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ON THE HEAT TRANSFER OF HOLOGRAPHIC TYPE IN
NANOSTRUCTURES

Tudor-Cristian PETRESCU! !, Maria-Alexandra PAUN?", Petru MIHAI?,
Stefan-Andrei IRIMICIUC?, Vladimir-Alexandru PAUN?®, Maricel AGOP®’

Assimilating any nanostructure with a fractal, in the most general
Mandelbrot’s sense, non — differentiable behaviors in their dynamics on the heat
transfer phenomena are analyzed. As such, nanostructure dynamics on the heat
transfer in the form of Schrodinger — type various regimes imply “holographic
implementation” of the thermal fields through groupal invariance of SL(2R) —
type. Then, by means of previous groupal invariance as synchronization group
between any nanostructure entities, both the phases and the amplitudes of the
entities are affected from a homographic perspective. In a special case of
synchronization of nanostructure entities, given by Riccati type gauge, period
doubling, damping oscillations, self — modulation and chaotic regimes emerge as
natural behaviors in the nanostructure dynamics of the heat transfer processes.
The present model can also be applied to a large class of nanostructures (i.e.
polymeric biocomposites, “liquid wood”, temperature — depending drug release
systems etc.).

Keywords: fractal theory of motion, groupal invariances of SL(2R) — type, heat
transfer at various scale resolutions

1. Introduction

The problem of heat transfer in nanostructures has been analyzed in the
better part of the past century [1 —7].
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Usually, models used to describe nanostructure dynamics and particularly
the ones related to heat transfer, are based on the uncertain hypothesis that the
variables describing it are differentiable [1 — 4, 7 — 9]. The success of these models
must be understood gradually on domains in which differentiability is still valid.
However, the differential procedures are not suitable when describing processes
related to nanostructure dynamics, which imply nonlinearity and chaos (it is
reminded that this is the de — facto case [6, 7 — 9]).

To describe nanostructure dynamics in the fractal paradigm, but remaining
faithful to the differentiable mathematical procedures, it is necessary to explicitly
introduce scale resolutions, both in the expression of the physical variables and in
the fundamental equations which govern nanostructure dynamics. This means that,
instead of “working” with a single physical variable described by a strict non —
differentiable function, it is possible to “work™ only with approximations of these
mathematical functions obtained by averaging them on different scale resolutions.
As a consequence, any variable purposed to describe nanostructure dynamics will
perform as the limit of a family of mathematical functions, this being non —
differentiable for null scale resolutions and differentiable otherwise [10, 11].

In the present paper, considering the fractal paradigm as being functional, a
non — differentiable model describing the heat transfer in nanostructures is
proposed.

2. Mathematical Model
2.1 Nanostructure as a fractal medium and “holographic

implementations” of its dynamics

Assimilating any nanostructure with a complex system [12 — 14], it is
behaving like a fractal medium induced by the collisions process between its
entities. Such assumption can be theoretically sustained by a typical example:
between two successive collisions the trajectory of the nanostructure entities is a
straight line that becomes non — differentiable in the impact point. Considering now
that all the collision impact points are forming an uncountable set of points, it results
that the trajectories of nanostructure entities become continuous but non —
differentiable curves i.e. a fractal [11].

In such a context, Fractal Theories of Motion becomes functional for
describing various dynamics in nanostructures and particularly the heat transfer.
The fundamental assumption of these models is the one that the dynamics of any
entity of nanostructures will be described by continuous but non — differentiable
motion curves (fractal motion curves). These fractal motion curves exhibit the
property of self — similarity in their every point, which can be translated into a
property of holography (every part reflects the whole) [11]. Basically, the
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discussion will be about “holographic implementations” of dynamics of any
nanostructure entity for example through Schrédinger — type fractal “regimes” (i.e.
describing nanstructure dynamics and particularly the heat transfer through
Schradinger — type equations at various scale resolutions — Schrodinger equation of
fractal type).

2.2 Scale covariant derivative and geodesics equations

Let it be considered that the scale covariance principle (the physics laws
applied to the heat transfer in nanostructures are invariant with respect to scale
resolution transformations [10]) and postulate that the transition from the standard
(differentiable) heat transfer in nanostructures to the fractal (non — differentiable)
heat transfer in nanostructures can be implemented by replacing the standard time

derivative % by the non — differentiable operator % [15 - 19]:

d ~ 1 2)_
=0+ vto, + 7 (dt)(DF) 'D9,0, 1)
where
vi=vi -Vt
D = g — iqw
d'? = A42% —2LaP )
d? = 2408 + AL AP
] ] a 9
00 = 5000 = gy1 00y = gragyp i = V=1 Lp=123

In the above relations V! is the complex velocity, V} is the differentiable
velocity independent on the scale resolution dt and V} is the non — differentiable
velocity dependent on the scale resolution. X* is the fractal spatial coordinate and t
is the non — fractal time having the role of an affine parameter of the motion curves.
D' is the constant tensor associated with the differentiable — non — differentiable
transition of the heat transfer processes, A% is the constant vector associated with
the forward differentiable — non — differentiable of heat transfer processes and 1%
is the constant vector associated with the backwards differentiable — non —
differentiable of heat transfer processes. Dp is the fractal dimension of the
movement curve. For the fractal dimension it is possible to choose any definition:
Kolmogorov type fractal dimension, Hausdorff — Besikovici type fractal dimension
etc. [11, 20, 21]. But once chosen this becomes operational, it needs to be constant
and arbitrary: Dr< 2 for the corelative physical processes, D > 2 for the non-
corelative physical processes etc. [10, 11].
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Now, the non — differentiable operator plays the role of the scale covariant
derivative, namely it is used to write the fundamental equations of the heat transfer
in the nanostructures, in the same form as in the classic (differentiable) case. Under
these conditions, accepting the functionality of the scale covariant principle, i.e.
applying scale covariant derivative (1) to the complex velocity field (2), in the
absence of any external constraint, the geodesics equation of the nanostructure
entities takes the following form [15 — 19]:

av'
dt

SR | 2\ .
=0,V + Vo,V + Z(dzc)(DF) 'D%3,0, 7 =0 3

This means that the fractal local acceleration 9,V¢, the fractal convection
7'9,V* and the fractal dissipation D' 9,0, V*of any nanostructure entity, make their
balance in any point of the motion fractal curve. Moreover, the presence of the

2

complex coefficient of viscosity — type 4‘1(dt)(D_F)_1le in the nanostructure
dynamics specifies that it is a rheological medium. So, the nanostructure’s
structures have memory, as a datum, by their own structure.

If the fractalization in the dynamics of nanostructures is achieved by Markov
— type stochastic processes, which involve Lévy type movements [10, 11, 20, 21]
of the nanostructure entities, then:

AL =282 =226 4)

where A is a coefficient associated to the differentiable — non — differentiable

transition and 5" is Kronecker’s pseudo — tensor.
Under these conditions, the geodesics equation (motion equation) takes the
simple form:
dvt SO 2)_ .
— =0+ Vo vt — M(dt)(DF) Y9lg,0i=0 ®)

For irrotational motions of the nanostructure entities, the complex velocity
field V' takes the form:
2

Pt = —2iadt) P9 9t I w (6)

Then substituting (6) in (5), the geodesics equation (5) (for details see
method from [15 — 19]) becomes Schrédinger — type equation at various scale

resolutions (Schrddinger equation of fractal type):
2

/’lz(dt)(DiF)_zalal‘P + i/’[(dt)(D_F)_lat‘l’ =0 (")
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The variable @ = —2iA(dt)#/PP~1 n ¥ defines, through (6), the complex
scalar potential of the complex velocity field, while ¥ corresponds to the state
function of fractal type. Both variables, @ and ¥, have no direct physical meaning,
but possible ‘“combinations” of them can acquire it if they satisfy certain
conservation laws.

Let it be made explicit such a situation for ¥. For this purpose, it is first

noticed that the complex conjugate of ¥, that is ¥, satisfies through (7) the
equation:

Az(dt)(DiF)‘zala@ - m(dt)(DiF)‘latW =0 (8)

Multiplying (7) by & and (8) by ¥, subtracting the results and introducing

the notations:
_ 4y o
p=WP, J= m(dt)(DF) YW rE — ry) 9)

it is possible to obtain the conservation law of states density of fractal type:
dp+V] =0 (10)

In (10) p corresponds to the states density of fractal type and J corresponds
to the states density current of fractal type.

3. Heat transfer in nanostructures through groupal invariance of SL(2R)

— type by means of Riccati gauge

The idea of motion equation has an enlarged significance, starting with the
Fractal Theory of Motion under the form of Scale Relativity [10, 15, 19]. Let it be
noted that Schrodinger’s equation of fractal type — motion equation for the state
function ¥ of fractal type — besides the fact that it is invariant with respect to the
Galilei vectorial transformation group, it is also invariant, in a separate way, to time
transformations and one — dimensional coordinates (let it be x) represent a group in
themselves [22, 23]. They constitute, in the most general case of motion in a single
direction, a realization of the group SL(2R) [24, 25], but with two variables and
three parameters, through the action [22, 23]:

" at + X

"= 11
yt+6’ x yt+68 (1)

Every vector in the tangent space SL(2R) is a linear combination of the three
fundamental vectors, the infinitesimal action generators:
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0 o xd L0 0

These satisfy the basic structure equations:
[X1, X2] = X, [X2, X3] = X3, [X3, X1] = —2X, (13)

which are taken as standard commutation relations for this type of algebraic
structure. The group has an invariant function, which can be obtained as the solution
of a partial differential equation:

(cX1+ 2bX, +aX3)f(t,x) =0 (14)

which, in view of (12), means:

(at? + 2bt + ¢) @ + (at + b)x af(t;x) =

0 (15)

The general solution of this equation is a function of the arbitrary value of
the ratio:

x2

- - (16)
at? + 2bt + ¢

which represent the different path of transitivity of the action described by operators
from (12). In the particular case in which such a function is linear and, moreover,
IS a constant, it is possible to state that it represents a motion equation, be it a free
entity, either a geodesic motion on the surface of a cone, or a non — standard
interpretation if the statistical description is pertinent regarding the argument.

It is understood that the motion equation is linked, according to these
interpretations, to the invariant functions of the SL(2R) algebra which, as an idea,
may be introduced here by a generalization of the grouping procedure.

Then, in the first of equations (11), this requirement would mean that the
nanostructure entities are considered simultaneously. Each entity can be located in
the “swarm” (i.e. in the nanostructure) by four homogenous coordinates(a, 8,7y, 8),
or three non — homogenous coordinates, if the equation (11) represents the context
of time and a one — dimensional coordinate for the space domain, covered by this
nanostructure. The simultaneity condition of the free entities of the “swarm” (i.e. in
the nanostructure) can be differently characterized, from a Riccati equation in pure
differentials (this will be named the Riccati type gauge) [24, 25]:

at + f

yt+6

=0,dt = 0't? + w?t + 3 (17)
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Thus, for the description of the nanostructure dynamics as a succession of
states of an ensemble of simultaneous entities, as it were, it suffices to have three
differentiable 1 — forms, representing a coframe of SL(2R) algebra [26]:

, _ady —yda
 as - Py
add — éda + fdy —ydp
w? = a5 = By (18)
5 Bdé—ddp
 as— By

That this coframe refers to such algebra can be checked by direct calculation
of the Maurer — Cartan equations [24, 25], which are characteristic:
dAw! —w'Aw?=0

dw? + 2(w3 Awl) =0 (19)
dw? —w>ANw? =0

Elie Cartan has shown that under these conditions, one can prove that the
right hand side of equation (17) is an exact differential [27], therefore it should
always have an integral. The Cartan — Killing metric of this coframe is given by the
quadratic form [28]:

ds? = = (w3 — 4w, w,)
4 20)
_ (adé + 6da — Bdy — ydB)? dads — dpdy (
- 4(as — By)? as — By
so that a state of a nanostructure in a given dynamic can be organized as a metric
plan space, i.e. a Riemannian three — dimensional space [28]. The geodesics of this

Riemannian space are given by some conservation laws of equations:
w! = aldr, w? = 2a?dr, w3 =addt (21)

where at, a?, a® are constant and 7 is the affine parameter of the geodesics, so that,
along these geodesics of differential equation (17) is an ordinary differential of
Riccati type:

dt

— = a't? + 2a%t + a® (22)
dt

Mathematically, this requires an ensemble generated by a harmonic
mapping between the positions in space and the nanostructure entities, with the
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square of the coordinate x measuring the variance of the distribution which
describes the spreading of nanostructure entities in space.
Because in thermodynamic systems the time, t, is inversely proportional

with the temperature, T, [29, 30] under the shape of t E% with u = const.,

equation (22) with the substitutions:

a? ap’
S R Ry T (23)
a a a
takes the shape:
dr
A——T?+2BT+AC =0 (24)
dt
Because the roots of the polynom:
P(T) =T? - 2BT — AC (25)
can be written in the shape:
T, = B + iAQ
2
=i
A A
the change of variable:
_I-h 27
2=rCT (27)
transforms the equation (24) in:
z=2iQz (28)
of solution: _
z(1) = z(0)e?¥* (29)

As such, if the initial condition z(0) is conveniently expressed, then it is
possible to construct the general solution of equation (24), by writing the
transformation (27) in the shape:

T, + re2i-roT,

T = 1+ reZiQ(T—TO) (30)

where r and 7, are two integration constants. Using relations (26), it is possible to
write this solution in real terms:
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Z=B+A.Q{

Therefore,

Figures 1 a — | for r = 0.5 and Real [(z — B)/A]
resolutions, glven by means of the maximum value of ().
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— amplitude type between
nanostructure entities in the heat transfer process implies groupal invariance of
SL(2R) — type. Then, period doubling, damping oscillations, self — modulation and
chaotic regimes emerge as natural behaviors in the nanostructure heat transfer (see
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Figs. 1 a-1. Various types of evolutions during thermal transfer in nanostructures (3D, contour
plot and time series) representation: period doubling (a, b, ¢), damped oscillation regimes (d, e, f),
signal modulation (g, h, i) and chaotic behavior (j, k, 1)).

A similar work, with a rigorous mathematical model and using a fractal
method, can be found in the paper [31].

4. Conclusions

In the motion fractal paradigm, a new model on the heat transfer in
nanostructures is established. So:

i) Assimilating any nanostructure with a complex system, the said system is
behaving as a fractal medium. In other words, the nanostructure becomes a
fractal in the most general Mandelbrot’s sense.

i) The fundamental assumption of the author’s model is the one that the dynamics
of any entity of nanostructures are described by continuous but non —
differentiable motion curves (fractal motion curves). These fractal motion
curves exhibit the property of self — similarity in its every point, which can be
translated into a property of holography (every part reflects the whole).

iii) In the previously — mentioned context, the authors discuss about “holographic
implementations” of heat transfer phenomena in any nanostructure through
Schrodinger — type fractal “regimes” (i.e. describing heat transfer through
Schradinger — type equations at various scale resolutions).

iv) Through a special invariance of SL(2R) — type of the Schrddinger — type fractal
equation, various heat transfer regimes, in the form of synchronization between
any entities of the nanostructure, are highlighted. More precisely, by means of
SL(2R) — type group, the phase is only moved with a quantity depending on
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the amplitude of the nanostructure entity at the transition among various
entities of the nanostructure. More than that, the amplitude of the entity of the
nanostructure is also affected from a homographic perspective. The usual
“synchronization” manifested through the delay of the amplitudes and phases
of the entities of the nanostructure must represent here only a fully particular
case.

v) In a particular case of synchronization of nanostructure entities, given by
Riccati type gauge, period doubling, damping oscillations, self — modulation
and chaotic regimes emerge as natural behaviors in the nanostructure
dynamics.

vi) According to the presented model, it can be observed that two temporal scales
exist: it is not necessary to postulate them. It is about the time of describable
phenomena in the nanostructure landmark z, one one hand, and the time
corresponding to the 20 metrics 20, t, on the other hand.

An observation is made, in that this model may be developed for use to other
classes of materials, such as biomaterials, biocomposites and other high — end
materials. Particularly, this model holds true for “liquid wood”, a material which
lies at the boundary between natural and artificial. More than that, the same model
can be used in the dynamics analysis which involve drug release systems which are
temperature — depending.
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