

**ON THE PROJECTIVE COVARIANT REPRESENTATIONS
OF C^* -DYNAMICAL SYSTEMS ASSOCIATED WITH
COMPLETELY MULTI-POSITIVE PROJECTIVE
 u -COVARIANT MAPS**

Tania-Luminița Costache¹

In această lucrare demonstrăm că o aplicație liniară complet multi-pozitivă proiectivă u -covariantă ρ de la A în $\mathcal{L}_B(E)$ relativ la C^ -sistemul dinamic (G, A, α) induce o reprezentare proiectivă covariantă $(\Phi_\rho, v^\rho, E_\rho)$ a lui (G, A, α) pe un C^* -modul Hilbert peste B . Apoi vom arăta că o aplicație liniară complet multi-pozitivă proiectivă u -covariantă nedegenerată de la o C^* -algebră A pe un C^* -modul Hilbert E peste o C^* -algebră B poate fi extinsă la o aplicație liniară complet multi-pozitivă pe twist-cross-produsul $A \times_\alpha^\omega G$. Ca un corolar demonstrăm că reprezentarea lui $A \times_\alpha^\omega G$ indusă de aplicația liniară complet multi-pozitivă proiectivă u -covariantă ρ este unitar echivalentă cu reprezentarea lui $A \times_\alpha^\omega G$ indusă de $(\Phi_\rho, v^\rho, E_\rho)$.*

In this paper we prove that a completely multi-positive projective u -covariant linear map ρ from A to $\mathcal{L}_B(E)$ relative to the C^ -dynamical system (G, A, α) induces a projective covariant representation $(\Phi_\rho, v^\rho, E_\rho)$ of (G, A, α) on a Hilbert C^* -module over B . Then we show that a completely multi-positive projective u -covariant non-degenerate linear map from a C^* -algebra A on a Hilbert C^* -module E over a C^* -algebra B can be extended to a completely multi-positive linear map on the twisted crossed product $A \times_\alpha^\omega G$. As a corollary we prove that the representation of $A \times_\alpha^\omega G$ induced by the completely multi-positive projective u -covariant linear map ρ is unitarily equivalent with the representation of $A \times_\alpha^\omega G$ induced by $(\Phi_\rho, v^\rho, E_\rho)$.*

Keywords: Hilbert C^* -modules, C^* -algebras, C^* -dynamical systems, projective covariant representations, projective u -covariant completely multi-positive linear maps, twisted crossed products.

MSC2000: 20D 25, 46L 05, 46L 08, 20C 25, 16S 35.

1. Introduction

To every positive linear functional on a C^* -algebra A can be associated a cyclic representation on a Hilbert space H by GNS (Gel'fand-Naimark-Segal)

¹Assistant, University Politehnica of Bucharest, Faculty of Applied Sciences, Department of Mathematics, Spl. Independentei 313, Bucharest, Postal Code 060042, ROMANIA, e-mail: lumycos1@yahoo.com

construction. In [12], Stinespring extended this theorem for a completely positive linear map from A into $\mathcal{B}(H)$, the C^* -algebra of linear bounded operators on a Hilbert space H , in order to obtain a representation of A on another Hilbert space K . On the other hand, Paschke [11] (respectively, Kasparov [8]) showed that a completely positive linear map from A to another C^* -algebra of all adjointable operators on the Hilbert C^* -module H_B) induces a $*$ -representation of A on a Hilbert B -module. Kaplan introduced in [7] the notion of multi-positive (or n -positive) linear functional on a C^* -algebra A , an $n \times n$ matrix of linear map from $M_n(A)$ (the algebra of all $n \times n$ matrices over A) to $M_n(\mathbb{C})$ and proved that a multi-positive linear functional on a C^* -algebra induces a $*$ -representation of this C^* -algebra on a Hilbert space in terms of the GNS construction. Representations on Hilbert spaces are naturally generalized to representations on Hilbert C^* -modules. Heo, combined in [2] these two constructions to obtain a representation of A on a Hilbert C^* -module for completely multi-positive linear maps from A to another C^* -algebra. Using this, he obtained a representation on a Hilbert C^* -module associated with completely bounded linear maps.

By KSGNS (Kasparov-Stinespring-Gel'fand-Naimark-Segal) construction [9], to a strictly completely positive map ρ from a C^* -algebra A on a Hilbert C^* -module F over a C^* -algebra B can be associated a triple $(F_\rho, \pi_\rho, v_\rho)$ consisting of a Hilbert B -module F_ρ , a $*$ -homomorphism $\pi_\rho: A \rightarrow \mathcal{L}_B(F_\rho)$ and an adjointable operator $v_\rho: F \rightarrow F_\rho$ which is unique up to a unitary equivalence. If $F = B = \mathbb{C}$, then the KSGNS construction reduces to the classical GNS construction. If $B = \mathbb{C}$ (so F is a Hilbert space), then we get the Stinespring construction. In the context of Hilbert C^* -modules the construction was given by Kasparov. In [4], Joița extended KSGNS construction for strict continuous completely multi-positive linear maps from a locally C^* -algebra A to $\mathcal{L}_B(E)$, the C^* -algebra of all adjointable B -module morphisms from E into E , and showed in Theorem 4.3, [4] a covariant version of this construction. In Theorem 2.1 we prove a projective generalization of this construction. Given a C^* -dynamical system (G, A, α) , a completely multi-positive projective u -covariant non-degenerate linear map from A to $\mathcal{L}_B(E)$ induces a projective covariant non-degenerate representation of (G, A, α) on a Hilbert B -module which is unique up to a unitary equivalence. In Theorem 2.2 we prove that a completely multi-positive projective u -covariant linear map ρ from A to $\mathcal{L}_B(E)$ relative to the dynamical system (G, A, α) induces a projective covariant representation $(\Phi_\rho, v^\rho, E_\rho)$ of (G, A, α) on a Hilbert C^* -module over B .

In Proposition 3.1 we show that a completely multi-positive projective u -covariant non-degenerate linear map from a C^* -algebra A on a Hilbert C^* -module E over a C^* -algebra B can be extended to a completely multi-positive linear map on the twisted crossed product $A \times_\alpha^\omega G$, as a generalization of Proposition 4.5, [4]. By Theorem 2.2 and Proposition 3.1 we prove in Corollary 3.2

that the representation of $A \times_{\alpha}^{\omega} G$ induced by the completely multi-positive projective u -covariant linear map ρ is unitarily equivalent with the representation of $A \times_{\alpha}^{\omega} G$ induced by $(\Phi_{\rho}, v^{\rho}, E_{\rho})$.

2. The projective covariant representation of a C^* -dynamical system on a Hilbert C^* -module induced by a completely multi-positive projective u -covariant linear map

We remind some definitions and notations that will be used throughout the paper.

A **completely multi-positive** linear map from a C^* -algebra A into a C^* -algebra B is an $n \times n$ matrix, $[\rho_{ij}]_{i,j=1}^n$, of linear maps from A into B such that the map $\rho: M_n(A) \rightarrow M_n(B)$ defined by $\rho([a_{ij}]_{i,j=1}^n) = [\rho_{ij}(a_{ij})]_{i,j=1}^n$ is completely positive.

Let (G, A, α) be a C^* -dynamical system and let u be a projective unitary representation of G on a Hilbert B -module E with the multiplier ω . We say that a completely positive linear map $\rho: A \rightarrow \mathcal{L}_B(E)$ is **projective u -covariant** relative to the C^* -dynamical system (G, A, α) if

$$\rho(\alpha_g(a)) = u_g \rho(a) u_g^* \text{ for all } a \in A \text{ and } g \in G.$$

Let u be a projective unitary representation $u: G \rightarrow \mathcal{U}(B)$ with the multiplier ω and let $\rho = [\rho_{ij}]_{i,j=1}^n$ be a multi-positive linear map from A into B . The map ρ may be considered as a map from $M_n(A)$ into $M_n(B)$. Let \tilde{u}_g be the diagonal matrix with all the diagonal entries u_g . If the map $\rho: M_n(A) \rightarrow M_n(B)$ is projective \tilde{u} -covariant with respect to the dynamical system $(M_n(A), G, \tilde{\alpha})$, where the action $\tilde{\alpha}: G \rightarrow \text{Aut}(M_n(A))$ is induced by the action $\alpha: G \rightarrow \text{Aut}(A)$ and defined by

$$\tilde{\alpha}_g([a_{ij}]_{i,j=1}^n) = [\alpha_g(a_{ij})]_{i,j=1}^n, [a_{ij}]_{i,j=1}^n \in M_n(A),$$

we say that ρ is a **projective u -covariant multi-positive** linear map from A into B . We note that a multi-positive linear map $\rho = [\rho_{ij}]_{i,j=1}^n$ is projective u -covariant if and only if $\rho_{ij}(\alpha_g(a_{ij})) = u_g \rho_{ij}(a_{ij}) u_g^*$, $i, j = 1, \dots, n$ for each $[a_{ij}]_{i,j=1}^n \in M_n(A)$ and $g \in G$.

A **projective covariant representation** of a C^* -dynamical system (G, A, α) on a Hilbert B -module E is a triple (Φ, v, E) , where Φ is a $*$ -representation of A on E , v is a projective unitary representation of G on E with the multiplier ω and $\Phi(\alpha_g(a)) = v_g \Phi(a) v_g^*$, for all $g \in G$ and $a \in A$.

Theorem 2.1. *Let (G, A, α) be a C^* -dynamical system, let u be a projective unitary representation of G on a Hilbert module E over a C^* -algebra B with the multiplier ω and let $\rho = [\rho_{ij}]_{i,j=1}^n$ be a completely multi-positive projective u -covariant non-degenerate linear map from A to $\mathcal{L}_B(E)$.*

1. *Then there is a projective covariant non-degenerate representation $(\Phi_{\rho}, v^{\rho}, E_{\rho})$ of (G, A, α) , where v^{ρ} is a projective unitary representation with the multiplier ω and n elements $V_{\rho,i}$, $i = 1, 2, \dots, n$ in $\mathcal{L}_B(E, E_{\rho})$ such that*

- (a) $\rho_{ij}(a) = V_{\rho,i}^* \Phi_\rho(a) V_{\rho,i}$, for all $a \in A$ and $i, j = 1, 2, \dots, n$;
- (b) $\{\Phi_\rho(a) V_{\rho,i} \xi; a \in A, \xi \in E, i = 1, 2, \dots, n\}$ spans a dense submodule of E_ρ ;
- (c) $v_g^\rho V_{\rho,i} = V_{\rho,i} u_g$ for all $g \in G$ and $i = 1, 2, \dots, n$.

2. If F is a Hilbert B -module, (Φ, v, F) is a projective covariant non-degenerate representation of (G, A, α) , where v is a projective unitary representation with the multiplier ω and W_i , $i = 1, 2, \dots, n$ are n elements in $\mathcal{L}_B(E, F)$ such that

- (a) $\rho_{ij}(a) = W_i^* \Phi(a) W_j$, for all $a \in A$ and $i, j = 1, 2, \dots, n$;
- (b) $\{\Phi(a) W_i \xi; a \in A, \xi \in F, i = 1, 2, \dots, n\}$ spans a dense submodule of F ;
- (c) $v_g W_i = W_i u_g$ for all $g \in G$ and $i = 1, 2, \dots, n$,
then there is a unitary operator U in $\mathcal{L}_B(E_\rho, F)$ such that
 - (i) $\Phi(a)U = U\Phi_\rho(a)$, for all $a \in A$;
 - (ii) $v_g U = U v_g^\rho$, for all $g \in G$;
 - (iii) $W_i = U V_{\rho,i}$, for all $i = 1, 2, \dots, n$.

Proof. 1. Let $(\Phi_\rho, V_\rho, E_\rho)$ be the KSGNS construction associated with ρ given by Theorem 3.4, [4] which satisfies 1 (a) and 1 (b).

Following the proof of Theorem 4.3, [4], we define for each $g \in G$, a linear map v_g^ρ from $(A \otimes_{alg} E)^n$ to $(A \otimes_{alg} E)^n$ by $v_g^\rho(\bigoplus_{i=1}^n (a_i \otimes \xi_i)) = \bigoplus_{i=1}^n (\alpha_g(a_i) \otimes u_g \xi_i)$. Using the fact that $[\rho_{ij}]_{i,j=1}^n$ is projective u -covariant, it is not difficult to check that v_g^ρ extends to a bounded linear map v_g^ρ from E_ρ to E_ρ and since

$$\begin{aligned} & \left\langle v_g^\rho \left(\bigoplus_{i=1}^n (a_i \otimes \xi_i) + \mathcal{N} \right), \bigoplus_{i=1}^n (b_i \otimes \eta_i) + \mathcal{N} \right\rangle = \\ & \left\langle \bigoplus_{i=1}^n (a_i \otimes \xi_i) + \mathcal{N}, v_{g^{-1}}^\rho \left(\bigoplus_{i=1}^n (b_i \otimes \eta_i) + \mathcal{N} \right) \right\rangle \end{aligned}$$

for all $\bigoplus_{i=1}^n (a_i \otimes \xi_i), \bigoplus_{i=1}^n (b_i \otimes \eta_i) \in (A \otimes_{alg} E)^n$, $v_g^\rho \in \mathcal{L}_B(E_\rho)$ and moreover, $(v_g^\rho)^* = v_{g^{-1}}^\rho$. Also it is easy to check that the map $g \mapsto v_g^\rho$ is a unitary representation of G on E_ρ .

We prove that v_g^ρ is a projective representation with the multiplier ω .

Let $g_1, g_2 \in G$ and $\bigoplus_{i=1}^n (a_i \otimes \xi_i) \in (A \otimes_{alg} E)^n$. We have

$$\begin{aligned} & \omega(g_1, g_2) v_{g_1}^\rho v_{g_2}^\rho \left(\bigoplus_{i=1}^n (a_i \otimes \xi_i) \right) = \omega(g_1, g_2) v_{g_1}^\rho \left(\bigoplus_{i=1}^n (\alpha_{g_2}(a_i) \otimes u_{g_2} \xi_i) \right) = \\ & \omega(g_1, g_2) \left(\bigoplus_{i=1}^n (\alpha_{g_1}(\alpha_{g_2}(a_i)) \otimes u_{g_1} u_{g_2} \xi_i) \right) = \bigoplus_{i=1}^n (\alpha_{g_1 g_2}(a_i) \otimes \omega(g_1, g_2) u_{g_1} u_{g_2} \xi_i) = \end{aligned}$$

$$\bigoplus_{i=1}^n (\alpha_{g_1 g_2}(a_i) \otimes u_{g_1 g_2} \xi_i) = v_{g_1 g_2}^\rho \left(\bigoplus_{i=1}^n (a_i \otimes \xi_i) \right).$$

To show that $(\Phi_\rho, v_\rho, E_\rho)$ is a covariant projective representation of (G, A, α) it remains to prove that $\Phi_\rho(\alpha_g(a)) = v_g^\rho \Phi_\rho(a) v_{g^{-1}}^\rho$ for all $g \in G$ and $a \in A$.

Let $g \in G$ and $a \in A$. We have

$$\begin{aligned} (v_g^\rho \Phi_\rho(a) v_{g^{-1}}^\rho) \left(\bigoplus_{i=1}^n (a_i \otimes \xi_i) + \mathcal{N} \right) &= (v_g^\rho \Phi_\rho(a)) \left(\bigoplus_{i=1}^n (\alpha_{g^{-1}}(a_i) \otimes u_{g^{-1}} \xi_i + \mathcal{N}) \right) = \\ v_g^\rho \left(\bigoplus_{i=1}^n (a \alpha_{g^{-1}}(a_i) \otimes u_{g^{-1}} \xi_i + \mathcal{N}) \right) &= \bigoplus_{i=1}^n (\alpha_g(a \alpha_{g^{-1}}(a_i)) \otimes u_g u_{g^{-1}} \xi_i + \mathcal{N}) = \\ \bigoplus_{i=1}^n \alpha_g(a) \alpha_g(\alpha_{g^{-1}}(a_i)) \otimes u_g u_{g^{-1}} \xi_i + \mathcal{N} &= \bigoplus_{i=1}^n \alpha_g(a) a_i \otimes \xi_i + \mathcal{N} = \\ \Phi_\rho(\alpha_g(a)) \left(\bigoplus_{i=1}^n (a_i \otimes \xi_i) + \mathcal{N} \right) & \end{aligned}$$

for all $\bigoplus_{i=1}^n (a_i \otimes \xi_i) \in (A \otimes_{alg} E)^n$. Hence $\Phi_\rho(\alpha_g(a)) = v_g^\rho \Phi_\rho(a) v_{g^{-1}}^\rho = v_g^\rho \Phi_\rho(a) (v_g^\rho)^*$, so $(\Phi_\rho, v_\rho, E_\rho)$ is a covariant representation.

To show that condition (c) is verified, let $\xi \in E$, $g \in G$ and $i = 1, \dots, n$. Then we have

$$\begin{aligned} \|v_g^\rho V_{\rho, i} \xi - V_{\rho, i} u_g \xi\|^2 &= \lim_\lambda \|v_g^\rho \xi_i^\lambda - V_{\rho, i} u_g \xi\|^2 = \\ \lim_\lambda \|\langle \xi, \rho_{ii}(e_\lambda^2) \xi \rangle + \langle \xi, \xi \rangle - \langle \rho_{ii}(\alpha_g(e_\lambda)) u_g \xi, u_g \xi \rangle - \langle u_g \xi, \rho_{ii}(\alpha_g(e_\lambda)) u_g \xi \rangle\| &\leq \\ \lim_\lambda \|\langle \xi, \rho_{ii}(e_\lambda) \xi \rangle + \langle \xi, \xi \rangle - \langle \rho_{ii}(e_\lambda) \xi, \xi \rangle - \langle \xi, \rho_{ii}(e_\lambda) \xi \rangle\| &= \lim_\lambda \|\langle \xi - \rho_{ii}(e_\lambda) \xi, \xi \rangle\| = 0. \end{aligned}$$

Hence condition (c) is also verified.

2. Using the fact that $\rho_{ij}(a) = V_{\rho, i}^* \Phi_\rho(a) V_{\rho, j} = W_i^* \Phi(a) W_j$ for all $a \in A$ and $i, j = 1, \dots, n$, it is not difficult to check that $\|\sum_{s=1}^m \sum_{i=1}^n \alpha_i \Phi_\rho(a_s) V_{\rho, i} \xi_s\| = \|\sum_{s=1}^m \sum_{i=1}^n \alpha_i \Phi(a_s) W_i \xi_s\|$ for all $\alpha_1, \dots, \alpha_n \in \mathbf{C}$, $a_1, \dots, a_m \in A$ and $\xi_1, \dots, \xi_m \in E$. Therefore, the linear map $\Phi_\rho(a) V_\rho \xi \mapsto \Phi(a) W \xi$ from the submodule of E_ρ generated by $\{\Phi_\rho(a) V_{\rho, i} \xi; a \in A, \xi \in E, i = 1, \dots, n\}$ to the submodule of F generated by $\{\Phi(a) W_i \xi; a \in A, \xi \in E, i = 1, \dots, n\}$ extends to a surjective isometric B -linear map U from E_ρ onto F . Then, by Theorem 3.5, [9], U is unitary. We define this unitary operator U in $\mathcal{L}(E_\rho, E)$ by

$$U \left(\sum_{s=1}^m \alpha \Phi_\rho(a_s) V_{\rho, i} \xi_s \right) = \sum_{s=1}^m \alpha \Phi(a_s) W_i \xi_s, \quad \forall a_1, \dots, a_m \in A, \forall \xi_1, \dots, \xi_m \in E.$$

Let $a \in A$. From

$$\begin{aligned}\Phi(a)U(\Phi_\rho(b)V_{\rho,i}\xi) &= \Phi(a)\Phi(b)W_i\xi = \Phi(ab)W_i\xi = \\ U(\Phi_\rho(ab)V_{\rho,i}\xi) &= U\Phi_\rho(a)(\Phi_\rho(b)V_{\rho,i}\xi)\end{aligned}$$

for all $b \in A$, $\xi \in E$ and $i = 1, 2, \dots, n$, we conclude that $\Phi(a)U = U\Phi_\rho(a)$.

Since Φ and Φ_ρ are non-degenerate, by Proposition 4.2, [3], we have $UV_{\rho,i}\xi = \lim_\lambda UV_\rho(e_\lambda)V_{\rho,i}\xi = \lim_\lambda \Phi(e_\lambda)W_i\xi = W_i\xi$ for all $\xi \in E$ and $i = 1, 2, \dots, n$. Therefore $W_i = UV_{\rho,i}$.

Let $g \in G$, $a \in A$, $\xi \in E$, $i = 1, 2, \dots, n$. We have

$$(v_g U)(\Phi_\rho(a)V_{\rho,i}\xi) = v_g(\Phi(a)UV_{\rho,i}\xi)v_g(\Phi(a)W_i\xi) = \Phi(a)v_g W_i\xi =$$

$$\Phi(a)W_i u_g \xi = U(\Phi_\rho(a)V_{\rho,i}u_g \xi) = U(\Phi_\rho(a)v_g^\rho V_{\rho,i}\xi) = (Uv_g^\rho)(\Phi_\rho(a)V_{\rho,i}\xi).$$

This implies that $v_g U = Uv_g^\rho$ and thus the assertion 2 is proved. \square

Let E be a Hilbert C^* -module over a C^* -algebra B . The algebraic tensor product $E \otimes_{alg} B^{**}$, where B^{**} is the enveloping W^* -algebra of B , becomes a right B^{**} -module ([10], [11], [13]) if one defines

$$(\xi \otimes b)c = \xi \otimes bc, \text{ for } \xi \in E \text{ and } b, c \in B^{**}.$$

The map $[\cdot, \cdot]: (E \otimes_{alg} B^{**}) \times (E \otimes_{alg} B^{**}) \rightarrow B^{**}$ defined by

$$\left[\sum_{i=1}^n \xi_i \otimes b_i, \sum_{j=1}^m \eta_j \otimes c_j \right] = \sum_{i=1}^n \sum_{j=1}^m b_i^* \langle \xi_i, \eta_j \rangle c_j$$

is a B^{**} -valued inner-product on $E \otimes_{alg} B^{**}$ and the quotient module $E \otimes_{alg} B^{**}/N_E$, where $N_E = \{\zeta \in E \otimes_{alg} B^{**}; [\zeta, \zeta] = 0\}$, becomes a pre-Hilbert B^{**} -module. The Hilbert C^* -module $\overline{E \otimes_{alg} B^{**}/N_E}$ obtained by the completion of $E \otimes_{alg} B^{**}/N_E$ with respect to the norm induced by the inner product $[\cdot, \cdot]$ is called the extension of E by the C^* -algebra B^{**} . Moreover, E can be regarded as a B -submodule of $\overline{E \otimes_{alg} B^{**}/N_E}$, since the map $\xi \rightarrow \xi \otimes 1_{B^{**}} + N_E$ from E to $\overline{E \otimes_{alg} B^{**}/N_E}$ is an isometric inclusion. The self-dual Hilbert B^{**} -module $(\overline{E \otimes_{alg} B^{**}/N_E})^\sharp$ is denoted by \widetilde{E} and we can consider E as embedded in \widetilde{E} without making distinction.

For an element $T \in \mathcal{L}_{B^{**}}(\widetilde{E})$ we denote by $T|_E$ the restriction of the map T on E .

We denote by $SCP^{u,p}(A, \mathcal{L}_B(E))$ the set of all strict completely positive projective u -covariant linear maps from A to $\mathcal{L}_B(E)$ and by $CP^{u,p}$ the set of all completely positive projective u -covariant linear maps from A to $\mathcal{L}_B(E)$.

Let $\rho \in SCP^{u,p}(A, \mathcal{L}_B(E))$. We denote by $C^p(\rho)$ the C^* -subalgebra of $\mathcal{L}_{B^{**}}(\widetilde{E}_\rho)$ generated by

$$\{T \in \mathcal{L}_{B^{**}}(\widetilde{E}_\rho); T\widetilde{\Phi}_\rho(a) = \widetilde{\Phi}_\rho(a)T, T\widetilde{v}_g^\rho = \widetilde{v}_g^\rho T, \widetilde{V}_\rho^* T\widetilde{\Phi}_\rho(a)\widetilde{V}_\rho|_E \in \mathcal{L}_B(E), \forall a \in A\}.$$

Theorem 2.2. *Let (G, A, α) be C^* -dynamical system, let u be a projective unitary representation of G on a Hilbert module E over a C^* -algebra B with the multiplier ω , let $\rho = [\rho_{ij}]_{i,j=1}^n$ be a completely multi-positive projective u -covariant linear map with respect to the dynamical system (G, A, α) from A to $\mathcal{L}_B(E)$.*

(1) *Then there is $(\Phi_\rho, v^\rho, E_\rho)$ a projective covariant representation of (G, A, α) on a Hilbert C^* -module E_ρ over B , where v^ρ is a projective unitary representation with the multiplier ω , an isometry $V_\rho : E \rightarrow E_\rho$ and $[T_{ij}^\rho]_{i,j=1}^n \in M_n(\widetilde{\Phi}_\rho(A)' \cap \widetilde{v}^\rho(G)')$ such that*

- (a) $\widetilde{V}_\rho^* T_{ij}^\rho \widetilde{\Phi}_\rho(a) \widetilde{V}_\rho|_E \in \mathcal{L}_B(E)$ for all $a \in A$ and for all $i, j = 1, 2, \dots, n$,
 $\left[\widetilde{V}_\rho^* T_{ij}^\rho \widetilde{V}_\rho|_E \right]_{i,j=1}^n$ is a positive element in $M_n(\mathcal{L}_B(E))$ and $\sum_{k=1}^n T_{kk}^\rho = nI_{\mathcal{L}_{B^{**}}(\widetilde{E}_\rho)}$;
- (b) $\{\Phi_\rho(a)V_\rho\xi; a \in A, \xi \in E\}$ is dense in E_ρ ;
- (c) $\rho_{ij}(a) = \widetilde{V}_\rho^* T_{ij}^\rho \widetilde{\Phi}_\rho(a) \widetilde{V}_\rho|_E$ for all $a \in A$ and $i, j = \overline{1, n}$;
- (d) $v_g^\rho V_\rho = V_\rho u_g$ for all $g \in G$.

(2) *If (Ψ, w, F) is another projective covariant representation of (G, A, α) on a Hilbert C^* -module F over B , where w is a projective unitary representation with the multiplier ω , $W : E \rightarrow F$ is an isometry and $[S_{ij}]_{i,j=1}^n \in M_n(\widetilde{\Psi}(A)' \cap \widetilde{w}(G)')$ such that*

- (a) $\widetilde{W}^* S_{ij} \widetilde{\Psi}(a) \widetilde{W}|_E \in \mathcal{L}_B(E)$ for all $a \in A$ and for all $i, j = 1, 2, \dots, n$,
 $\left[\widetilde{W}^* S_{ij} \widetilde{W}|_E \right]_{i,j=1}^n$ is a positive element in $M_n(\mathcal{L}_B(E))$, and $\sum_{k=1}^n S_{kk} = nI_{\mathcal{L}_{B^{**}}(\widetilde{F})}$;
- (b) $\{\Psi(a)W\xi; a \in A, \xi \in E\}$ is dense in F ;
- (c) $\rho_{ij}(a) = \widetilde{W}^* S_{ij} \widetilde{\Psi}(a) \widetilde{W}|_E$ for all $a \in A$ and $i, j = 1, 2, \dots, n$,
- (d) $w_g W = W u_g$ for all $g \in G$

then there is a unitary operator $U : E_\rho \rightarrow F$ such that

- (i) $\Psi(a) = U\Phi_\rho(a)U^*$ for all $a \in A$;
- (ii) $W = UV_\rho$;
- (iii) $S_{ij} = UT_{ij}^\rho U^*$ for all $i, j = 1, 2, \dots, n$.
- (iv) $w_g = Uv_g^\rho U^*$ for all $g \in G$.

Proof. Setting $\rho = \frac{1}{n} \sum_{i=1}^n \rho_{ii}$, the map ρ is completely positive projective u -covariant. Then, by Theorem 2.1, there is a projective covariant representation $(\Phi_\rho, v^\rho, E_\rho)$ of (G, A, α) , where v^ρ is a projective unitary representation with the multiplier ω and $V_\rho \in \mathcal{L}_B(E, E_\rho)$ such that

- (a) $\rho(a) = V_\rho^* \Phi_\rho(a) V_\rho$, for all $a \in A$;
- (b) $\{\Phi_\rho(a)V_\rho\xi; a \in A, \xi \in E\}$ spans a dense submodule of E_ρ ;
- (c) $v_g^\rho V_\rho = V_\rho u_g$ for all $g \in G$.

For $i \neq j$ by the proof of Theorem 2.2, [6], the maps $\frac{1}{2}(\rho - \frac{2}{n}\text{Re}\rho_{ij})$ and $\frac{1}{2}(\rho - \frac{2}{n}\text{Im}\rho_{ij})$ are completely positive and $\frac{1}{2}(\rho - \frac{2}{n}\text{Re}\rho_{ij}) \leq \rho$, $\frac{1}{2}(\rho - \frac{2}{n}\text{Im}\rho_{ij}) \leq \rho$. On the other hand, the maps $\frac{1}{2}(\rho - \frac{2}{n}\text{Re}\rho_{ij})$ and $\frac{1}{2}(\rho - \frac{2}{n}\text{Im}\rho_{ij})$ are projective u -covariant, because ρ_{ij} are projective u -covariant. Hence $\frac{1}{2}(\rho - \frac{2}{n}\text{Re}\rho_{ij})$, $\frac{1}{2}(\rho - \frac{2}{n}\text{Im}\rho_{ij}) \in [0, \rho]$, where $[0, \rho] = \{\theta \in CP^{u,p} \mid \theta \leq \rho\}$ with $\theta \leq \rho$ meaning that $\rho - \theta \in CP^{u,p}$. Applying Theorem 2.2, [5], there is a unique positive $T_{ij}^\rho \in C^p(\rho)$ such that $\rho_{ij}(a) = \tilde{V}_\rho^* T_{ij}^\rho \tilde{\Phi}_\rho(a) \tilde{V}_\rho|_E$ for all $a \in A$.

For each $i = 1, 2, \dots, n$, clearly $\frac{1}{n}\rho_{ii} \leq \rho$ and by the proof of Theorem 2.2, [5], there is a unique element $T_{ii}^0 \in C^p(\rho)$ such that $\frac{1}{n}\rho_{ii}(a) = \tilde{V}_\rho^* T_{ii}^0 \tilde{\Phi}_\rho(a) \tilde{V}_\rho|_E$ for all $a \in A$. Let $T_{ii}^\rho = nT_{ii}^0$. Then $T_{ii}^\rho \in C^p(\rho)$ and $\rho_{ii}(a) = \tilde{V}_\rho^* T_{ii}^\rho \tilde{\Phi}_\rho(a) \tilde{V}_\rho|_E$ for all $a \in A$. From

$$\rho(a) = \frac{1}{n} \sum_{k=1}^n \rho_{kk}(a) = \frac{1}{n} \sum_{k=1}^n \tilde{V}_\rho^* T_{kk}^\rho \tilde{\Phi}_\rho(a) \tilde{V}_\rho|_E = \tilde{V}_\rho^* \sum_{k=1}^n \frac{1}{n} T_{kk}^\rho \tilde{\Phi}_\rho(a) \tilde{V}_\rho|_E$$

for all $a \in A$ and by the proof of Theorem 2.2, [5], we deduce that $\sum_{k=1}^n \frac{1}{n} T_{kk} = I_{\mathcal{L}_{B^{**}}(\tilde{F})}$.

Following the proof of Theorem 2.2, [6], we show that $\left[\tilde{V}_\rho^* T_{ij} \tilde{V}_\rho|_E \right]_{i,j=1}^n$ is a positive element in $M_n(\mathcal{L}_B(E))$. Let $a \in A$ and $\xi_k \in E$, $k = 1, 2, \dots, n$. We have

$$\begin{aligned} \sum_{i,j=1}^n [T_{ij}(\Phi_\rho(a_i)V_\rho\xi_i), \Phi_\rho(a_j)V_\rho\xi_j] &= \sum_{i,j=1}^n \left[\tilde{V}_\rho^* T_{ij} \tilde{\Phi}_\rho(a_j^* a_i) \tilde{V}_\rho \xi_i, \xi_j \right] = \\ \sum_{i,j=1}^n \left\langle \tilde{V}_\rho^* T_{ij} \tilde{\Phi}_\rho(a_j^* a_i) \tilde{V}_\rho \xi_i, \xi_j \right\rangle &= \sum_{i,j=1}^n \langle \rho_{ij}(a_j^* a_i) \xi_i, \xi_j \rangle \geq 0 \end{aligned}$$

since $[\rho_{ij}]_{i,j=1}^n$ is completely multi-positive. From this and taking into consideration that the subspace generated by $\{\Phi_\rho(a)V_\rho\xi; a \in A, \xi \in E\}$ is dense in E_ρ , we deduce that $\sum_{i,j=1}^n [T_{ij}(\eta_i), \eta_j] \geq 0$ for all $\eta_1, \dots, \eta_n \in E$ and then

$$\sum_{i,j=1}^n \left\langle \tilde{V}_\rho^* T_{ij} \tilde{V}_\rho \xi_i, \xi_j \right\rangle = \sum_{i,j=1}^n \left[\tilde{V}_\rho^* T_{ij} \tilde{V}_\rho \xi_i, \xi_j \right] = \sum_{i,j=1}^n \left[T_{ij} \tilde{V}_\rho \xi_i, \tilde{V}_\rho \xi_j \right] \geq 0$$

for all $\xi_1, \dots, \xi_n \in E$. So we showed that $\left[\tilde{V}_\rho^* T_{ij} \tilde{V}_\rho|_E \right]_{i,j=1}^n$ is a positive element in $M_n(\mathcal{L}_B(E))$.

Assertion 2. (a), (b), (c) results from the proof of Theorem 2.2, [6].

We consider the linear map

$$U : \text{sp}\{\Phi_\rho(a)V_\rho\xi; a \in A, \xi \in E\} \rightarrow \text{sp}\{\Psi(a)W\xi; a \in A, \xi \in E\}$$

defined by

$$U(\Phi_\rho(a)V_\rho\xi) = \Psi(a)W\xi.$$

From

$$\begin{aligned} \langle U(\Phi_\rho(a)V_\rho\xi), U(\Phi_\rho(a)V_\rho\xi) \rangle &= \langle \Psi(a)W\xi, \Psi(a)W\xi \rangle = \langle W^*\Psi(a^*a)W\xi, \xi \rangle = \\ \left\langle \widetilde{W}^*I_{\mathcal{L}(\tilde{F})}\widetilde{\Psi}(a^*a)\widetilde{W}\xi, \xi \right\rangle &= \sum_{k=1}^n \frac{1}{n} \left\langle \widetilde{W}^*S_{kk}\widetilde{\Psi}(a^*a)\widetilde{W}\xi, \xi \right\rangle = \\ \sum_{k=1}^n \frac{1}{n} \langle \rho_{kk}(a^*a)\xi, \xi \rangle &= \sum_{k=1}^n \frac{1}{n} \left\langle \widetilde{V}_\rho^*T_{kk}\widetilde{\Phi}_\rho(a^*a)\widetilde{V}_\rho\xi, \xi \right\rangle = \\ \left\langle \widetilde{V}_\rho^*I_{\mathcal{L}(\tilde{E}_\rho)}\widetilde{\Phi}_\rho(a^*a)\widetilde{V}_\rho\xi, \xi \right\rangle &= \langle \Phi_\rho(a)V_\rho\xi, \Phi_\rho(a)V_\rho\xi \rangle \end{aligned}$$

for all $a \in A$ and $\xi \in E$ and taking into account that $\{\Phi_\rho(a)V_\rho\xi; a \in A, \xi \in E\}$ is dense in E_ρ and $\{\Psi(a)W\xi; a \in A, \xi \in E\}$ is dense in F , we deduce that U extends to an unitary operator from E_ρ to F . It can be easily verified that $U\Phi_\rho(a) = \Psi(a)U$ for all $a \in A$ and $UV_\rho = W$.

Obviously, $\widetilde{U}^*S_{ij}\widetilde{U} \in C^p(\rho)$ for all $i, j = 1, 2, \dots, n$. From

$$\rho_{ij}(a) = \widetilde{W}^*S_{ij}\widetilde{\Psi}(a)\widetilde{W}|_E = \widetilde{V}_\rho^*\widetilde{U}^*S_{ij}\widetilde{\Psi}(a)\widetilde{U}\widetilde{V}_\rho|_E = \widetilde{V}_\rho^*(\widetilde{U}^*S_{ij}\widetilde{U})\widetilde{\Phi}_\rho(a)\widetilde{V}_\rho|_E$$

for all $a \in A$ and $i, j = 1, 2, \dots, n$, and from the uniqueness of the operators $T_{ij} \in C^p(\rho)$ such that $\rho_{ij}(a) = \widetilde{V}_\rho^*T_{ij}\widetilde{\Phi}_\rho(a)\widetilde{V}_\rho|_E$ for all $a \in A$, we deduce that $T_{ij} = \widetilde{U}^*S_{ij}\widetilde{U}$ for all $i, j = 1, 2, \dots, n$.

Let $g \in G$ and $a \in A$. Then

$$w_g U(\Phi_\rho(a)V_\rho\xi) = w_g \Psi(a)W\xi = w_g U\Phi_\rho(a)U^*UV_\rho\xi = Uv_g^\rho \Phi_\rho(a)V_\rho\xi.$$

So $w_g U = Uv_g^\rho$ for all $g \in G$, because $\{\Phi_\rho(a)V_\rho\xi; a \in A, \xi \in E\}$ is dense in E_ρ . Let $g \in G$. We have $w_g W = w_g UV_\rho = Uv_g^\rho V_\rho = UV_\rho u_g = W u_g$. \square

3. Extension on the twisted crossed product $A \times_\alpha^\omega G$ of a completely multi-positive projective u -covariant linear map

Proposition 3.1. *Let (G, A, α) be a unital C^* -dynamical system, let E be a Hilbert module over a C^* -algebra B and let u be a projective unitary representation of G on E with the multiplier ω . If $\rho = [\rho_{ij}]_{i,j=1}^n$ is a completely multi-positive projective u -covariant non-degenerate linear map from A to $\mathcal{L}_B(E)$, then there is a completely multi-positive linear map $[\varphi_{ij}]_{i,j=1}^n$ from $A \times_\alpha^\omega G$ to $\mathcal{L}_B(E)$ uniquely given by*

$$\varphi_{ij}(f) = \int_G \rho_{ij}(f(g))u_g d\mu, \text{ for all } f \in C_c(G, A) \text{ and } i, j = 1, 2, \dots, n,$$

where $C_c(G, A)$ is the set of continuous functions from G to A with compact supports. Moreover, $[\varphi_{ij}]_{i,j=1}^n$ is non-degenerate.

Proof. By Theorem 2.1, there are a projective covariant non-degenerate representation $(\Phi_\rho, v^\rho, E_\rho)$ of (G, A, α) and n elements $V_{\rho,i}$, $i = 1, \dots, n$ in $\mathcal{L}_B(E, E_\rho)$ such that $\rho_{ij}(a) = V_{\rho,i}^* \Phi_\rho(a) V_{\rho,i}$ and $v_g^\rho V_{\rho,i} = V_{\rho,i} u_g$, for all $a \in A$ and $g \in G$ and for all $i, j = 1, \dots, n$.

Let $\Phi_\rho \times v^\rho$ be the representation of $A \times_\alpha^\omega G$ associated with $(\Phi_\rho, v^\rho, E_\rho)$ (Theorem 3.3, [1]). For all $i, j = 1, \dots, n$ we define $\varphi_{ij}: A \times_\alpha^\omega G \rightarrow \mathcal{L}_B(E)$ by $\varphi_{ij}(f) = V_{\rho,i}^* (\Phi_\rho \times v^\rho)(f) V_{\rho,i}$. It is clear that $[\varphi_{ij}]_{i,j=1}^n$ is a completely multi-positive linear map from $A \times_\alpha^\omega G$ into $\mathcal{L}_B(E)$.

Let $\{e_\lambda\}_{\lambda \in \Lambda}$ be an approximate unit for A and let $\xi \in E$. Then, since $\Phi_\rho \times v^\rho$ and ρ are non-degenerate,

$$\lim_{\lambda} \varphi_{ii}(e_\lambda) \xi = \lim_{\lambda} V_{\rho,i}^* (\Phi_\rho \times v^\rho)(e_\lambda) V_{\rho,i} \xi = V_{\rho,i}^* V_{\rho,i} \xi = \xi$$

for all $i = 1, \dots, n$. So $[\varphi_{ij}]_{i,j=1}^n$ is non-degenerate.

If $f \in C_c(G, A)$, then

$$\begin{aligned} \varphi_{ij}(f) &= V_{\rho,i}^* (\Phi_\rho \times v^\rho)(f) V_{\rho,i} = \int_G V_{\rho,i}^* \Phi_\rho(f(g)) v_g^\rho V_{\rho,i} dg = \\ &= \int_G V_{\rho,i}^* \Phi_\rho(f(g)) V_{\rho,i} u_g dg = \int_G \rho_{ij}(f(g)) u_g dg \end{aligned}$$

and since $C_c(G, A)$ is dense in $A \times_\alpha^\omega G$, $[\varphi_{ij}]_{i,j=1}^n$ is unique. \square

Corollary 3.2. *Let $\rho = [\rho_{ij}]_{i,j=1}^n$ be a completely multi-positive projective u -covariant non-degenerate linear map and let $\varphi = [\varphi_{ij}]_{i,j=1}^n$ be the unique completely multi-positive linear map from $A \times_\alpha^\omega G$ into $\mathcal{L}_B(E)$ given by Proposition 3.1. Then $(\Phi_\varphi, E_\varphi, V_\varphi, [T_{ij}^\varphi]_{i,j=1}^n)$ and $(\Phi_\rho \times v^\rho, E_\rho, V_\rho, [T_{ij}^\rho]_{i,j=1}^n)$ are unitarily equivalent.*

Proof. We show that $(\Phi_\rho \times v^\rho, E_\rho, V_\rho, [T_{ij}^\rho]_{i,j=1}^n)$ verifies statement 2 in Theorem 2.2.

We must prove that $(\Phi_\rho \times v^\rho, v_\rho, E_\rho)$ is a projective covariant representation, $V_\rho: E \rightarrow E_\rho$ is an isometry and $[T_{ij}^\rho]_{i,j=1}^n \in M_n(\widetilde{\Phi_\rho \times v^\rho}(A \times_\alpha^\omega G)' \cap \widetilde{v^\rho}(G)')$ that verifies (a) – (d) in Theorem 2.2.

By Theorem 2.2, $[T_{ij}^\rho]_{i,j=1}^n \in M_n(\widetilde{\Phi_\rho}(A)' \cap \widetilde{v^\rho}(G)')$, so

$$\begin{aligned} T_{ij}^\rho (\widetilde{\Phi_\rho \times v^\rho})(f) &= T_{ij}^\rho \int_G \widetilde{\Phi_\rho}(f(g)) \widetilde{v_g^\rho} dg = \int_G T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \widetilde{v_g^\rho} dg = \\ &= \int_G \widetilde{\Phi_\rho}(f(g)) T_{ij}^\rho \widetilde{v_g^\rho} dg = \int_G \widetilde{\Phi_\rho}(f(g)) \widetilde{v_g^\rho} T_{ij}^\rho dg = \\ &= \left(\int_G \widetilde{\Phi_\rho}(f(g)) \widetilde{v_g^\rho} dg \right) T_{ij}^\rho = (\widetilde{\Phi_\rho \times v^\rho})(f) T_{ij}^\rho, \end{aligned}$$

which means that $[T_{ij}^\rho]_{i,j=1}^n \in M_n(\widetilde{\Phi_\rho \times v^\rho}(A \times_\alpha^\omega G)' \cap \widetilde{v^\rho}(G)')$.

By Theorem 2.2, applied to ρ , results that V_ρ is an isometry.

We verify condition 2.(a) in Theorem 2.2:

$$\begin{aligned} \tilde{V}_\rho^* T_{ij}^\rho (\widetilde{\Phi_\rho \times v^\rho})(f) \tilde{V}_\rho \xi &= \tilde{V}_\rho^* T_{ij}^\rho \left(\int_G \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho dg V_\rho \xi \right) = \\ &\left(\int_G \tilde{V}_\rho^* T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho V_\rho dg \right) \xi = \left(\int_G \tilde{V}_\rho^* T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho \tilde{V}_\rho dg \right) \xi, \end{aligned}$$

for all $\xi \in E$.

$$\begin{aligned} \left[\tilde{V}_\rho^* \left(\int_G T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho dg \right) \tilde{V}_\rho \xi, \eta \right] &= \int_G \left[\tilde{V}_\rho^* T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho \tilde{V}_\rho \xi, \eta \right] dg = \\ \int_G \left[(\tilde{V}_\rho^* T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho \tilde{V}_\rho) \xi, \eta \right] dg &= \int_G \left[(\tilde{V}_\rho^* T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho \tilde{V}_\rho)|_E \xi, \eta \right] dg = \\ &\left[\int_G (\tilde{V}_\rho^* T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho \tilde{V}_\rho)|_E dg \xi, \eta \right], \end{aligned}$$

for all $\xi \in E, \eta \in \tilde{E}$.

For an arbitrary $\eta \in \tilde{E}$, we have

$$\tilde{V}_\rho^* \left(\int_G T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho dg \right) \tilde{V}_\rho \xi = \int_G (\tilde{V}_\rho^* T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho \tilde{V}_\rho)|_E dg \xi,$$

for all $\xi \in E$. So $\tilde{V}_\rho^* \left(\int_G T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho dg \right) \tilde{V}_\rho E \subseteq E$.

But $\left(\tilde{V}_\rho^* \left(\int_G T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho dg \right) \tilde{V}_\rho \right)|_E$ is a B -module morphism, thus $\left(\tilde{V}_\rho^* \left(\int_G T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho dg \right) \tilde{V}_\rho \right)|_E = \int_G \left(\tilde{V}_\rho^* T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho \tilde{V}_\rho \right)|_E dg \in \mathcal{L}_B(E)$.

The rest of the condition 2.(a) is verified by applying Theorem 2.2 to ρ .

Conditions 2.(b) and 2.(d) are obviously satisfied by Theorem 2.2 applied to ρ .

We verify condition 2.(c):

$$\begin{aligned} (\tilde{V}_\rho^* T_{ij}^\rho (\widetilde{\Phi_\rho \times v^\rho})(f) \tilde{V}_\rho)|_E &= \tilde{V}_\rho^*|_E T_{ij}^\rho (\widetilde{\Phi_\rho \times v^\rho})(f)|_E \tilde{V}_\rho|_E = \\ \tilde{V}_\rho^*|_E \left[T_{ij}^\rho \int_G \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho dg \right] |_E \tilde{V}_\rho|_E &= \tilde{V}_\rho^*|_E \left(\int_G T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho dg \right) |_E \tilde{V}_\rho|_E = \\ \tilde{V}_\rho^*|_E \int_G (T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho|_E dg \tilde{V}_\rho)|_E &= \int_G \tilde{V}_\rho^*|_E (T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho)|_E \tilde{V}_\rho|_E dg = \\ &\int_G (\tilde{V}_\rho^* T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho \tilde{V}_\rho)|_E dg. \end{aligned}$$

For $\xi \in E$ we have

$$\begin{aligned} (\tilde{V}_\rho^* T_{ij}^\rho (\widetilde{\Phi_\rho \times v^\rho})(f) \tilde{V}_\rho)|_E \xi &= \left[\int_G (\tilde{V}_\rho^* T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{v}_g^\rho \tilde{V}_\rho)|_E dg \right] \xi = \\ &= \left[\int_G (\tilde{V}_\rho^* T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{V}_\rho \tilde{u}_g)|_E dg \right] \xi = \left[\int_G (\tilde{V}_\rho^* T_{ij}^\rho \widetilde{\Phi_\rho}(f(g)) \tilde{V}_\rho)|_E u_g dg \right] \xi = \end{aligned}$$

$$\left[\int_G \rho_{ij}(f(g)) u_g dg \right] \xi = \varphi_{ij}(f) \xi.$$

Thus, by Theorem 2.2, we obtain that $(\Phi_\varphi, E_\varphi, V_\varphi, [T_{ij}^\varphi]_{i,j=1}^n)$ and $(\Phi_\rho \times v^\rho, E_\rho, V_\rho, [T_{ij}^\rho]_{i,j=1}^n)$ are unitarily equivalent. \square

REFERENCES

- [1] *R. C. Busby, H. A. Smith*, Representations of twisted group algebras, *Trans. Amer. Math. Soc.*, Vol. **149** (1970), 503-537.
- [2] *J. Heo*, Completely multi-positive linear maps and representations on Hilbert C^* -modules, *J. Operator Theory* **41** (1999), 3-22.
- [3] *M. Joița*, Strict completely positive maps between locally C^* -algebras and representations on Hilbert modules, *J. London Math. Soc.* (2), **66** (2002), 421-432.
- [4] *M. Joița*, Completely multi-positive linear maps between locally C^* -algebras and representations on Hilbert modules, *Studia Math.* **172** (2006), 181-196.
- [5] *M. Joița, T.-L. Costache, M. Zamfir*, Covariant representations associated with covariant completely n -positive linear maps between C^* -algebras, III Workshop on Coverings, Selections and Games in Topology, April 25-29, 2007, Vrnjacka Banja, Serbia.
- [6] *M. Joița, T.-L. Costache, M. Zamfir*, Representations associated with completely n -positive linear maps between C^* -algebras, *Stud. Cercet. Stiint. Ser. Mat.* **16** (2006), Supplement Proceedings of ICMI 45, Bacău, Sept. 18-20, 2006, 111-122.
- [7] *A. Kaplan*, Covariant completely positive maps and liftings, *Rocky Mountain J. Math.*, vol.23, No. 3 (1993), 939-946.
- [8] *G. G. Kasparov*, Hilbert C^* -modules: theorems of Stinespring and Voiculescu, *J. Operator Theory* **4** (1980), 133-150.
- [9] *E. C. Lance*, Hilbert C^* -modules. A toolkit for operator algebraists, *London Math. Soc. Lect. Notes Ser.* 210, Cambridge University Press, Cambridge (1995).
- [10] *H. Lin*, Bounded module maps and pure completely positive maps, *J. Operator Theory*, **26** (1991), 121-139.
- [11] *W. L. Paschke*, Inner product modules over B^* -algebras, *Trans. Amer. Math. Soc.*, **182** (1973), 443-468.
- [12] *W. F. Stinespring*, Positive functions on C^* -algebras, *Proc. Amer. Math. Soc.* **6** (1955), 211-216.
- [13] *S. K. Tsui*, Completely positive module maps and completely positive extreme maps, *Proc. Amer. Math. Soc.* **124** (1996), 437-445.