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A VERSION OF THE KRONECKER LEMMA 

Gheorghe BUDIANU1 

In lucrare se prezinta o varianta a lemei lui Kronecker relativa la siruri si 
serii de numere reale. Rezultatele obtinute se aplica la studiul sirurilor de variabile 
aleatoare. 

In this work it is presented a version of Kronecker lemma concerning real 
number series and sequences. The results obtained are applied to the study of 
random variable sequences. 
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1. Introduction 

The Kronecker lemma concerning real number series and sequences is 
widely used in the field of Probabilities in the study of random variable 
sequences. The proofs of some theorems concerning the law of large numbers and 
the law of the iterated logarithm for sums of independent random variables rely on 
the Kronecker lemma. The theorem of R.J.Tomkins [12] that establishes a relation 
between the law of the iterated logarithm and the law of large numbers is proven 
on the basis of this lemma. In the paper of Guang-Hui Cai and Hang Wu [2] 
relative to the law of the iterated logarithm for sums of negatively associated 
random variables, results are obtained by employing the Kronecker lemma. 
Kronecker lemma [9] has the following statement: if the real number series 
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The paper wishes to present a version of this lemma having as hypothesis the 
strictly decreasing sequence *( )n n N

a
∈

.  

2. A version of the Kronecker lemma  

 The main purpose of this paper is to establish the following theorem  

                                                            
1 Reader, Departament of Mathematics II , University “Politehnica” of Bucharest, ROMANIA 



Gheorghe Budianu 38

Theorem 1. Let 
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For the proof of the theorem 1 it is necessary the following lemma which is a 
version of the Stolz-Cesaro lemma. 
 
Lemma. Given the real number sequences  ( )n n N
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The proof of this lemma is well known. 
 
Proof of Theorem 1 

Given 
1

n
n

S x
∞

=

=∑ , 1 0S = , *
1 0 1

1
, 0, , .

n

n n k k k
k

S x a b a a k N+ −
=

= = = − ∈∑  

We have 



A version of the Kronecker lemma 39

                          ( ) *
1

1 1

, .
n n

k k k n
k k

b a a a n N−
= =

= − = ∀ ∈∑ ∑                                           (6) 

We transform  
1

1 n

k k
kn

a x
a =
∑  taking into account that 1k k kx S S+= − : 

[ ]

( )

( )

1 1 1
1 1 1

1 1
1 1

1 2 0 1 2 3 1 2 1 2 1 1 1
1

1 1 1( ) ( )

1 1

1 1... .

n n n

k k k k k k k k k k
k k kn n n

n n

k k k k k k
k kn n

n

n n n n n n n n k k
kn n

a x a S S a S a b S
a a a

a S a S b S
a a

a S a S a S a S a S a S a S a S b S
a a

+ + −
= = =

+ −
= =

− − − + −
=

= − = − +

= − −

= − + − + + − + − −

∑ ∑ ∑

∑ ∑

∑

 

                  
Considering that 0 0a = , after simplifications we get:  
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We shall prove that   
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Because  1lim ,nn
S S+→∞

=   from relation (7) it results relation (1`). 

To verify relation (8) we shall use the lemma. 
We must prove that 
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For the calculation of the limit we use the Abel transform [5]: 
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Introducing k ku S= , k kv b= in (10) and taking into account (6) we have: 
1 1

1
1 1 1 1 1

( )
n n n k n

k k n k k k i n n k k
k k k i k

b S S b S S b S a a x
− −

+
= = = = =

= − − = −∑ ∑ ∑ ∑ ∑                                       (11) 



Gheorghe Budianu 40

The series  
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To verify relation (8) we apply the lemma.  The conditions a) and b) are given by 
hypothesis and by relation (9). 
We verify condition c) from the lemma: 
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Relation (8) has been verified and thus the theorem has been proven. 

Example. Given the convergent series 
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The conditions for Theorem 1 are fulfilled. Relation (1`) is also satisfied: 
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 3. A Kronecker type limit. 

Another version of the Kronecker lemma is given by the following theorem: 
Theorem 2. Given the convergent real number series 
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By applying the lemma we get: 
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4. Application Limits of sums of random variables  

In [9] is given and proven 
Theorem 3. Let be ( ) *n n N

X
∈

an independent random variable sequence having the 
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b) the functions  
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Taking into account Theorem 1,we can change the statement of Theorem 3 as 
following:  
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We verify the conditions of Theorem 1. 
Condition a) is given by hypothesis; for the verification of condition b) 
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Corollary. Let ( )n n N
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Proof. The conclusion of the corollary is obtained from Theorem 3∗  if we 
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If   0 1p< <   then condition a) from Theorem 3 is verified. If  1 2p< <   then 
condition b) from Theorem 3 is verified. If 1p = , then the relations (13) and (14) 
are identical and we apply directly Theorem *3 . 
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In Theorem 2 we consider k
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