be determined
during the course of derivation of the soliton solution of (1).

Substituting (16)-(17) into (1) yields

pv2A
{

(p−1) tanhp−2 τ −2ptanhpτ +(p+1) tanhp+2 τ
}

−k2
1pAB2

1

{

(p−1) tanhp−2τ −2ptanhpτ +(p+1) tanhp+2 τ
}

−k2
2pAB2

2

{

(p−1) tanhp−2τ −2ptanhpτ +(p+1) tanhp+2 τ
}

−2apnA2nB2
1

{

(2pn−1) tanh2pn−2 τ−4pntanh2pnτ+(2pn+1)tanh2pn+2τ
}

−2bpnA2nB4
1

{

(pn−1)2(2pn−3)tanh2pn−4τ+(pn+1)2(2pn+3)tanh2pn+4τ

−
{

2p2n2(2pn−1)+4(pn−1)3
}

tanh2pn−2 τ

−
{

2p2n2(2pn+1)+4(pn+1)3
}

tanh2pn+2 τ

+
{

8p3n3+(pn−1)2(2pn−1)+(pn+1)2(2pn+1)
}

tanh2pnτ
}

= 0 (19)

From (19), equating the exponentsp and 2pn+2 givesp = 2pn+ 2 so thatp =
2/(1− 2n). It needs to be noted that the same value ofp is yielded when the
exponents pairp+2 and 2pn+4, and the exponentsp−2 and 2pn, respectively,
are equated with each other.

Thus, the linearly independent functions in (19) are tanhpn+ j τ, where j =
−4,−2,0,2,4. So, from (19), each of the coefficients of these linearly indepen-
dent functions must be zero. Setting their respective coefficients to zero yields the
following parametric equations:

pv2A(p−1)−k2
1pAB2

1(p−1)−k2
2pAB2

2(p−1)+8ap2n2A2nB2
1

−2bpnA2nB4
1

{

8p3n3+(pn−1)2(2pn−1)+(pn+1)2(2pn+1)
}

= 0 (20)
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−2p2v2A+2k2
1p2AB2

1+2k2
2p2AB2

2−2apnA2nB2
1(2pn+1)

+2bpnA2nB4
1

{

2p2n2(2pn+1)+4(pn+1)3}= 0 (21)

{

pv2A−k2
1pAB2

1−k2
2pAB2

2

}

(p+1)−2bpnA2nB4
1(pn+1)2(2pn+3) = 0 (22)

−2apnA2nB2
1(2pn−1)+2bpnA2nB4

1

{

2(pn)2(2pn−1)+4(pn−1)3
}

= 0 (23)

−2bpnA2nB4
1(pn−1)2(2pn−3) = 0. (24)

To solve (24), we have considered firstly the casepn−1= 0. This yields

p=
1
n
. (25)

Substituting (25) into (23) gives

B1 =

√

a
2b

(26)

which forces the constraint relation

ab> 0. (27)

Substituting (25) into (20), (21) and (22), respectively, gives

v=

{

k2
1B2

1+k2
2B2

2−
(

2aB2
1−10bB4

1

)

A2n−1

3

}
1
2

(28)

v=

{

k2
1B2

1+k2
2B2

2+

(

38bB4
1−3aB2

1

)

A2n−1

16

}
1
2

(29)

and

v=
{

k2
1B2

1+k2
2B2

2+2bA2n−1B4
1

}

1
2 . (30)

Equating any two values ofv from (28), (29) and (30) gives the the same value of
B1 given in (26). Notice that the second case 2pn−3= 0 is not considered here as
it does not give a unique value ofB1.

Thus, finally, the shock waves solution to the Boussinesq equation (1) is given
by

u(x,y, t) = Atanh
2

1−2n (B1x+B2y−vt) (31)

where the free parameterB1 is given by (26) and the velocity by (28) or (29) or
(30). Notice that this solution exists provided thatn < 1/2 as seen from (18) and
p= 2/(1−2n) andab> 0.
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4. Variant-II

In this section, we consider the variant II of the improved Boussinesq equa-
tion:

(

ul
)

tt
−k2(um)xx−a

(

u2n)

xx−b[un(un)xx]tt = 0. (32)

The focus will be on searching the bright and dark soliton solutions to (32).

4.1. Solitary Waves. The starting hypothesis is the following [1-4]

u(x, t) =
A

coshpτ
(33)

where
τ = B(x−vt). (34)

Here, in (33)-(34),A is the amplitude of the soliton whilev is the velocity of the
soliton andB is the inverse width. The exponentsp is unknown at this point and
their values will fall out in the process of deriving the solution of this equation.

Substituting (33)-(34) into (32) yields

p2l2v2AlB2

coshpl τ
− pl(pl+1)v2AlB2

coshpl+2τ
− k2p2m2AmB2

coshpmτ
+

k2pm(pm+1)AmB2

coshpm+2τ

−
4n2p2A2nB2

(

a+bn2p2v2B2
)

cosh2npτ
− 2bnp(np+1)2(2np+3)A2nv2B4

cosh2np+4 τ

+
2npA2nB2

{

a(2np+1)+b
(

4n3p3+7n2p2+6np+2
)

v2B2
}

cosh2np+2 τ
= 0. (35)

Now, from (35), matching the exponents of coshpm+2τ and cosh2np+4 τ gives

pm+2= 2np+4 (36)

so that

p=
2

m−2n
(37)

which is also obtained by equating the exponents of coshpmτ and cosh2np+2 τ func-
tions.

Also, from (35), equating the exponent of coshpl τ and cosh2npτ yields

pl = 2np (38)

and therefore
l = 2n. (39)

Now, from (35), setting the coefficients of the linearly independent functions
1/cosh2pn+ j τ to zero, wherej = 0,2,4 gives the following system of algebraic
equations,

p2l2v2Al B2−4an2p2A2nB2−4bn4p4A2nv2B4 = 0 (40)

2bnp
(

4n3p3+7n2p2+6np+2
)

A2nv2B4−k2p2m2AmB2

− pl(pl+1)v2Al B2+2anp(2np+1)A2nB2 = 0 (41)
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2bnp(np+1)2(2np+3)A2nv2B4−k2pm(pm+1)AmB2 = 0. (42)

Solving this system, one obtains

A=

{

(

v2−a
)

m

2nk2

}
1

m−2n

, (43)

B=
(m−2n)

2nv

√

(v2−a)
b

. (44)

Thus (44) introduces the constraint conditions:

b
(

v2−a
)

> 0, v 6= 0, v 6=±
√

a (45)

Hence, finally, the 1-soliton solution of the Boussinesq equation (32) is given by

u(x, t) =
A

cosh
2

m−2n [B(x−vt)]
(46)

where the amplitudeA and the velocityv are connected by (43) and the width of the
soliton is given by (44).

4.2. Shock Waves. In this subsection the search is going to be for shock wave
solution to the Boussinesq-type equation given by (32). To start off, the hypothesis
is given by [8]

u(x, t) = Atanhpτ (47)

where
τ = B(x−vt) (48)

where in (47) and (48),A andB are free parameters andv is the velocity of the
wave. Also, the unknown exponentp will be determined during the course of the
derivation of the soliton solution to (32). By inserting (47)-(48) into (32), we obtain

plAlB2v2
{

(pl−1) tanhpl−2τ −2pl tanhpl τ +(pl+1) tanhpl+2 τ
}

−k2mpAmB2{(mp−1) tanhmp−2 τ −2mptanhmpτ +(mp+1) tanhmp+2τ
}

−2apnA2nB2{(2pn−1) tanh2pn−2τ−4pntanh2pnτ+(2pn+1)tanh2pn+2τ
}

−2bpnA2nB4v2{(pn−1)2(2pn−3)tanh2pn−4τ+(pn+1)2(2pn+3)tanh2pn+4τ

−
{

p2n2(4pn−2)+4(pn−1)3} tanh2pn−2 τ

−
{

p2n2(4pn+2)+4(pn+1)3} tanh2pn+2 τ

+
{

8(pn)3+(pn−1)2(2pn−1)+(pn+1)2(2pn+1)
}

tanh2pnτ
}

= 0. (49)

By equating the exponents(pm+2) and(2pn+4) in (49) gives

pm+2= 2pn+4 (50)
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so that

p=
2

m−2n
. (51)

It needs to be noted that the same value ofp is yielded when the exponents pairpm
and 2pn+2, and the exponentspm−2 and 2pn, respectively, are equated with each
other.

From (49), equating the exponentspl and 2pn gives

pl = 2pn (52)

so that

l = 2n. (53)

Finally, setting the coefficients of the linearly independent functions tanh2pn+ j τ,
for j =−2,0,2 in (49), to zero yields

plAlB2v2(pl−1)−2apnA2nB2(2pn−1)

+2bpnA2nB4v2
{

2p2n2(2pn−1)+4(pn−1)3
}

= 0 (54)

−2p2l2Al B2v2+8ap2n2A2nB2−k2mpAmB2(mp−1)−2bpnA2nB4v2

×
{

8(pn)3+(pn−1)2(2pn−1)+(pn+1)2(2pn+1)
}

= 0 (55)

plAlB2v2(pl+1)−2apnA2nB2(2pn+1)+2p2m2k2AmB2

+2bpnA2nB4v2
{

2(pn)2(2pn+1)+4(pn+1)3
}

= 0 (56)

−k2mpAmB2(mp+1)−2bpnA2nB4v2(pn+1)2(2pn+3) = 0 (57)

2bpnA2nB4v2(pn−1)2(2pn−3) = 0. (58)

To solve (58), we have considered firstly the casepn−1= 0. This yields

p=
1
n
. (59)

Substituting (59) into the above system gives

B=
1
v

√

v2−a
2b

(60)

and

A=

(

−2bB2v2

k2

)

1
m−2n

(61)

which shows that solitons will exist for

b< 0 (62)
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if m−2n is an even integer. However, ifm−2n is an odd integer there is no such
restriction but the soliton will be pointing downwards. Also from (60) the following
restriction is obtained

b
(

v2−a
)

> 0. (63)

Notice that the second case 2pn−3= 0 in (58) is not considered here as it does not
give unique values ofA andB.

Equating the two values ofp from (51) and (59) gives the condition:

4n= m. (64)

Also from the necessary conditionp> 0 for the existence of the dark soliton solu-
tion (47) and (51) the following restrictions are obtained.

m> 2n. (65)

Thus, finally, the shock waves solution to the Boussinesq equation (32) is given by

u(x, t) = Atanh
2

m−2n [B(x−vt)] (66)

where the the free parametersA andB are given by (60) and (61).

5. Variant-III

Now, we consider the variant III of the generalized (2+1)–dimensional of the
improved Boussinesq equation:
(

ul
)

tt
−k2 (um)xx−a1

(

u2n)

xx−a2
(

u2n)

yy−b1 [u
n(un)xx]tt−b2

[

un(un)yy

]

tt
=0 (67)

The focus will be on searching the bright and dark soliton solutions to (67).

5.1. Solitary Waves. The starting hypothesis for the solution to (67) is the same
as in the Variant I that is given by (2) and (3).

Substituting (2)-(3) into (67), we get

p2l2v2Al

coshpl τ
− pl(pl+1)v2Al

coshpl+2τ
− k2p2m2AmB2

1

coshpmτ
+

k2pm(pm+1)AmB2
1

coshpm+2 τ

−
4n2p2A2n

(

a1B2
1+a2B2

2+b1n2p2v2B2
1+b2n2p2v2B2

2

)

cosh2npτ

+
2npA2n

{

(2np+1)
(

a1B2
1+a2B2

2

)

+v2
(

4n3p3+7n2p2+6np+2
)(

b1B2
1+b2B2

2

)}

cosh2np+2τ

−
2np(np+1)2(2np+3)v2A2n

(

b1B2
1+b2B2

2

)

cosh2np+4 τ
= 0 (68)

From (68), equating the exponentspm and 2np+ 2 givespm= 2np+ 2, so that
p= 2/(m−2n).

It needs to be noted that the same value ofp is yielded when the exponents
pm+2 and 2np+4 are equated with each other. Again equating the exponents 2np
andpl gives 2np= pl, that yieldsl = 2n.
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Again this same value ofp is obtained on equating the exponents 2np+2 and
pl+2.

Now from (68), setting the coefficients of the linearly independent functions
1/cosh2np+ j τ to zero, wherej = 0,2,4 gives

p2l2v2Al −4n2p2A2n(a1B2
1+a2B2

2+b1n2p2v2B2
1+b2n2p2v2B2

2

)

= 0. (69)

−pl(pl+1)v2Al −k2p2m2AmB2
1+2npA2n(2np+1)

(

a1B2
1+a2B2

2

)

+2npA2nv2(4n3p3+7n2p2+6np+2
)(

b1B2
1+b2B2

2

)

= 0. (70)

k2pm(pm+1)AmB2
1−2np(np+1)2(2np+3)v2A2n(b1B2

1+b2B2
2

)

= 0. (71)

Solving the above system gives the following unique value ofthe soliton amplitude
A:

A=

{

m
(

v2−a1B2
1−a2B2

2

)

2nk2B2
1

}
1

m−2n

(72)

which forces the constraint relation

v 6=±
√

a1B2
1+a2B2

2 (73)

in order to obtain nontrivial solutions.
Thus, the bright soliton solution to the generalized two-dimensional Boussi-

nesq equation (67) is given by

u(x,y, t) =
A

cosh
2

m−2n (B1x+B2y−vt)
(74)

where the amplitudeA as function of the soliton velocityv and the inverse widths
B1 andB2 of the soliton is given by (72).

Finally, it is necessary to havem> 2n for the soliton solution (74) to exist.

5.2. Shock Waves. Now, we are interested by finding the dark soliton solution for
the considered Boussinesq equation (67). To do this, we use an ansatz solution of
the form (16) and (17) from [8]. Substituting (16)-(17) into(67), we have

plv2Al
{

(pl−1) tanhpl−2τ −2pl tanhpl τ +(pl+1) tanhpl+2τ
}

−k2pmAmB2
1

{

(pm−1) tanhpm−2τ −2pmtanhpmτ +(pm+1) tanhpm+2 τ
}

−2pnA2n(a1B2
1+a2B2

2

)

{

(2pn−1) tanh2pn−2τ−4pntanh2pnτ+(2pn+1)tanh2pn+2τ
}

−2pnA2nv2(b1B2
1+b2B2

2

){

(pn−1)2(2pn−3)tanh2pn−4τ+(pn+1)2(2pn+3)tanh2pn+4τ

−
{

p2n2(4pn−2)+4(pn−1)3}tanh2pn−2τ−
{

p2n2(4pn+2)+4(pn+1)3}tanh2pn+2τ

+
{

8(pn)3+(pn−1)2(2pn−1)+(pn+1)2(2pn+1)
}

tanh2pnτ
}

= 0. (75)
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From (75), equating the exponentspm and 2pn+ 2 givespm= 2pn+ 2, so that
p= 2/(m−2n).

It needs to be noted that the same value ofp is yielded when the exponents pair
pm+2 and 2pn+4, and the exponentspm−2 and 2pn, respectively, are equated
with each other. Again from (75), equating the exponents 2np andpl gives 2np=
pl that yieldsl = 2n. Note that this same value ofp is obtained on equating the
exponents pairs 2np+2 andpl+2, 2np−2 andpl−2.

Thus, the linearly independent functions in (75) are tanh2pn+ j τ, where j =
±4,±2,0. So, from (75), each of the coefficients of these linearly independent
functions must be zero. Setting their respective coefficients to zero yields

plv2Al (pl−1)−2pnA2n(a1B2
1+a2B2

2

)

(2pn−1)

+2pnA2nv2(b1B2
1+b2B2

2

)

{

2(pn)2(2pn−1)+4(pn−1)3
}

= 0 (76)

−2p2l2v2Al +8p2n2A2n(a1B2
1+a2B2

2

)

−k2pmAmB2
1(pm−1)−2pnA2nv2

×
(

b1B2
1+b2B2

2

)

{

8p3n3+(pn−1)2(2pn−1)+(pn+1)2(2pn+1)
}

= 0 (77)

plv2Al (pl+1)−2pnA2n(a1B2
1+a2B2

2

)

(2pn+1)+2k2p2m2AmB2
1

+2pnA2nv2(b1B2
1+b2B2

2

)

{

2(pn)2(2pn+1)+4(pn+1)3
}

= 0 (78)

−k2pmAmB2
1(pm+1)−2pnA2nv2(b1B2

1+b2B2
2

)

(pn+1)2(2pn+3) = 0 (79)

−2pnA2nv2(b1B2
1+b2B2

2

)

(pn−1)2(2pn−3) = 0. (80)

To solve (80), we have considered firstly the casepn−1= 0. This yieldsp= 1/n.
Substitutingp= 1/n. into (76)-(79) reduces the above system to:

v2−
(

a1B2
1+a2B2

2

)

+2v2(b1B2
1+b2B2

2

)

= 0 (81)

2v2−2
(

a1B2
1+a2B2

2

)

+3k2Am−2nB2
1+10v2(b1B2

1+b2B2
2

)

= 0 (82)

3v2−3
(

a1B2
1+a2B2

2

)

+16k2Am−2nB2
1+38v2(b1B2

1+b2B2
2

)

= 0 (83)

k2Am−2nB2
1+2v2(b1B2

1+b2B2
2

)

= 0. (84)

From solving the above equations, one gets a unique value of the free parameterA
such that

A=

(

v2−
(

a1B2
1+a2B2

2

)

k2B2
1

)
1

m−2n

(85)

which proves again the consistency of the used method. Notice that the case 2pn−
3= 0 in (80) is not considered here as it does not give a unique value ofA. Now,
equating the two values ofp from p= 2/(m−2n) andp= 1/n gives the condition
4n= m. Lastly, we can determine the shock waves solution to Boussinesq equation
(67) with generalized evolution term as

u(x,y, t) = Atanh
2

m−2n (B1x+B2y−vt) (86)
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where the free parameterA is given by (85). It is important to note that this solution
(86) exists only whenm> 2n which is in agrement with the equality 4n= m.

6. Stability Analysis and Numerics

The stability analysis for the parameter regimes in order for the solitary waves
to exist will be summarized in this section. The modified versions of the three
variants that are conformable for the existence of the solitary waves are respectively
given by

utt −k2
1uxx−k2

2uyy−a
(

u2n)

xx−b[un(un)xx]xx = 0,
(

u2n)

tt −k2(um)xx−a
(

u2n)

xx−b[un(un)xx]tt = 0,
(

u2n)

tt −k2(um)xx−a1
(

u2n)

xx−a2
(

u2n)

yy−b1 [u
n(un)xx]tt−b2

[

un(un)yy

]

tt
= 0.

Thus, Variants-II and -III are the only ones that changed. Ineach case,l = 2n.
Hence, the stability criteria for the solitary waves to exist is given in the following
table.

Stability Criteria for the Existence of Solitary Waves

Variants Nonlinear Wave Stability Criteria

Variant−I
Shock Wave n< 1

2

Solitary Wave n< 1
2

Variant−II
Shock Wave n< m

2

Solitary Wave n< m
2

Variant−III
Shock Wave n< m

2

Solitary Wave n< m
2

The numerical simulations are carried out for BE in three variants. The shock
wave as well as solitary wave solutions are numerically obtained for all three vari-
ants.

In Figure 1, the soliton profiles for the BE with Variant-I areshown. The
parameter values that are chosen aren= 0.25,a=−2, b= 3, k1 = 1, k2 = 1, t = 1.

In Figure 2, the non-shock wave and shock wave solitons for BEwith Variant-
II are shown. The parameter values aren= 2, m= 5, a= −2, b= 3, k = 1, t = 1.
In this case, for non-shock wave soliton,A> 0, while for shock wave solitonA< 0.

In Figure 3, the non-shock wave and shock wave solitons for BEwith Variant-
III are shown. The parameter values are chosen to ben= 2, m= 5, a1 = 1, a2 = 1,
b1 = 0.5, b2 = 1, k = 1, t = 1. In this case, parameterA < 0 for both types of
solitons.
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(a) Solitary Wave (b) Shock Wave

FIGURE 1. Boussinesq Equation with Variant-I
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FIGURE 2. Boussinesq Equation with Variant-II

(a) Solitary wave (b) Shock Wave

FIGURE 3. Boussinesq Equation with Variant-III

7. Conclusions

This paper obtains the solitary wave and the shock wave solutions of the three
variants of the Boussinesq equation. For each of the variants the solitary wave
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solution as well as the shock wave solution is obtained. The parameter domains
and restrictions also fall out of the analysis. The numerical simulations are also
given for all the variants. These results are very importantand new in the context
of nonlinear evolution equations.

These results will be definitely used to carry out the furtheranalysis of these
equations. For example, one can possibly study these variants with time-dependent
coefficients as opposed to the constant coefficients as studied in this paper [14]. The
Lie symmetry approach can also be used to compute the conservation laws of these
variants. The soliton perturbation theory can also be studied to obtain the adiabatic
variation of the conserved quantities as well as the slow change in the velocity of
the soliton. These results will be reported in future publications.
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