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A VERSION OF THE KRONECKER LEMMA

Gheorghe BUDIANU*

In lucrare se prezinta o varianta a lemei lui Kronecker relativa la siruri si
serii de numere reale. Rezultatele obtinute se aplica la studiul sirurilor de variabile
aleatoare.

In this work it is presented a version of Kronecker lemma concerning real
number series and sequences. The results obtained are applied to the study of
random variable sequences.
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1. Introduction

The Kronecker lemma concerning real number series and sequences is
widely used in the field of Probabilities in the study of random variable
sequences. The proofs of some theorems concerning the law of large numbers and
the law of the iterated logarithm for sums of independent random variables rely on
the Kronecker lemma. The theorem of R.J.Tomkins [12] that establishes a relation
between the law of the iterated logarithm and the law of large numbers is proven
on the basis of this lemma. In the paper of Guang-Hui Cai and Hang Wu [2]
relative to the law of the iterated logarithm for sums of negatively associated
random variables, results are obtained by employing the Kronecker lemma.
Kronecker lemma [9] has the following statement: if the real number series
an is convergent and (a, ) is a strictly increasing sequence heaving the

n>1

neN*’

limit lima, = oo, then it exists

n—o0

IimiZakxk =0 1)
a,

n—o

The paper wishes to present a version of this lemma having as hypothesis the
strictly decreasing sequence (a,) - -

2. A version of the Kronecker lemma

The main purpose of this paper is to establish the following theorem
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Theorem 1. Let an be a convergent real number series and
n=1

(a,),- &, €R, Vne N astrictly decreasing sequence.
If
a) the sequence (a,) _.is convergentand lima, =0,

n—w

k=1

n
b) the sequence (Z a, xk] is convergent and
neN”

n
lim> ax, =0
k=1

N—o0 ==

13 .
then the sequence [—Z akxk] Is convergent and
a
neN

n k=1

R L
lim—> ax =0.

n—oo an k=1

)

©)

)

For the proof of the theorem 1 it is necessary the following lemma which is a

version of the Stolz-Cesaro lemma.

Lemma. Given the real number sequences (x,) _..and (y,)

If
a) the sequence (y,)

neN”

is strictly decreasing,

neN”

b) the sequences (x,) . and (y,) . areconvergentand limx, =limy, =0,
€ n—o nN—w

ne

. X -
c) there exists lim——"=]cR ,
n—co y — y
n+l n

then it exists

. X
lim—==1.

n—o yn

The proof of this lemma is well known.

Proof of Theorem 1
Given S=>'x,,$,=0,S,,=> %, 3 =0, b =3 -a_,keN"
n=1 k=1

We have

(4)

(®)
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b=>(a-a,)=a,VneN". (6)
k=1 k=1
n
We transform Z X, taking into account thatx, =S, ,, —S, :
a, o
13 13 1
a_nkzllakxk Za_n a (S0 — :a_né &Sy (ak—1+bk)sk]
13 1
4 ak 1~ 1S ) o kak
an k=1 n k=

nn+l

:i(aisz—aosﬁazsfaisz+...+aHs -a _,S, ,+as$ nlsn)—iZbksk.

Considering thata, = 0, after simplifications we get:

—Zakxk =S, ——Zb S,. )

n k=1 n k=1
We shall prove that

n—)oo

lim— st =S. (8)

Because limS, =S, fromrelation (7) it results relation (1°).

n—o
To verify relation (8) we shall use the lemma.
We must prove that

anb S, =0 (©)

n—o

For the calculation of the I|m|t we use the Abel transform [5]:

If A =D UV, V,=>v then
k=1 k=1
n-1
A =UV, - Z (Uk+1 - uk)vk (10
k=1

Introducing u, =S, ,v, =b, in (10) and taking into account (6) we have:

n n n-1 k n-1
Zbksk zsnzbk _Z(Sk+1_sk)zbi :Snan_zakxk (11)
k=1 k=1 k=1 i1 k=1
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The series an being convergent, the sequence of partial sums (Sn)nZl is
n=1

bounded, therefore limS a, =0.

n-1
By hypothesis lim Z a, X, =0, thus it results that relation (9) is fulfilled.
nN—o k=1

To verify relation (8) we apply the lemma. The conditions a) and b) are given by
hypothesis and by relation (9).
We verify condition c) from the lemma:

n+l n

Zbksk _Zbksk b .S
lim XL == = lim=2=0L = |im S| =S.
n—o an+1 — a’l’] n—ow -~ n—oo

Relation (8) has been verified and thus the theorem has been proven.

. . 2n n
Example. Given the convergent series Z(—n——j and the sequence

n
nx1

1 *
== neN"
(a,), & ine

neN”'”n

The sequence is strictly decreasing and IimE:O. It exists
n—co n
lim> ax, = IimZ(%—ikao.
n—e 4= n—o0 #= 3 2

The conditions for Theorem 1 are fulfilled. Relation (1°) is also satisfied:

o112k k
oS (550

k=1
3. A Kronecker type limit.

Another version of the Kronecker lemma is given by the following theorem:
Theorem 2. Given the convergent real number series an and the real number

n>1
sequences(a,) . and (b,) ..
If
a) The sequence(a, )neN. is strictly decreasing,

b) The sequences (a,) .. (b,) _,. areconvergentand lima, =limb =0,

n—o n—o
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.. b . -b
c) Itexists lim——" =] eR,
e, —a

n

then the sequence ( Zb X, J is convergent and
neN’

nkl

lim— Zb x, =0. (12)

n—o a k=1

Proof. The sequences (a,) . and (b,) . satisfy the conditions of the lemma

. .. . a
therefore it exists lim—==1.

Letbe S,.,=>'X.S =0,¢ =b b, keN", (b=0) andS =lims,.
k=1 n—o0
We  transform  (12) having in  mind the above  notations:

Y ACHE RS NCEM RS Z[bsm (G, +b,,)S,]

an k=1 n k=1 n k=1 n k=1
izn: (b, Sk+1_bk—1sk)_cksk]:_ WSt zck = n+l d_n where
an k=1 an n an
d, =) ¢cS,.
k=1
But lim 3229 _ jim GeaSea i Baa =P gy g,

mea,—a, ra,—a, "ra,—a

By applying the lemma we get:

lim—>"b,x, = |m(%sn+l—g—ﬂj=|-3—l .$=0.

n

4. Application Limits of sums of random variables
In [9] is given and proven
Theorem 3. Let be (Xn)neN* an independent random variable sequence having the

expectation E(X,)=0,vneN". and (gn(x))neN. a function sequence, even and
non-decreasing for x > 0 and that satisfy one of the following conditions:

a) the function does not decrease on the interval (0,x).

n
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and 32X
9.(x) X
If (a,) . isaconvergentstrictly positive number sequence and if the series

z E(gn(xn)) (13)

b) the functions are not increasing on the interval (0,0).

n>1 g n (an )
is convergent then the series
> % (14)
n>1 an

is convergent a.s. (almost sure).
Taking into account Theorem 1,we can change the statement of Theorem 3 as
following:

Theorem 3". Given the conditions of Theorem 3, if (a,) . is a convergent and
strictly decreasing positive number sequence having lima, =0,then, if

n—oo

I|mZX =0 a.s., then it exists

n—oo

lim— ZX =0 as. (15)

I"I—>wa k=1
Proof . (If {Q,K,P}is a probability space andX :Q—R,ne N*, then
(X,(@)) . for whatever weQ, (wfixed) is a real number sequence, so the
above results can be applied to (Xn(a)))neN on a subset of probability 1 of Q)

Appling theorem 3 i

n=1 “,
We verify the conditions of Theorem 1.
Condition a) is given by hypothesis; for the verification of condition b)

we consider X, :ﬁ, k e N"in Theorem 1.

ak
It results that I|m2akxk _I|mZak —I|mZX =0 as. .
Thus condition b) is satlsfled The conclusmn okf theorem 1 shows that it exists
lim— Zakxk =lim— Zak _I|m L ZX =0, as. which is exactly relation
e a, ko e a, ko e a, ko

(15).
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Corollary. Let (X,) be an independent random variable sequence having

neN’

n—o

E(X,)=0,vneN" and Iimkznl:Xk =0, as.

If (an)neN, is a strictly decreasing positive number sequence having lima, =0

n—o

and the series

p
Z—Et(p”" 0<p<2, (16)
n>1 n

IS convergent, then

Iimiz X, =0, as..

e ko
Proof. The conclusion of the corollary is obtained from Theorem 3° if we
consider g, (x)=9g(x) = x| .
If O<p<1 then condition a) from Theorem 3 is verified. If 1<p<2 then
condition b) from Theorem 3 is verified. If p =1, then the relations (13) and (14)

are identical and we apply directly Theorem3".

Theorem 4. Let (X)), and (g,(x)), ., satisfying the conditions of Theorem 3.

n>1

If (a,) . and (b,) . are real number sequences fulfilling the conditions

a) the sequence (a, )n is strictly decreasing and lima, =0

eN n—o0

b) the sequence (b, ).

o ... b.-Db
c) itexist lim——" =] R,
ean, —a,

d) the series ZM
n>1 gn(bn)
then Iimizn: X, =0, as.

N> gt

. is convergent and limb, =0
eN n—o

is convergent,

Xn

Proof: From Theorem 3 it results that the series Z IS convergent a.s.

n=l Mp
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In Theorem 2 we consider X, = ﬁ The conditions of Theorem 2 are fulfilled,

thus
lim— be =lim— Zb —=I|m ZX =0,as..
~>ooa =1 —)ooa k=1 ﬁwa k=1
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